Reliability and Usefulness of Different Biomarkers of Oxidative Stress in Chronic Obstructive Pulmonary Disease

Elisabetta Zinellu, Angelo Zinellu, Alessandro G Fois, Sara S Fois, Barbara Piras, Ciriaco Carru, Pietro Pirina, Elisabetta Zinellu, Angelo Zinellu, Alessandro G Fois, Sara S Fois, Barbara Piras, Ciriaco Carru, Pietro Pirina

Abstract

Introduction: Chronic obstructive pulmonary disease (COPD) is a progressive disease characterized by airflow limitation that is not fully reversible after inhaled bronchodilator use associated with an abnormal inflammatory condition. The biggest risk factor for COPD is cigarette smoking. The exposure to noxious chemicals contained within tobacco smoke is known to cause airway epithelial injury through oxidative stress, which in turn has the ability to elicit an inflammatory response. In fact, the disruption of the delicate balance between oxidant and antioxidant defenses leads to an oxidative burden that has long been held responsible to play a pivotal role in the pathogenesis of COPD. There are currently several biomarkers of oxidative stress in COPD that have been evaluated in a variety of biological samples. The aim of this review is to identify the best studied molecules by summarizing the key literature findings, thus shedding some light on the subject.

Methods: We searched for relevant case-control studies examining oxidative stress biomarkers in stable COPD, taking into account the analytical method of detection as an influence factor.

Results: Many oxidative stress biomarkers have been evaluated in several biological matrices, mostly in the blood. Some of them consistently differ between the cases and controls even when allowing different analytical methods of detection.

Conclusions: The present review provides an overview of the oxidative stress biomarkers that have been evaluated in patients with COPD, bringing focus on those molecules whose reliability has been confirmed by the use of different analytical methods.

Conflict of interest statement

The authors declare that they have no conflicts of interest.

Copyright © 2020 Elisabetta Zinellu et al.

References

    1. Lozano R., Naghavi M., Foreman K., et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. The Lancet. 2012;380(9859):2095–2128. doi: 10.1016/S0140-6736(12)61728-0.
    1. Celli B. R., MacNee W. standards for the diagnosis and treatment of patients with COPD: a summary of the ATS/ERS position paper. The European Respiratory Journal. 2004;23(6):932–946. doi: 10.1183/09031936.04.00014304.
    1. Mannino D. M., Buist A. S. Global burden of COPD: risk factors, prevalence, and future trends. The Lancet. 2007;370(9589):765–773. doi: 10.1016/S0140-6736(07)61380-4.
    1. Decramer M., Janssens W., Miravitlles M. Chronic obstructive pulmonary disease. The Lancet. 2012;379(9823):1341–1351. doi: 10.1016/S0140-6736(11)60968-9.
    1. Pryor W. A., Stone K. Oxidants in cigarette Smoke radicals, hydrogen Peroxide, peroxynitrate, and peroxynitrite. Annals of the New York Academy of Sciences. 1993;686:12–27. doi: 10.1111/j.1749-6632.1993.tb39148.x.
    1. MacNee W. Oxidative stress and lung inflammation in airways disease. European Journal of Pharmacology. 2001;429(1-3):195–207. doi: 10.1016/s0014-2999(01)01320-6.
    1. Beckman J. S., Koppenol W. H. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. The American Journal of Physiology. 1996;271(5):C1424–C1437. doi: 10.1152/ajpcell.1996.271.5.C1424.
    1. Rahman I., Biswas S. K., Kode A. Oxidant and antioxidant balance in the airways and airway diseases. European Journal of Pharmacology. 2006;533(1-3):222–239. doi: 10.1016/j.ejphar.2005.12.087.
    1. Kirkham P. A., Barnes P. J. Oxidative stress in COPD. Chest. 2013;144(1):266–273. doi: 10.1378/chest.12-2664.
    1. Fischer B. M., Voynow J. A., Ghio A. J. COPD: balancing oxidants and antioxidants. International Journal of Chronic Obstructive Pulmonary Disease. 2015;10:261–276. doi: 10.2147/copd.s42414.
    1. Zinellu E., Zinellu A., Fois A. G., Carru C., Pirina P. Circulating biomarkers of oxidative stress in chronic obstructive pulmonary disease: a systematic review. Respiratory Research. 2016;17(1):p. 150. doi: 10.1186/s12931-016-0471-z.
    1. Dalle-Donne I., Rossi R., Colombo R., Giustarini D., Milzani A. Biomarkers of oxidative damage in human disease. Clinical Chemistry. 2006;52(4):601–623. doi: 10.1373/clinchem.2005.061408.
    1. Niki E., Yoshida Y., Saito Y., Noguchi N. Lipid peroxidation: mechanisms, inhibition, and biological effects. Biochemical and Biophysical Research Communications. 2005;338(1):668–676. doi: 10.1016/j.bbrc.2005.08.072.
    1. Niki E. Lipid peroxidation products as oxidative stress biomarkers. BioFactors. 2008;34(2):171–180. doi: 10.1002/biof.5520340208.
    1. Dhakal N., Lamsal M., Baral N., et al. Oxidative stress and nutritional status in chronic obstructive pulmonary disease. Journal of Clinical and Diagnostic Research. 2015;9(2):BC01–BC04. doi: 10.7860/JCDR/2015/9426.5511.
    1. Arja C., Surapaneni K. M., Raya P., Adimoolam C., Balisetty B., Kanala K. R. Oxidative stress and antioxidant enzyme activity in South Indian male smokers with chronic obstructive pulmonary disease. Respirology. 2013;18(7):1069–1075. doi: 10.1111/resp.12118.
    1. Woźniak A., Górecki D., Szpinda M., Mila-Kierzenkowska C., Woźniak B. Oxidant-antioxidant balance in the blood of patients with chronic obstructive pulmonary disease after smoking cessation. Oxidative Medicine and Cellular Longevity. 2013;2013:9. doi: 10.1155/2013/897075.897075
    1. Cristóvão C., Cristóvão L., Nogueira F., Bicho M. Avaliação do equilíbrio entre oxidantes e antioxidantes na patogénese da doença pulmonar obstrutiva crónica. Revista Portuguesa de Pneumologia. 2013;19(2):70–75. doi: 10.1016/j.rppneu.2012.09.002.
    1. Ahmad A., Shameem M., Husain Q. Altered oxidant-antioxidant levels in the disease prognosis of chronic obstructive pulmonary disease. The International Journal of Tuberculosis and Lung Disease. 2013;17(8):1104–1109. doi: 10.5588/ijtld.12.0512.
    1. Raut A. M., Suryakar A. N., Mhaisekar D. A study of oxidative stress, thiol proteins and role of vitamin E supplementation in chronic obstructive pulmonary disease (COPD) Al Ameen Journal of Medical Sciences. 2013;6:134–137.
    1. Gencer M., Aksoy N., Dagli E. C., et al. Prolidase activity dysregulation and its correlation with oxidative-antioxidative status in chronic obstructive pulmonary disease. Journal of Clinical Laboratory Analysis. 2011;25(1):8–13. doi: 10.1002/jcla.20347.
    1. Stanojkovic I., Kotur-Stevuljevic J., Milenkovic B., et al. Pulmonary function, oxidative stress and inflammatory markers in severe COPD exacerbation. Respiratory Medicine. 2011;105:S31–S37. doi: 10.1016/S0954-6111(11)70008-7.
    1. Joppa P., Petrášová D., Stančák B., Dorková Z., Tkáčová R. Oxidative stress in patients with COPD and pulmonary hypertension. Wiener Klinische Wochenschrift. 2007;119(13-14):428–434. doi: 10.1007/s00508-007-0819-y.
    1. Vibhuti A., Arif E., Deepak D., Singh B., Qadar Pasha M. A. Correlation of oxidative status with BMI and lung function in COPD. Clinical Biochemistry. 2007;40(13-14):958–963. doi: 10.1016/j.clinbiochem.2007.04.020.
    1. Ceylan E., Kocyigit A., Gencer M., Aksoy N., Selek S. Increased DNA damage in patients with chronic obstructive pulmonary disease who had once smoked or been exposed to biomass. Respiratory Medicine. 2006;100(7):1270–1276. doi: 10.1016/j.rmed.2005.10.011.
    1. Nadeem A., Raj H. G., Chhabra S. K. Increased oxidative stress and altered levels of antioxidants in chronic obstructive pulmonary disease. Inflammation. 2005;29(1):23–32. doi: 10.1007/s10753-006-8965-3.
    1. Calikoğlu M., Unlü A., Tamer L., Ercan B., Buğdayci R., Atik U. The levels of serum vitamin C, malonyldialdehyde and erythrocyte reduced glutathione in chronic obstructive pulmonary disease and in healthy smokers. Clinical Chemistry and Laboratory Medicine. 2002;40(10):1028–1031. doi: 10.1515/CCLM.2002.179.
    1. Hanta I., Kocabas A., Canacankatan N., Kuleci S., Seydaoglu G. Oxidant-antioxidant balance in patients with COPD. Lung. 2006;184(2):51–55. doi: 10.1007/s00408-005-2561-4.
    1. Rahman I., Morrison D., Donaldson K., MacNee W. Systemic oxidative stress in asthma, COPD, and smokers. American Journal of Respiratory and Critical Care Medicine. 1996;154(4):1055–1060. doi: 10.1164/ajrccm.154.4.8887607.
    1. ben Anes A., Fetoui H., Bchir S., et al. Increased oxidative stress and altered levels of nitric oxide and peroxynitrite in Tunisian patients with chronic obstructive pulmonary disease: correlation with disease severity and airflow obstruction. Biological Trace Element Research. 2014;161(1):20–31. doi: 10.1007/s12011-014-0087-4.
    1. Zeng M., Li Y., Jiang Y., Lu G., Huang X., Guan K. Local and systemic oxidative stress status in chronic obstructive pulmonary disease patients. Canadian Respiratory Journal. 2013;20(1):35–41. doi: 10.1155/2013/985382.
    1. Tsukagoshi H., Shimizu Y., Iwamae S., et al. Evidence of oxidative stress in asthma and COPD: potential inhibitory effect of theophylline. Respiratory Medicine. 2000;94(6):584–588. doi: 10.1053/rmed.2000.0785.
    1. Vibhuti A., Arif E., Mishra A., et al. CYP1A1, CYP1A2 and CYBA gene polymorphisms associated with oxidative stress in COPD. Clinica Chimica Acta. 2010;411(7-8):474–480. doi: 10.1016/j.cca.2009.12.018.
    1. Isik B., Isik R. S., Ceylan A., Calik O. Trace elements and oxidative stress in chronic obstructive pulmonary disease. Saudi Medical Journal. 2005;26(12):1882–1885.
    1. Premanand R., Kumar S., Mohan A. Study of thiobarbituric reactive substances and total reduced glutathione as indices of oxidative stress in chronic smokers with and without chronic obstructive pulmonary disease. The Indian Journal of Chest Diseases & Allied Sciences. 2007;49(1):9–12.
    1. Milevoj Kopčinović L., Domijan A. M., Posavac K., Čepelak I., Žanić Grubišić T., Rumora L. Systemic redox imbalance in stable chronic obstructive pulmonary disease. Biomarkers. 2016;21(8):692–698. doi: 10.3109/1354750x.2016.1172110.
    1. Sunnetcioglu A., Alp H. H., Sertogullarından B., Balaharoglu R., Gunbatar H. Evaluation of oxidative damage and antioxidant mechanisms in COPD, lung cancer, and obstructive sleep apnea syndrome. Respiratory Care. 2016;61(2):205–211. doi: 10.4187/respcare.04209.
    1. Zinellu A., Fois A. G., Sotgia S., et al. Arginines plasma concentration and oxidative stress in mild to moderate COPD. PLoS One. 2016;11(8, article e0160237) doi: 10.1371/journal.pone.0160237.
    1. Aggarwal T., Wadhwa R., Rohil V., Maurya P. K. Biomarkers of oxidative stress and protein-protein interaction in chronic obstructive pulmonary disease. Archives of Physiology and Biochemistry. 2017;124(3):226–231. doi: 10.1080/13813455.2017.1387796.
    1. Singh S., Verma S. K., Kumar S., et al. Evaluation of oxidative stress and antioxidant status in chronic obstructive pulmonary disease. Scandinavian Journal of Immunology. 2017;85(2):130–137. doi: 10.1111/sji.12498.
    1. Kluchová Z., Petrásová D., Joppa P., Dorková Z., Tkácová R. The association between oxidative stress and obstructive lung impairment in patients with COPD. Physiological Research. 2007;56(1):51–56.
    1. Folchini F., Nonato N. L., Feofiloff E., D'Almeida V., Nascimento O., Jardim J. R. Association of oxidative stress markers and C-reactive protein with multidimensional indexes in COPD. Chronic Respiratory Disease. 2011;8(2):101–108. doi: 10.1177/1479972310391284.
    1. Mercken E. M., Hageman G. J., Schols A. M., Akkermans M. A., Bast A., Wouters E. F. Rehabilitation decreases exercise-induced oxidative stress in chronic obstructive pulmonary disease. American Journal of Respiratory and Critical Care Medicine. 2005;172(8):994–1001. doi: 10.1164/rccm.200411-1580OC.
    1. Bartoli M. L., Novelli F., Costa F., et al. Malondialdehyde in exhaled breath condensate as a marker of oxidative stress in different pulmonary diseases. Mediators of Inflammation. 2011;2011:7. doi: 10.1155/2011/891752.891752
    1. Antus B., Harnasi G., Drozdovszky O., Barta I. Monitoring oxidative stress during chronic obstructive pulmonary disease exacerbations using malondialdehyde. Respirology. 2014;19(1):74–79. doi: 10.1111/resp.12155.
    1. Jammes Y., Steinberg J. G., Ba A., Delliaux S., Brégeon F. Enhanced exercise-induced plasma cytokine response and oxidative stress in COPD patients depend on blood oxygenation. Clinical Physiology and Functional Imaging. 2008;28(3):182–188. doi: 10.1111/j.1475-097X.2008.00795.x.
    1. Koechlin C., Couillard A., Cristol J. P., et al. Does systemic inflammation trigger local exercise-induced oxidative stress in COPD? The European Respiratory Journal. 2004;23(4):538–544. doi: 10.1183/09031936.04.00069004.
    1. Couillard A., Koechlin C., Cristol J. P., Varray A., Prefaut C. Evidence of local exercise-induced systemic oxidative stress in chronic obstructive pulmonary disease patients. The European Respiratory Journal. 2002;20(5):1123–1129. doi: 10.1183/09031936.02.00014302.
    1. Erden E. S., Motor S., Ustun I., et al. Investigation of Bisphenol a as an endocrine disruptor, total thiol, malondialdehyde, and C-reactive protein levels in chronic obstructive pulmonary disease. European Review for Medical and Pharmacological Sciences. 2014;18(22):3477–3483.
    1. Torres-Ramos Y. D., García-Guillen M. L., Olivares-Corichi I. M., Hicks J. J. Correlation of plasma protein carbonyls and C-reactive protein with GOLD stage progression in COPD patients. Open Respiratory Medicine Journal. 2009;3:61–66. doi: 10.2174/1874306400903010061.
    1. Moussa S. B., Sfaxi I., Tabka Z., Saad H. B., Rouatbi S. Oxidative stress and lung function profiles of male smokers free from COPD compared to those with COPD: a case-control study. Libyan Journal of Medicine. 2014;9(1, article 23873) doi: 10.3402/ljm.v9.23873.
    1. Ben Moussa S., Rouatbi S., Ben S. H. Incapacity, handicap, and oxidative stress markers of male smokers with and without COPD. Respiratory Care. 2016;61(5):668–679. doi: 10.4187/respcare.04420.
    1. Rahman I., Skwarska E., MacNee W. Attenuation of oxidant/antioxidant imbalance during treatment of exacerbations of chronic obstructive pulmonary disease. Thorax. 1997;52(6):565–568. doi: 10.1136/thx.52.6.565.
    1. Zinellu A., Fois A. G., Sotgia S., et al. Plasma protein thiols: an early marker of oxidative stress in asthma and chronic obstructive pulmonary disease. European Journal of Clinical Investigation. 2016;46(2):181–188. doi: 10.1111/eci.12582.
    1. Torres-Ramos Y. D., Guzman-Grenfell A. M., Montoya-Estrada A. RBC membrane damage and decreased band 3 phospho-tyrosine phosphatase activity are markers of COPD progression. Frontiers in Bioscience. 2010;E2(4):1385–1393. doi: 10.2741/e199.
    1. Guzmán-Grenfell A., Nieto-Velázquez N., Torres-Ramos Y., et al. Increased platelet and erythrocyte arginase activity in chronic obstructive pulmonary disease associated with tobacco or wood smoke exposure. Journal of Investigative Medicine. 2011;59(3):587–592. doi: 10.2310/JIM.0b013e31820bf475.
    1. Montaño M., Cisneros J., Ramírez-Venegas A., et al. Malondialdehyde and superoxide dismutase correlate with FEV1 in patients with COPD associated with wood smoke exposure and tobacco smoking. Inhalation Toxicology. 2010;22(10):868–874. doi: 10.3109/08958378.2010.491840.
    1. Avci E., Avci G. A. Important biomarkers that play a role in the chronic obstructive pulmonary disease process. Journal of Medical Biochemistry. 2018;37(1):46–53. doi: 10.1515/jomb-2017-0035.
    1. Tug T., Karatas F., Terzi S. M. Antioxidant vitamins (A, C and E) and malondialdehyde levels in acute exacerbation and stable periods of patients with chronic obstructive pulmonary disease. Clinical and Investigative Medicine. 2004;27(3):123–128.
    1. Corradi M., Pignatti P., Manini P., et al. Comparison between exhaled and sputum oxidative stress biomarkers in chronic airway inflammation. The European Respiratory Journal. 2004;24(6):1011–1017. doi: 10.1183/09031936.04.00002404.
    1. Wijnhoven H. J., Heunks L. M., Geraedts M. C., Hafmans T., Viña J. R., Dekhuijzen P. N. Oxidative and nitrosative stress in the diaphragm of patients with COPD. International Journal of Chronic Obstructive Pulmonary Disease. 2006;1(2):173–179. doi: 10.2147/copd.2006.1.2.173.
    1. Maury J., Gouzi F., De Rigal P., et al. Heterogeneity of systemic oxidative stress profiles in COPD: a potential role of gender. Oxidative Medicine and Cellular Longevity. 2015;2015:11. doi: 10.1155/2015/201843.201843
    1. Kaźmierczak M., Ciebiada M., Pękala-Wojciechowska A., Pawłowski M., Nielepkowicz-Goździńska A., Antczak A. Evaluation of markers of inflammation and oxidative stress in COPD patients with or without cardiovascular comorbidities. Heart, Lung & Circulation. 2015;24(8):817–823. doi: 10.1016/j.hlc.2015.01.019.
    1. Kostikas K., Papatheodorou G., Psathakis K., Panagou P., Loukides S. Oxidative stress in expired breath condensate of patients with COPD. Chest. 2003;124(4):1373–1380. doi: 10.1378/chest.124.4.1373.
    1. Montuschi P., Collins J. V., Ciabattoni G., et al. Exhaled 8-isoprostane as anIn VivoBiomarker of lung oxidative stress in patients with COPD and healthy smokers. American Journal of Respiratory and Critical Care Medicine. 2000;162(3):1175–1177. doi: 10.1164/ajrccm.162.3.2001063.
    1. Ko F. W. S., Lau C. Y. K., Leung T. F., Wong G. W. K., Lam C. W. K., Hui D. S. C. Exhaled breath condensate levels of 8-isoprostane, growth related oncogene α and monocyte chemoattractant protein-1 in patients with chronic obstructive pulmonary disease. Respiratory Medicine. 2006;100(4):630–638. doi: 10.1016/j.rmed.2005.08.009.
    1. Paredi P., Kharitonov S. A., Leak D., Ward S., Cramer D., Barnes P. J. Exhaled ethane, a marker of lipid peroxidation, is elevated in chronic obstructive pulmonary disease. American Journal of Respiratory and Critical Care Medicine. 2000;162(2):369–373. doi: 10.1164/ajrccm.162.2.9909025.
    1. Kinnula V. L., Ilumets H., Myllärniemi M., Sovijärvi A., Rytilä P. 8-Isoprostane as a marker of oxidative stress in nonsymptomatic cigarette smokers and COPD. The European Respiratory Journal. 2007;29(1):51–55. doi: 10.1183/09031936.00023606.
    1. Praticò D., Basili S., Vieri M., Cordova C., Violi F., Fitzgerald G. A. Chronic obstructive pulmonary disease is associated with an increase in urinary levels of isoprostane F2alpha-III, an index of oxidant stress. American Journal of Respiratory and Critical Care Medicine. 1998;158(6):1709–1714. doi: 10.1164/ajrccm.158.6.9709066.
    1. Santus P., Sola A., Carlucci P., et al. Lipid peroxidation and 5-lipoxygenase activity in chronic obstructive pulmonary disease. American Journal of Respiratory and Critical Care Medicine. 2005;171(8):838–843. doi: 10.1164/rccm.200404-558OC.
    1. Dalle-Donne I., Rossi R., Giustarini D. Protein carbonyl groups as biomarkers of oxidative stress. Clinica Chimica Acta. 2003;329(1-2):23–38. doi: 10.1016/S0009-8981(03)00003-2.
    1. Santos M. C., Oliveira A. L., Viegas-Crespo A. M., et al. Systemic markers of the redox balance in chronic obstructive pulmonary disease. Biomarkers. 2004;9:461–469.
    1. Gopal P., Reynaert N. L., Scheijen J. L., et al. Plasma advanced glycation end-products and skin autofluorescence are increased in COPD. The European Respiratory Journal. 2014;43(2):430–438. doi: 10.1183/09031936.00135312.
    1. Puig-Vilanova E., Rodriguez D. A., Lloreta J., et al. Oxidative stress, redox signaling pathways, and autophagy in cachectic muscles of male patients with advanced COPD and lung cancer. Free Radical Biology & Medicine. 2015;79:91–108. doi: 10.1016/j.freeradbiomed.2014.11.006.
    1. Barreiro E., Fermoselle C., Mateu-Jimenez M., et al. Oxidative stress and inflammation in the normal airways and blood of patients with lung cancer and COPD. Free Radical Biology & Medicine. 2013;65:859–871. doi: 10.1016/j.freeradbiomed.2013.08.006.
    1. Rodriguez D. A., Kalko S., Puig-Vilanova E., et al. Muscle and blood redox status after exercise training in severe COPD patients. Free Radical Biology and Medicine. 2012;52(1):88–94. doi: 10.1016/j.freeradbiomed.2011.09.022.
    1. Barreiro E., de la Puente B., Minguella J., et al. Oxidative stress and respiratory muscle dysfunction in severe chronic obstructive pulmonary disease. American Journal of Respiratory and Critical Care Medicine. 2005;171(10):1116–1124. doi: 10.1164/rccm.200407-887OC.
    1. Barreiro E., Rabinovich R., Marin-Corral J., Barberà J. A., Gea J., Roca J. Chronic endurance exercise induces quadriceps nitrosative stress in patients with severe COPD. Thorax. 2009;64(1):13–19. doi: 10.1136/thx.2008.105163.
    1. Barreiro E., Schols A. M., Polkey M. I., et al. Cytokine profile in quadriceps muscles of patients with severe COPD. Thorax. 2008;63(2):100–107. doi: 10.1136/thx.2007.078030.
    1. Levine R. L. Carbonyl modified proteins in cellular regulation, aging, and disease. Free Radical Biology & Medicine. 2002;32(9):790–796. doi: 10.1016/s0891-5849(02)00765-7.
    1. Cao W., Hou F. F., Nie J. AOPPs and the progression of kidney disease. Kidney International Supplements. 2014;4:102–106. doi: 10.1038/kisup.2014.19.
    1. Münzel T., Afanas'ev I. B., Kleschyov A. L., Harrison D. G. Detection of superoxide in vascular tissue. Arteriosclerosis, Thrombosis, and Vascular Biology. 2002;22(11):1761–1768. doi: 10.1161/.
    1. Dekhuijzen P. N., Aben K. K., Dekker I., et al. Increased exhalation of hydrogen peroxide in patients with stable and unstable chronic obstructive pulmonary disease. American Journal of Respiratory and Critical Care Medicine. 1996;154(3):813–816. doi: 10.1164/ajrccm.154.3.8810624.
    1. Antczak A., Ciebiada M., Pietras T., Piotrowski W. J., Kurmanowska Z., Górski P. Exhaled eicosanoids and biomarkers of oxidative stress in exacerbation of chronic obstructive pulmonary disease. Archives of Medical Science. 2012;8(2):277–285. doi: 10.5114/aoms.2012.28555.
    1. Murata K., Fujimoto K., Kitaguchi Y., Horiuchi T., Kubo K., Honda T. Hydrogen peroxide content and pH of expired breath condensate from patients with asthma and COPD. COPD: Journal of Chronic Obstructive Pulmonary Disease. 2014;11(1):81–87. doi: 10.3109/15412555.2013.830094.
    1. Stanojkovic I., Kotur-Stevuljevic J., Spasic S., et al. Relationship between bone resorption, oxidative stress and inflammation in severe COPD exacerbation. Clinical Biochemistry. 2013;46(16-17):1678–1682. doi: 10.1016/j.clinbiochem.2013.08.003.
    1. Ceylan E., Gencer M., Uzer E., Celik H. Measurement of the total antioxidant potential in chronic obstructive pulmonary diseases with a novel automated method. Saudi Medical Journal. 2007;28(9):1339–1343.
    1. Ekin S., Arısoy A., Gunbatar H., et al. The relationships among the levels of oxidative and antioxidative parameters, FEV1 and prolidase activity in COPD. Redox Report. 2016;22(2):74–77. doi: 10.1080/13510002.2016.1139293.
    1. Can U., Yerlikaya F. H., Yosunkaya S. Role of oxidative stress and serum lipid levels in stable chronic obstructive pulmonary disease. Journal of the Chinese Medical Association. 2015;78(12):702–708. doi: 10.1016/j.jcma.2015.08.004.
    1. Foschino Barbaro M. P., Carpagnano G. E., Spanevello A., Cagnazzo M. G., Barnes P. J. Inflammation, oxidative stress and systemic effects in mild chronic obstructive pulmonary disease. International Journal of Immunopathology and Pharmacology. 2007;20(4):753–763. doi: 10.1177/039463200702000411.
    1. Markoulis N., Gourgoulianis K. I., Moulas A., Gerogianni E., Molyvdas A. P. Reactive oxygen metabolites as an index of chronic obstructive pulmonary disease severity. Panminerva Medica. 2006;48(4):209–213.
    1. Lin Y. C., Wu T. C., Chen P. Y., Hsieh L. Y., Yeh S. L. Comparison of plasma and intake levels of antioxidant nutrients in patients with chronic obstructive pulmonary disease and healthy people in Taiwan: a case-control study. Asia Pacific Journal of Clinical Nutrition. 2010;19(3):393–401.
    1. Tzortzaki E. G., Dimakou K., Neofytou E., et al. Oxidative DNA damage and somatic mutations: a link to the molecular pathogenesis of chronic inflammatory airway diseases. Chest. 2012;141(5):1243–1250. doi: 10.1378/chest.11-1653.
    1. Igishi T., Hitsuda Y., Kato K., et al. Elevated urinary 8-hydroxydeoxyguanosine, a biomarker of oxidative stress, and lack of association with antioxidant vitamins in chronic obstructive pulmonary disease. Respirology. 2003;8(4):455–460. doi: 10.1046/j.1440-1843.2003.00490.x.
    1. Malic Z., Topic A., Francuski D., et al. Oxidative stress and genetic variants of xenobiotic-metabolising enzymes associated with COPD development and severity in Serbian adults. COPD. 2017;14(1):95–104. doi: 10.1080/15412555.2016.1199667.
    1. Kodama Y., Kishimoto Y., Muramatsu Y., et al. Antioxidant nutrients in plasma of Japanese patients with chronic obstructive pulmonary disease, asthma-COPD overlap syndrome and bronchial asthma. The Clinical Respiratory Journal. 2017;11(6):915–924. doi: 10.1111/crj.12436.
    1. Shih Y. M., Cooke M. S., Pan C. H., Chao M. R., Hu C. W. Clinical relevance of guanine-derived urinary biomarkers of oxidative stress, determined by LC-MS/MS. Redox Biology. 2019;20:556–565. doi: 10.1016/j.redox.2018.11.016.
    1. Osoata G. O., Hanazawa T., Brindicci C., et al. Peroxynitrite elevation in exhaled breath condensate of COPD and its inhibition by fudosteine. Chest. 2009;135(6):1513–1520. doi: 10.1378/chest.08-2105.
    1. Ichinose M., Sugiura H., Yamagata S., Koarai A., Shirato K. Increase in reactive nitrogen species production in chronic obstructive pulmonary disease airways. American Journal of Respiratory and Critical Care Medicine. 2000;162(2):701–706. doi: 10.1164/ajrccm.162.2.9908132.
    1. Sugiura H., Ichinose M., Tomaki M., et al. Quantitative assessment of protein-bound tyrosine nitration in airway secretions from patients with inflammatory airway disease. Free Radical Research. 2004;38(1):49–57. doi: 10.1080/10715760310001633817.
    1. Ricciardolo F. L., Caramori G., Ito K., et al. Nitrosative stress in the bronchial mucosa of severe chronic obstructive pulmonary disease. The Journal of Allergy and Clinical Immunology. 2005;116(5):1028–1035. doi: 10.1016/j.jaci.2005.06.034.
    1. Barreiro E., Gea J., Corominas J. M., Hussain S. N. Nitric oxide synthases and protein oxidation in the quadriceps femoris of patients with chronic obstructive pulmonary disease. American Journal of Respiratory Cell and Molecular Biology. 2003;29(6):771–778. doi: 10.1165/rcmb.2003-0138OC.
    1. Ellman G. L. Tissue sulfhydryl groups. Archives of Biochemistry and Biophysics. 1959;82(1):70–77. doi: 10.1016/0003-9861(59)90090-6.
    1. Rahman I., Swarska E., Henry M., Stolk J., MacNee W. Is there any relationship between plasma antioxidant capacity and lung function in smokers and in patients with chronic obstructive pulmonary disease? Thorax. 2000;55(3):189–193. doi: 10.1136/thorax.55.3.189.
    1. Beeh K. M., Beier J., Koppenhoefer N., Buhl R. Increased glutathione disulfide and nitrosothiols in sputum supernatant of patients with stable COPD. Chest. 2004;126(4):1116–1122. doi: 10.1378/chest.126.4.1116.
    1. Drost E. M., Skwarski K. M., Sauleda J., et al. Oxidative stress and airway inflammation in severe exacerbations of COPD. Thorax. 2005;60(4):293–300. doi: 10.1136/thx.2004.027946.
    1. Turgut T., Ilhan N., Deveci F., Akpolat N., Erden E. Ş., Muz M. H. Glutathione and nitrite levels in induced sputum at COPD patients and healthy smokers. Journal of Thoracic Disease. 2014;6(6):765–771. doi: 10.3978/j.issn.2072-1439.2014.04.24.
    1. Benzie I. F., Strain J. J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Analytical Biochemistry. 1996;239(1):70–76. doi: 10.1006/abio.1996.0292.
    1. Miller N. J., Rice-Evans C. A., Davies M. J., Gopinathan V., Milner A. A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clinical Science. 1993;84(4):407–412. doi: 10.1042/cs0840407.
    1. Hageman G. J., Larik I., Pennings H. J., Haenen G. R., Wouters E. F., Bast A. Systemic poly(ADP-ribose) polymerase-1 activation, chronic inflammation, and oxidative stress in COPD patients. Free Radical Biology & Medicine. 2003;35(2):140–148. doi: 10.1016/s0891-5849(03)00237-5.
    1. Lakhdar R., Denden S., Mouhamed M. H., et al. Correlation of EPHX1, GSTP1, GSTM1, and GSTT1 genetic polymorphisms with antioxidative stress markers in chronic obstructive pulmonary disease. Experimental Lung Research. 2011;37(4):195–204. doi: 10.3109/01902148.2010.535093.
    1. Tavilani H., Nadi E., Karimi J., Goodarzi M. T. Oxidative stress in COPD patients, smokers, and non-smokers. Respiratory Care. 2012;57(12):2090–2094. doi: 10.4187/respcare.01809.
    1. Yigla M., Berkovich Y., Nagler R. M. Oxidative stress indices in COPD--Broncho-alveolar lavage and salivary analysis. Archives of Oral Biology. 2007;52(1):36–43. doi: 10.1016/j.archoralbio.2006.08.002.
    1. McCord J. M., Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein) The Journal of Biological Chemistry. 1969;244(22):6049–6055.
    1. Misra H. P., Fridovich I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. The Journal of Biological Chemistry. 1972;247(10):3170–3175.
    1. Marklund S., Marklund G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. European Journal of Biochemistry. 1974;47(3):469–474. doi: 10.1111/j.1432-1033.1974.tb03714.x.
    1. Das K. A modified spectophotometric assay of suphoxide dismutase using nitrate formation by suphoxide radiacal. Indian Journal of Biochemistry & Biophysics. 2000;37:201–204.
    1. Ambade V. N., Sontakke A. N., Barthwal M. S., Tyagi R., Basannar D. R. Diagnostic utility of biomarkers in COPD. Respiratory Care. 2015;60(12):1729–1742. doi: 10.4187/respcare.03753.
    1. Regan E. A., Mazur W., Meoni E., et al. Smoking and COPD increase sputum levels of extracellular superoxide dismutase. Free Radical Biology and Medicine. 2011;51(3):726–732. doi: 10.1016/j.freeradbiomed.2011.05.008.
    1. Bajpai J., Prakash V., Kant S., et al. Study of oxidative stress biomarkers in chronic obstructive pulmonary disease and their correlation with disease severity in north Indian population cohort. Lung India. 2017;34(4):324–329. doi: 10.4103/lungindia.lungindia_205_16.
    1. Tkacova R., Kluchova Z., Joppa P., Petrasova D., Molcanyiova A. Systemic inflammation and systemic oxidative stress in patients with acute exacerbations of COPD. Respiratory Medicine. 2007;101(8):1670–1676. doi: 10.1016/j.rmed.2007.03.005.
    1. Harju T., Mazur W., Merikallio H., Soini Y., Kinnula V. L. Glutathione-S-transferases in lung and sputum specimens, effects of smoking and COPD severity. Respiratory Research. 2008;9(1):p. 80. doi: 10.1186/1465-9921-9-80.
    1. Pirabbasi E., Najafiyan M., Cheraghi M., et al. What are the antioxidant status predictors' factors among male chronic obstructive pulmonary disease (COPD) patients? Global Journal of Health Science. 2012;5(1):70–78. doi: 10.5539/gjhs.v5n1p70.
    1. Kubáň P., Foret F. Exhaled breath condensate: determination of non-volatile compounds and their potential for clinical diagnosis and monitoring. A review. Analytica Chimica Acta. 2013;805:1–18. doi: 10.1016/j.aca.2013.07.049.
    1. Holz O., Richter K., Jorres R. A., Speckin P., Mucke M., Magnussen H. Changes in sputum composition between two inductions performed on consecutive days. Thorax. 1998;53(2):83–86. doi: 10.1136/thx.53.2.83.

Source: PubMed

3
订阅