Brief communication: β-cell function influences dopamine receptor availability

Julia P Dunn, Naji N Abumrad, Bruce W Patterson, Robert M Kessler, Robyn A Tamboli, Julia P Dunn, Naji N Abumrad, Bruce W Patterson, Robert M Kessler, Robyn A Tamboli

Abstract

We aim to identify physiologic regulators of dopamine (DA) signaling in obesity but previously did not find a compelling relationship with insulin sensitivity measured by oral-minimal model (OMM) and DA subtype 2 and 3 receptor (D2/3R) binding potential (BPND). Reduced disposition index (DI), a β-cell function metric that can also be calculated by OMM, was shown to predict a negative reward behavior that occurs in states of lower endogenous DA. We hypothesized that reduced DI would occur with higher D2/3R BPND, reflecting lower endogenous DA. Participants completed PET scanning, with a displaceable radioligand to measure D2/3R BPND, and a 5-hour oral glucose tolerance test to measure DI by OMM. We studied 26 age-similar females without (n = 8) and with obesity (n = 18) (22 vs 39 kg/m2). Reduced DI predicted increased striatal D2/3R BPND independent of BMI. By accounting for β-cell function, we were able to determine that the state of insulin and glucose metabolism is pertinent to striatal D2/3R BPND in obesity. Clinical Trial Registration Number: NCT00802204.

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1. Linear regressions for striatal D2/3R…
Fig 1. Linear regressions for striatal D2/3R availability with disposition index and D2/3R availability with BMI.
Fig 2. Presynaptic terminal: Simplified schema of…
Fig 2. Presynaptic terminal: Simplified schema of insulin effects on DA neuron synapse in the striatum.
Evidence supports cell surface DAT and striatal ChI excitability vary by diet-induced effects on both insulin secretion/levels and insulin sensitivity. Postsynaptic membrane: with PET imaging the displaceable radioligand competes with extracellular DA for binding.

References

    1. Murray S, Tulloch A, Gold MS, Avena NM. Hormonal and neural mechanisms of food reward, eating behaviour and obesity. Nat Rev Endocrinol. 2014;10(9):540–52. 10.1038/nrendo.2014.91 .
    1. Speed N, Saunders C, Davis AR, Owens WA, Matthies HJ, Saadat S, et al. Impaired striatal Akt signaling disrupts dopamine homeostasis and increases feeding. PLoS One. 2011;6(9):e25169 10.1371/journal.pone.0025169
    1. Dunn JP, Kessler RM, Feurer ID, Volkow ND, Patterson BW, Ansari MS, et al. Relationship of dopamine type 2 receptor binding potential with fasting neuroendocrine hormones and insulin sensitivity in human obesity. Diabetes care. 2012;35(5):1105–11. 10.2337/dc11-2250
    1. Geiger BM, Haburcak M, Avena NM, Moyer MC, Hoebel BG, Pothos EN. Deficits of mesolimbic dopamine neurotransmission in rat dietary obesity. Neuroscience. 2009;159(4):1193–9. 10.1016/j.neuroscience.2009.02.007
    1. van de Giessen E, Celik F, Schweitzer DH, van den Brink W, Booij J. Dopamine D2/3 receptor availability and amphetamine-induced dopamine release in obesity. J Psychopharmacol. 2014;28(9):866–73. 10.1177/0269881114531664 .
    1. Guo J, Simmons WK, Herscovitch P, Martin A, Hall KD. Striatal dopamine D2-like receptor correlation patterns with human obesity and opportunistic eating behavior. Mol Psychiatry. 2014;19(10):1078–84. Epub 2014/09/10. 10.1038/mp.2014.102
    1. Dang LC, Samanez-Larkin GR, Castrellon JJ, Perkins SF, Cowan RL, Zald DH. Associations between dopamine D2 receptor availability and BMI depend on age. NeuroImage. 2016;138:176–83. Epub 2016/05/22. 10.1016/j.neuroimage.2016.05.044
    1. Eisenstein SA, Gredysa DM, Antenor-Dorsey JA, Green L, Arbelaez AM, Koller JM, et al. Insulin, Central Dopamine D2 Receptors, and Monetary Reward Discounting in Obesity. PLoS One. 2015;10(7):e0133621 Epub 2015/07/21. 10.1371/journal.pone.0133621
    1. Breda E, Cavaghan MK, Toffolo G, Polonsky KS, Cobelli C. Oral glucose tolerance test minimal model indexes of beta-cell function and insulin sensitivity. Diabetes. 2001;50(1):150–8. Epub 2001/01/09. .
    1. Dalla Man C, Yarasheski KE, Caumo A, Robertson H, Toffolo G, Polonsky KS, et al. Insulin sensitivity by oral glucose minimal models: validation against clamp. American journal of physiology. 2005;289(6):E954–9. 10.1152/ajpendo.00076.2005 .
    1. Mawlawi O, Martinez D, Slifstein M, Broft A, Chatterjee R, Hwang DR, et al. Imaging human mesolimbic dopamine transmission with positron emission tomography: I. Accuracy and precision of D(2) receptor parameter measurements in ventral striatum. J Cereb Blood Flow Metab. 2001;21(9):1034–57. Epub 2001/08/29. 10.1097/00004647-200109000-00002 .
    1. Cobelli C, Dalla Man C, Toffolo G, Basu R, Vella A, Rizza R. The oral minimal model method. Diabetes. 2014;63(4):1203–13. 10.2337/db13-1198
    1. Villareal DT, Banks MR, Patterson BW, Polonsky KS, Klein S. Weight loss therapy improves pancreatic endocrine function in obese older adults. Obesity (Silver Spring, Md. 2008;16(6):1349–54. 10.1038/oby.2008.226
    1. Lopez Vicchi F, Luque GM, Brie B, Nogueira JP, Garcia Tornadu I, Becu-Villalobos D. Dopaminergic drugs in type 2 diabetes and glucose homeostasis. Pharmacological research. 2016;109:74–80. Epub 2016/01/10. 10.1016/j.phrs.2015.12.029 .
    1. Warne JP, Horneman HF, Ginsberg AB, Pecoraro NC, Foster MT, Akana SF, et al. Mapping brain c-Fos immunoreactivity after insulin-induced voluntary lard intake: insulin- and lard-associated patterns. J Neuroendocrinol. 2007;19(10):794–808. 10.1111/j.1365-2826.2007.01593.x .
    1. Tellez LA, Medina S, Han W, Ferreira JG, Licona-Limon P, Ren X, et al. A gut lipid messenger links excess dietary fat to dopamine deficiency. Science (New York, NY. 2013;341(6147):800–2. 10.1126/science.1239275 .
    1. Knudsen K, Hartmann B, Fedorova TD, Ostergaard K, Krogh K, Moller N, et al. Pancreatic Polypeptide in Parkinson's Disease: A Potential Marker of Parasympathetic Denervation. Journal of Parkinson's disease. 2017;7(4):645–52. Epub 2017/09/19. 10.3233/JPD-171189 .
    1. Garrido-Gil P, Rodriguez-Perez AI, Dominguez-Meijide A, Guerra MJ, Labandeira-Garcia JL. Bidirectional Neural Interaction Between Central Dopaminergic and Gut Lesions in Parkinson's Disease Models. Molecular neurobiology. 2018;55(9):7297–316. Epub 2018/02/07. 10.1007/s12035-018-0937-8 .
    1. Ter Horst KW, Lammers NM, Trinko R, Opland DM, Figee M, Ackermans MT, et al. Striatal dopamine regulates systemic glucose metabolism in humans and mice. Sci Transl Med. 2018;10(442). 10.1126/scitranslmed.aar3752 .
    1. Williams JM, Owens WA, Turner GH, Saunders C, Dipace C, Blakely RD, et al. Hypoinsulinemia Regulates Amphetamine-Induced Reverse Transport of Dopamine. PLoS Biol. 2007;5(10):e274 10.1371/journal.pbio.0050274
    1. Stouffer MA, Woods CA, Patel JC, Lee CR, Witkovsky P, Bao L, et al. Insulin enhances striatal dopamine release by activating cholinergic interneurons and thereby signals reward. Nat Commun. 2015;6:8543 10.1038/ncomms9543
    1. Mebel DM, Wong JC, Dong YJ, Borgland SL. Insulin in the ventral tegmental area reduces hedonic feeding and suppresses dopamine concentration via increased reuptake. Eur J Neurosci. 2012;36(3):2336–46. 10.1111/j.1460-9568.2012.08168.x
    1. Lynch WJ, Peterson AB, Sanchez V, Abel J, Smith MA. Exercise as a novel treatment for drug addiction: a neurobiological and stage-dependent hypothesis. Neuroscience and biobehavioral reviews. 2013;37(8):1622–44. 10.1016/j.neubiorev.2013.06.011
    1. Roseberry AG. Acute fasting increases somatodendritic dopamine release in the ventral tegmental area. J Neurophysiol. 2015;114(2):1072–82. Epub 2015/06/19. 10.1152/jn.01008.2014
    1. Webb IC, Baltazar RM, Wang X, Pitchers KK, Coolen LM, Lehman MN. Diurnal variations in natural and drug reward, mesolimbic tyrosine hydroxylase, and clock gene expression in the male rat. J Biol Rhythms. 2009;24(6):465–76. 10.1177/0748730409346657 .

Source: PubMed

3
订阅