Acute NaCl Loading Reveals a Higher Blood Pressure for a Given Serum Sodium Level in African American Compared to Caucasian Adults

Megan M Wenner, Erin P Paul, Austin T Robinson, William C Rose, William B Farquhar, Megan M Wenner, Erin P Paul, Austin T Robinson, William C Rose, William B Farquhar

Abstract

Purpose: African American individuals are more prone to salt-sensitive hypertension than Caucasian individuals. Small changes in serum sodium (Na+) result in increased blood pressure (BP). However, it remains unclear if there are racial differences in BP responsiveness to increases in serum Na+. Therefore, the purpose of this investigation was to determine if African American adults have altered BP responsiveness to acute changes in serum Na+ compared to Caucasian adults. Methods: We measured beat-by-beat BP, serum Na+, plasma renin activity (PRA), angiotensin II (Ang II), and aldosterone (Aldo) during a 60-min 3% NaCl infusion (hypertonic saline infusion, HSI) in 39 participants (19 African Americans, age: 23 ± 1, 20 Caucasians, age: 25 ± 1). Data reported as African American vs. Caucasian cohort, mean ± SEM. Results: Baseline BP and serum Na+ were similar between groups and increased during HSI in both African American and Caucasian participants (p < 0.01). However, the peak change in serum Na+ was greater in African American participants (Δ5.8 ± 0.34 vs. Δ4.85 ± 0.38 mmol/L, p = 0.03). There was a significant group effect (p = 0.02) and an interaction between race and serum Na+ on systolic BP (p = 0.02). Larger categorical changes in serum Na+ corresponded to changes in systolic BP (p < 0.01) and African American participants demonstrated greater systolic BP responses for a given categorical serum Na+ increase (p < 0.01). Baseline Aldo was lower in African American adults (7.2 ± 0.6 vs. 12.0 ± 1.9 ng/dL, p = 0.03), there was a trend for lower baseline PRA (0.59 ± 0.9 vs. 1.28 ± 0.34 ng/mL/h, p = 0.07), and baseline Ang II was not different (14.2 ± 1.8 vs. 18.5 ± 1.4 pg/mL, p = 0.17). PRA and Aldo decreased during the HSI (p ≤ 0.01), with a greater decline in PRA (Δ-0.31 ± 0.07 vs. Δ-0.85 ± 0.25 ng/mL/h, p < 0.01) and Aldo (Δ-2.5 ± 0.5 vs. Δ-5.0 ± 1.1 ng/dL, p < 0.01) in Caucasian participants. However, the racial difference in PRA (p = 0.57) and Aldo (p = 0.59) reduction were no longer significant following baseline covariate analysis. Conclusion: African American individuals demonstrate augmented serum Na+ to an acute hypertonic saline load and greater systolic BP responsiveness to a given serum Na+. The altered BP response may be attributable to lower basal PRA and Aldo and a subsequently blunted RAAS response during the HSI.

Keywords: RAAS; blood pressure; hypertonic saline; osmolality; race.

Figures

FIGURE 1
FIGURE 1
The influence of race and serum Na+ on systolic BP. At a given serum Na+, African American adults had a greater systolic BP. Statistically significant main effects and interaction listed on graph; all p < 0.05. Data presented as mean ± SEM.
FIGURE 2
FIGURE 2
(A) Systolic BP changes corresponding to different categorical levels of changes in serum sodium; and (B) proportion of categorical serum sodium changes for African American and Caucasian participants. Statistically significant main or interaction effect where p < 0.05. Data presented as mean ± SEM.
FIGURE 3
FIGURE 3
Renin-angiotensin-aldosterone system (RAAS) response to HSI. (A) PRA (African American n = 16, Caucasian n = 12) measured at baseline and throughout the HSI (top panel) and peak responses (bottom); (B) Aldo (African American n = 18, Caucasian n = 20) measured at baseline and throughout the HSI (top panel) and peak responses (bottom); and (C) Ang II (African American n = 16, Caucasian n = 12) measured at baseline and throughout the HSI (top panel) and peak responses (bottom). African American participants are represented in closed circles (•) and Caucasian participants in open circles (∘). Statistically significant main or interaction effect where p < 0.05. Data presented as mean ± SEM.

References

    1. Adams J. M., McCarthy J. J., Stocker S. D. (2008). Excess dietary salt alters angiotensinergic regulation of neurons in the rostral ventrolateral medulla. Hypertension 52 932–937. 10.1161/HYPERTENSIONAHA.108.118935
    1. Appel L. J., Frohlich E. D., Hall J. E., Pearson T. A., Sacco R. L., Seals D. R., et al. (2011). The importance of population-wide sodium reduction as a means to prevent cardiovascular disease and stroke: a call to action from the American Heart Association. Circulation 123 1138–1143. 10.1161/CIR.0b013e31820d0793
    1. Blanch N., Clifton P. M., Petersen K. S., Keogh J. B. (2015). Effect of sodium and potassium supplementation on vascular and endothelial function: a randomized controlled trial. Am. J. Clin. Nutr. 101 939–946. 10.3945/ajcn.114.105197
    1. Bursztyn M., Ben-Dov I. Z. (2013). Sex differences in salt-sensitivity risk approximated from ambulatory blood pressure monitoring and mortality. J. Hypertens. 31 900–905. 10.1097/HJH.0b013e32835f29f4
    1. Calzone W. L., Silva C., Keefe D. L., Stachenfeld N. S. (2001). Progesterone does not alter osmotic regulation of AVP. Am. J. Physiol. Regul. Integr. Comp. Physiol. 281 R2011–R2020. 10.1152/ajpregu.2001.281.6.R2011
    1. Chumlea W. C., Guo S. S., Zeller C. M., Reo N. V., Baumgartner R. N., Garry P. J., et al. (2001). Total body water reference values and prediction equations for adults. Kidney Int. 59 2250–2258. 10.1046/j.1523-1755.2001.00741.x
    1. Dickinson K. M., Clifton P. M., Burrell L. M., Barrett P. H., Keogh J. B. (2014). Postprandial effects of a high salt meal on serum sodium, arterial stiffness, markers of nitric oxide production and markers of endothelial function. Atherosclerosis 232 211–216. 10.1016/j.atherosclerosis.2013.10.032
    1. Dickinson K. M., Clifton P. M., Keogh J. B. (2011). Endothelial function is impaired after a high-salt meal in healthy subjects. Am. J. Clin. Nutr. 93 500–505. 10.3945/ajcn.110.006155
    1. Elijovich F., Weinberger M. H., Anderson C. A., Appel L. J., Bursztyn M., Cook N. R., et al. (2016). Salt sensitivity of blood pressure: a scientific statement from the American Heart Association. Hypertension 68 e7–e46. 10.1161/HYP.0000000000000047
    1. Farquhar W. B., Paul E. E., Prettyman A. V., Stillabower M. E. (2005). Blood pressure and hemodynamic responses to an acute sodium load in humans. J. Appl. Physiol. 99 1545–1551. 10.1152/japplphysiol.00262.2005
    1. Farquhar W. B., Wenner M. M., Delaney E. P., Prettyman A. V., Stillabower M. E. (2006). Sympathetic neural responses to increased osmolality in humans. Am. J. Physiol. Heart Circ. Physiol. 291 H2181–H2186. 10.1152/ajpheart.00191.2006
    1. Fonkoue I. T., Schwartz C. E., Wang M., Carter J. R. (2018). Sympathetic neural reactivity to mental stress differs in black and non-Hispanic white adults. J. Appl. Physiol. 124 201–207. 10.1152/japplphysiol.00134.2017
    1. Franklin B. A. (ed.) (2000). American College of Sports Medicine Guidelines for Exercise Testing and Prescription. Baltimore, MD: Lippincott, 368.
    1. Fryar C. D., Ostchega Y., Hales C. M., Zhang G., Kruszon-Moran D. (2017). Hypertension prevalence and control among adults: United States, 2015-2016. NCHS Data Brief 1–8.
    1. Greaney J. L., Ray C. A., Prettyman A. V., Edwards D. G., Farquhar W. B. (2010). Influence of increased plasma osmolality on sympathetic outflow during apnea. Am. J. Physiol. Regul. Integr. Comp. Physiol. 299 R1091–R1096. 10.1152/ajpregu.00341.2010
    1. Grim C. E., Luft F. C., Fineberg N. S., Weinberger M. H. (1979). Responses to volume expansion and contraction in categorized hypertensive and normotensive man. Hypertension 1 476–485. 10.1161/01.HYP.1.5.476
    1. Hall J. E., Guyton A. C., Mizelle H. L. (1990). Role of the renin-angiotensin system in control of sodium excretion and arterial pressure. Acta Physiol. Scand. Suppl. 591 48–62.
    1. He F. J., Li J., Macgregor G. A. (2013). Effect of longer term modest salt reduction on blood pressure: cochrane systematic review and meta-analysis of randomised trials. BMJ 346:f1325. 10.1136/bmj.f1325
    1. He F. J., MacGregor G. A. (2004). Effect of longer-term modest salt reduction on blood pressure. Cochrane Database Syst. Rev. CD004937. 10.1002/14651858.CD004937
    1. He F. J., Macgregor G. A. (2012). Salt intake, plasma sodium, and worldwide salt reduction. Ann. Med. 44(Suppl. 1), S127–S137. 10.3109/07853890.2012.660495
    1. He F. J., Markandu N. D., Sagnella G. A., de Wardener H. E., MacGregor G. A. (2005). Plasma sodium: ignored and underestimated. Hypertension 45 98–102. 10.1161/01.HYP.0000149431.79450.a2
    1. He F. J., Markandu N. D., Sagnella G. A., MacGregor G. A. (1998). Importance of the renin system in determining blood pressure fall with salt restriction in black and white hypertensives. Hypertension 32 820–824. 10.1161/01.HYP.32.5.820
    1. He J., Klag M. J., Appel L. J., Charleston J., Whelton P. K. (1999). The renin-angiotensin system and blood pressure: differences between blacks and whites. Am. J. Hypertens. 12 555–562. 10.1016/S0895-7061(99)00030-8
    1. Kopp C., Linz P., Dahlmann A., Hammon M., Jantsch J., Muller D. N., et al. (2013). 23Na magnetic resonance imaging-determined tissue sodium in healthy subjects and hypertensive patients. Hypertension 61 635–640. 10.1161/HYPERTENSIONAHA.111.00566
    1. Lennon-Edwards S., Ramick M. G., Matthews E. L., Brian M. S., Farquhar W. B., Edwards D. G. (2014). Salt loading has a more deleterious effect on flow-mediated dilation in salt-resistant men than women. Nutr. Metab. Cardiovasc. Dis. 24 990–995. 10.1016/j.numecd.2014.05.004
    1. Levy S. B., Lilley J. J., Frigon R. P., Stone R. A. (1977). Urinary kallikrein and plasma renin activity as determinants of renal blood flow. The influence of race and dietary sodium intake. J. Clin. Invest. 60 129–138. 10.1172/JCI108749
    1. Luft F. C., Miller J. Z., Grim C. E., Fineberg N. S., Christian J. C., Daugherty S. A., et al. (1991). Salt sensitivity and resistance of blood pressure. Age and race as factors in physiological responses. Hypertension 17 I102–I108.
    1. Luft F. C., Rankin L. I., Bloch R., Weyman A. E., Willis L. R., Murray R. H., et al. (1979). Cardiovascular and humoral responses to extremes of sodium intake in normal black and white men. Circulation 60 697–706. 10.1161/01.CIR.60.3.697
    1. Matthews E. L., Brian M. S., Ramick M. G., Lennon-Edwards S., Edwards D. G., Farquhar W. B. (2015). High dietary sodium reduces brachial artery flow-mediated dilation in humans with salt-sensitive and salt-resistant blood pressure. J. Appl. Physiol. 118 1510–1515. 10.1152/japplphysiol.00023.2015
    1. Palacios C., Wigertz K., Martin B. R., Jackman L., Pratt J. H., Peacock M., et al. (2004). Sodium retention in black and white female adolescents in response to salt intake. J. Clin. Endocrinol. Metab. 89 1858–1863. 10.1210/jc.2003-031446
    1. Pratt J. H., Manatunga A. K., Hanna M. P., Ambrosius W. T. (1997). Effect of administered potassium on the renin-aldosterone axis in young blacks compared with whites. J. Hypertens. 15 877–883. 10.1097/00004872-199715080-00012
    1. Price D. A., Fisher N. D., Lansang M. C., Stevanovic R., Williams G. H., Hollenberg N. K. (2002). Renal perfusion in blacks: alterations caused by insuppressibility of intrarenal renin with salt. Hypertension 40 186–189. 10.1161/01.HYP.0000024349.85680.87
    1. Rifkin D. E., Khaki A. R., Jenny N. S., McClelland R. L., Budoff M., Watson K., et al. (2014). Association of renin, and aldosterone with ethnicity, and blood pressure: the multi-ethnic study of atherosclerosis. Am. J. Hypertens. 27 801–810. 10.1093/ajh/hpt276
    1. Sever P. S., Peart W. S., Meade T. W., Davies I. B., Gordon D. (1979). Ethnic differences in blood pressure with observations on noradrenaline and renin. 1. A working population. Clin. Exp. Hypertens. 1 733–744. 10.3109/10641967909068636
    1. Simmonds S. S., Lay J., Stocker S. D. (2014). Dietary salt intake exaggerates sympathetic reflexes and increases blood pressure variability in normotensive rats. Hypertension 64 583–589. 10.1161/HYPERTENSIONAHA.114.03250
    1. Stachenfeld N. S., DiPietro L., Palter S. F., Nadel E. R. (1998). Estrogen influences osmotic secretion of AVP and body water balance in postmenopausal women. Am. J. Physiol. 274 R187–R195.
    1. Stachenfeld N. S., Keefe D. L. (2002). Estrogen effects on osmotic regulation of AVP and fluid balance. Am. J. Physiol. Endocrinol. Metab. 283 E711–E721. 10.1152/ajpendo.00192.2002
    1. Stachenfeld N. S., Mack G. W., Takamata A., DiPietro L., Nadel E. R. (1996). Thirst and fluid regulatory responses to hypertonicity in older adults. Am. J. Physiol. 271 R757–R765.
    1. Stachenfeld N. S., Splenser A. E., Calzone W. L., Taylor M. P., Keefe D. L. (2001). Sex differences in osmotic regulation of AVP and renal sodium handling. J. Appl. Physiol. 91 1893–1901. 10.1152/jappl.2001.91.4.1893
    1. Stevens L. A., Levey A. S. (2009). Measured GFR as a confirmatory test for estimated GFR. J. Am. Soc. Nephrol. 20 2305–2313. 10.1681/ASN.2009020171
    1. Stocker S. D., Madden C. J., Sved A. F. (2010). Excess dietary salt intake alters the excitability of central sympathetic networks. Physiol. Behav. 100 519–524. 10.1016/j.physbeh.2010.04.024
    1. Suckling R. J., He F. J., Markandu N. D., MacGregor G. A. (2012). Dietary salt influences postprandial plasma sodium concentration and systolic blood pressure. Kidney Int. 81 407–411. 10.1038/ki.2011.369
    1. Takamata A., Mack G. W., Stachenfeld N. S., Nadel E. R. (1995). Body temperature modification of osmotically induced vasopressin secretion and thirst in humans. Am. J. Physiol. 269 R874–R880.
    1. Thibonnier M., Kilani A., Rahman M., DiBlasi T. P., Warner K., Smith M. C., et al. (1999). Effects of the nonpeptide V(1) vasopressin receptor antagonist SR49059 in hypertensive patients. Hypertension 34 1293–1300. 10.1161/01.HYP.34.6.1293
    1. Tu W., Li R., Bhalla V., Eckert G. J., Pratt J. H. (2018). Age-related blood pressure sensitivity to aldosterone in blacks and whites. Hypertension 72 247–252. 10.1161/HYPERTENSIONAHA.118.11014
    1. Van Beaumont W. (1972). Evaluation of hemoconcentration from hematocrit measurements. J. Appl. Physiol. 32 712–713. 10.1152/jappl.1972.32.5.712
    1. Vranish J. R., Holwerda S. W., Young B. E., Credeur D. P., Patik J. C., Barbosa T. C., et al. (2018). Exaggerated vasoconstriction to spontaneous bursts of muscle sympathetic nerve activity in healthy young black men. Hypertension 71 192–198. 10.1161/HYPERTENSIONAHA.117.10229
    1. Wallin B. G., Sundlof G., Eriksson B. M., Dominiak P., Grobecker H., Lindblad L. E. (1981). Plasma noradrenaline correlates to sympathetic muscle nerve activity in normotensive man. Acta Physiol. Scand. 111 69–73. 10.1111/j.1748-1716.1981.tb06706.x
    1. Wang P., Deger M. S., Kang H., Ikizler T. A., Titze J., Gore J. C. (2017). Sex differences in sodium deposition in human muscle and skin. Magn. Reson. Imaging 36 93–97. 10.1016/j.mri.2016.10.023
    1. Wenner M. M., Rose W. C., Delaney E. P., Stillabower M. E., Farquhar W. B. (2007). Influence of plasma osmolality on baroreflex control of sympathetic activity. Am. J. Physiol. Heart Circ. Physiol. 293 H2313–H2319. 10.1152/ajpheart.01383.2006
    1. Whelton P. K., Appel L. J., Sacco R. L., Anderson C. A., Antman E. M., Campbell N., et al. (2012). Sodium, blood pressure, and cardiovascular disease: further evidence supporting the American Heart Association sodium reduction recommendations. Circulation 126 2880–2889. 10.1161/CIR.0b013e318279acbf
    1. Williams S. F., Nicholas S. B., Vaziri N. D., Norris K. C. (2014). African Americans, hypertension and the renin angiotensin system. World J. Cardiol. 6 878–889. 10.4330/wjc.v6.i9.878

Source: PubMed

3
订阅