Quantifying SARS-CoV-2 transmission suggests epidemic control with digital contact tracing

Luca Ferretti, Chris Wymant, Michelle Kendall, Lele Zhao, Anel Nurtay, Lucie Abeler-Dörner, Michael Parker, David Bonsall, Christophe Fraser, Luca Ferretti, Chris Wymant, Michelle Kendall, Lele Zhao, Anel Nurtay, Lucie Abeler-Dörner, Michael Parker, David Bonsall, Christophe Fraser

Abstract

The newly emergent human virus SARS-CoV-2 (severe acute respiratory syndrome-coronavirus 2) is resulting in high fatality rates and incapacitated health systems. Preventing further transmission is a priority. We analyzed key parameters of epidemic spread to estimate the contribution of different transmission routes and determine requirements for case isolation and contact tracing needed to stop the epidemic. Although SARS-CoV-2 is spreading too fast to be contained by manual contact tracing, it could be controlled if this process were faster, more efficient, and happened at scale. A contact-tracing app that builds a memory of proximity contacts and immediately notifies contacts of positive cases can achieve epidemic control if used by enough people. By targeting recommendations to only those at risk, epidemics could be contained without resorting to mass quarantines ("lockdowns") that are harmful to society. We discuss the ethical requirements for an intervention of this kind.

Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

Figures

Instant contact tracing can reduce the proportion…
Instant contact tracing can reduce the proportion of cases that need to be isolated and contacts who need to be quarantined to achieve control of an epidemic.
Subject A becomes symptomatic after having had contact with other people in different settings the day before. Contacts are notified and quarantined where needed. In the inset, the green area indicates the success rates needed to control an epidemic with R0 = 2 (i.e., negative growth rates after isolating cases and quarantining their contacts).
Fig. 1. Quantifying transmission timing in 40…
Fig. 1. Quantifying transmission timing in 40 transmission pairs.
Left: Our inferred generation time distributions, in black; thicker lines denote higher support for the corresponding functional form, with the Weibull distribution being the best fit. For comparison, we also include the serial interval distributions previously reported by Li et al. (12) (light blue) and Nishiura et al. (22) (gray) and the incubation period distribution we used here, from Lauer et al. (21) (dashed red line). Right: Distribution of the posterior probability of presymptomatic transmission for each of the 40 transmission pairs. The red vertical line shows the mean probability.
Fig. 2. Our model of infectiousness.
Fig. 2. Our model of infectiousness.
The average infectiousness (rate of infecting others), β, is shown as a function of the amount of time since infection, τ. The total colored area found between two values of τ is the number of transmissions expected in that time window. The total colored area over all values of τ is the number of transmissions expected over the full course of one infection (i.e., the basic reproduction number R0). The different colors indicate the contributions of the four routes of transmission, so that the total area of one color over all values of τ is the average number of transmissions via that route over the whole course of infection: RP, RS, RE, and RA for presymptomatic, symptomatic, environmentally mediated, and asymptomatic transmission, respectively. Note that the colors are stacked on top of one another (i.e., the lower colors are not in front, and the higher colors are not behind and partially obscured). Values are rounded to one decimal place. Stopping the spread of disease requires reduction of R to less than 1: blocking transmission, from whatever combination of colors and values of τ we can achieve, such that the total area is halved.
Fig. 3. Quantifying intervention success.
Fig. 3. Quantifying intervention success.
Heat map plot shows the exponential growth rate of the epidemic r as a function of the success rate of instant isolation of symptomatic cases (x axis) and the success rate of instant contact tracing (y axis). Positive values of r (red) imply a growing epidemic; negative values of r (green) imply a declining epidemic, with greater negative values implying faster decline. The solid black line shows r = 0 (i.e., the threshold for epidemic control). The dashed lines show uncertainty in the threshold due to uncertainty in R0 (see figs. S15 to S17). The different panels show variation in the delay associated with the intervention, from initiation of symptoms to case isolation and quarantine of contacts.
Fig. 4. A schematic of app-based COVID-19…
Fig. 4. A schematic of app-based COVID-19 contact tracing.
Contacts of individual A (and all individuals using the app) are traced using low-energy Bluetooth connections with other app users. Individual A requests a SARS-CoV-2 test (using the app) and that person’s positive test result triggers an instant notification to individuals who have been in close contact. The app advises isolation for the case (individual A) and quarantine of the individual’s contacts.

References

    1. World Health Organization, Coronavirus Disease 2019 (COVID-19): Situation Report – 36 (25 February 2020); .
    1. Guan W.-J., Ni Z.-Y., Hu Y., Liang W.-H., Ou C.-Q., He J.-X., Liu L., Shan H., Lei C.-L., Hui D. S. C., Du B., Li L.-J., Zeng G., Yuen K.-Y., Chen R.-C., Tang C.-L., Wang T., Chen P.-Y., Xiang J., Li S.-Y., Wang J.-L., Liang Z.-J., Peng Y.-X., Wei L., Liu Y., Hu Y.-H., Peng P., Wang J.-M., Liu J.-Y., Chen Z., Li G., Zheng Z.-J., Qiu S.-Q., Luo J., Ye C.-J., Zhu S.-Y., Zhong N.-S., China Medical Treatment Expert Group for Covid-19 , Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. 10.1056/NEJMoa2002032 (2020). 10.1056/NEJMoa2002032
    1. H. Li, S. Wang, F. Zhong, W. Bao, Y. Li, L. Liu, H. Wang, Y. He, Age-dependent risks of Incidence and Mortality of COVID-19 in Hubei Province and Other Parts of China. medRxiv [preprint]. 6 March 2020.
    1. N. Ferguson, D. Laydon, G. Nedjati-Gilani, N. Imai, K. Ainslie, M. Baguelin, S. Bhatia, A. Boonyasiri, Z. Cucunubá, G. Cuomo-Dannenburg, A. Dighe, I. Dorigatti, H. Fu, K. Gaythorpe, W. Green, A. Hamlet, W. Hinsley, L. Okell, S. van Elsland, H. Thompson, R. Verity, E. Volz, H. Wang, Y. Wang, P. Walker, C. Walters, P. Winskill, C. Whittaker, C. Donnelly, S. Riley, A. Ghani, Impact of Non-Pharmaceutical Interventions (NPIs) to Reduce COVID-19 Mortality and Healthcare Demand (16 March 2020); .
    1. Yu I. T. S., Sung J. J. Y., The epidemiology of the outbreak of severe acute respiratory syndrome (SARS) in Hong Kong—What we do know and what we don’t. Epidemiol. Infect. 132, 781–786 (2004). 10.1017/S0950268804002614
    1. Li Y., Huang X., Yu I. T. S., Wong T. W., Qian H., Role of air distribution in SARS transmission during the largest nosocomial outbreak in Hong Kong. Indoor Air 15, 83–95 (2005). 10.1111/j.1600-0668.2004.00317.x
    1. Otter J. A., Donskey C., Yezli S., Douthwaite S., Goldenberg S. D., Weber D. J., Transmission of SARS and MERS coronaviruses and influenza virus in healthcare settings: The possible role of dry surface contamination. J. Hosp. Infect. 92, 235–250 (2016). 10.1016/j.jhin.2015.08.027
    1. Ong S. W. X., Tan Y. K., Chia P. Y., Lee T. H., Ng O. T., Wong M. S. Y., Marimuthu K., Air, Surface Environmental, and Personal Protective Equipment Contamination by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) From a Symptomatic Patient. JAMA 10.1001/jama.2020.3227 (2020). 10.1001/jama.2020.3227
    1. Fraser C., Riley S., Anderson R. M., Ferguson N. M., Factors that make an infectious disease outbreak controllable. Proc. Natl. Acad. Sci. U.S.A. 101, 6146–6151 (2004). 10.1073/pnas.0307506101
    1. Peak C. M., Childs L. M., Grad Y. H., Buckee C. O., Comparing nonpharmaceutical interventions for containing emerging epidemics. Proc. Natl. Acad. Sci. U.S.A. 114, 4023–4028 (2017). 10.1073/pnas.1616438114
    1. Hellewell J., Abbott S., Gimma A., Bosse N. I., Jarvis C. I., Russell T. W., Munday J. D., Kucharski A. J., Edmunds W. J., Funk S., Eggo R. M., Sun F., Flasche S., Quilty B. J., Davies N., Liu Y., Clifford S., Klepac P., Jit M., Diamond C., Gibbs H., van Zandvoort K., Centre for the Mathematical Modelling of Infectious Diseases COVID-19 Working Group , Feasibility of controlling COVID-19 outbreaks by isolation of cases and contacts. Lancet Glob. Health 8, e488–e496 (2020). 10.1016/S2214-109X(20)30074-7
    1. Li Q., Guan X., Wu P., Wang X., Zhou L., Tong Y., Ren R., Leung K. S. M., Lau E. H. Y., Wong J. Y., Xing X., Xiang N., Wu Y., Li C., Chen Q., Li D., Liu T., Zhao J., Liu M., Tu W., Chen C., Jin L., Yang R., Wang Q., Zhou S., Wang R., Liu H., Luo Y., Liu Y., Shao G., Li H., Tao Z., Yang Y., Deng Z., Liu B., Ma Z., Zhang Y., Shi G., Lam T. T. Y., Wu J. T. K., Gao G. F., Cowling B. J., Yang B., Leung G. M., Feng Z., Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia. N. Engl. J. Med. 382, 1199–1207 (2020). 10.1056/NEJMoa2001316
    1. Tong Z.-D., Tang A., Li K.-F., Li P., Wang H.-L., Yi J.-P., Zhang Y.-L., Yan J.-B., Potential Presymptomatic Transmission of SARS-CoV-2, Zhejiang Province, China, 2020. Emerg. Infect. Dis. 26, 10.3201/eid2605.200198 (2020). 10.3201/eid2605.200198
    1. Bai Y., Yao L., Wei T., Tian F., Jin D.-Y., Chen L., Wang M., Presumed Asymptomatic Carrier Transmission of COVID-19. JAMA 10.1001/jama.2020.2565 (2020). 10.1001/jama.2020.2565
    1. Channel News Asia , ; .
    1. Q. Bi, Y. Wu, S. Mei, C. Ye, X. Zou, Z. Zhang, X. Liu, L. Wei, S. A. Truelove, T. Zhang, W. Gao, C. Cheng, X. Tang, X. Wu, Y. Wu, B. Sun, S. Huang, Y. Sun, J. Zhang, T. Ma, J. Lessler, T. Feng, Epidemiology and Transmission of COVID-19 in Shenzhen China: Analysis of 391 cases and 1,286 of their close contacts. medRxiv [preprint]. 27 March 2020.
    1. Mizumoto K., Kagaya K., Zarebski A., Chowell G., Estimating the asymptomatic proportion of coronavirus disease 2019 (COVID-19) cases on board the Diamond Princess cruise ship, Yokohama, Japan, 2020. Euro Surveill. 25, 2000180 (2020). 10.2807/1560-7917.ES.2020.25.10.2000180
    1. R. Verity, L. C. Okell, I. Dorigatti, P. Winskill, C. Whittaker, N. Imai, G. Cuomo-Dannenburg, H. Thompson, P. Walker, H. Fu, A. Dighe, J. Griffin, A. Cori, M. Baguelin, S. Bhatia, A. Boonyasiri, Z. M. Cucunuba, R. Fitzjohn, K. A. M. Gaythorpe, W. Green, A. Hamlet, W. Hinsley, D. Laydon, G. Nedjati-Gilani, S. Riley, S. van-Elsand, E. Volz, H. Wang, Y. Wang, X. Xi, C. Donnelly, A. Ghani, N. Ferguson, Estimates of the severity of COVID-19 disease. medRxiv [preprint]. 13 March 2020.
    1. Liu Y., Yan L.-M., Wan L., Xiang T.-X., Le A., Liu J.-M., Peiris M., Poon L. L. M., Zhang W., Viral dynamics in mild and severe cases of COVID-19. Lancet Infect. Dis. S1473-3099(20)30232-2 (2020). 10.1016/S1473-3099(20)30232-2
    1. I. Dorigatti, L. Okell, A. Cori, N. Imai, M. Baguelin, S. Bhatia, A. Boonyasiri, Z. Cucunubá, G. Cuomo-Dannenburg, R. FitzJohn, H. Fu, K. Gaythorpe, A. Hamlet, W. Hinsley, N. Hong, M. Kwun, D. Laydon, G. Nedjati-Gilani, S. Riley, S. van Elsland, E. Volz, H. Wang, R. Wang, C. Walters, X. Xi, C. Donnelly, A. Ghani, N. Ferguson, Report 4: Severity of 2019-Novel Coronavirus (nCoV) (10 February 2020); .
    1. S. A. Lauer, K. H. Grantz, Q. Bi, F. K. Jones, Q. Zheng, H. Meredith, A. S. Azman, N. G. Reich, J. Lessler, The incubation period of 2019-nCoV from publicly reported confirmed cases: Estimation and application. medRxiv [preprint]. 4 February 2020.
    1. H. Nishiura, N. M. Linton, A. R. Akhmetzhanov, Serial interval of novel coronavirus (2019-nCoV) infections. medRxiv [preprint]. 17 February 2020.
    1. Grassly N. C., Fraser C., Mathematical models of infectious disease transmission. Nat. Rev. Microbiol. 6, 477–487 (2008). 10.1038/nrmicro1845
    1. BDI Pathogen Dynamics Group, Digital contact tracing for SARS-COV-2 (2020); .
    1. P. Mozur, R. Zhong, A. Krolik, “In Coronavirus Fight, China Gives Citizens a Color Code, With Red Flags.” New York Times (1 March 2020); .
    1. Chen S., Yang J., Yang W., Wang C., Bärnighausen T., COVID-19 control in China during mass population movements at New Year. Lancet 395, 764–766 (2020). 10.1016/S0140-6736(20)30421-9
    1. Nuffield Council on Bioethics, Research in Global Health Emergencies: Ethical Issues (28 January 2020); .
    1. Zhao S., Lin Q., Ran J., Musa S. S., Yang G., Wang W., Lou Y., Gao D., Yang L., He D., Wang M. H., Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: A data-driven analysis in the early phase of the outbreak. Int. J. Infect. Dis. 92, 214–217 (2020). 10.1016/j.ijid.2020.01.050
    1. Zhou T., Liu Q., Yang Z., Liao J., Yang K., Bai W., Lu X., Zhang W., Preliminary prediction of the basic reproduction number of the Wuhan novel coronavirus 2019-nCoV. J. Evid. Based Med. 13, 3–7 (2020). 10.1111/jebm.12376
    1. T. Ganyani, C. Kremer, D. Chen, A. Torneri, C. Faes, J. Wallinga, N. Hens, Estimating the generation interval for COVID-19 based on symptom onset data. medRxiv [preprint]. 8 March 2020.
    1. X. He, E. H. Y. Lau, P. Wu, X. Deng, J. Wang, X. Hao, Y. C. Lau, J. Y. Wong, Y. Guan, X. Tan, X. Mo, Y. Chen, B. Liao, W. Chen, F. Hu, Q. Zhang, M. Zhong, Y. Wu, L. Zhao, F. Zhang, B. J. Cowling, F. Li, G. M. Leung, Temporal dynamics in viral shedding and transmissibility of COVID-19. medRxiv [preprint]. 18 March 2020.
    1. Klinkenberg D., Fraser C., Heesterbeek H., The effectiveness of contact tracing in emerging epidemics. PLOS ONE 1, e12 (2006). 10.1371/journal.pone.0000012
    1. Salathé M., Kazandjieva M., Lee J. W., Levis P., Feldman M. W., Jones J. H., A high-resolution human contact network for infectious disease transmission. Proc. Natl. Acad. Sci. U.S.A. 107, 22020–22025 (2010). 10.1073/pnas.1009094108
    1. Yoneki E., Crowcroft J., EpiMap: Towards quantifying contact networks for understanding epidemiology in developing countries. Ad Hoc Netw. 13, 83–93 (2014). 10.1016/j.adhoc.2012.06.003
    1. K. A. Nguyen, Z. Luo, C. Watkins, in Progress in Location-Based Services 2014, G. Gartner, H. Huang, Eds. (Springer, 2015), pp. 63–78.
    1. Leung G. M., Chung P.-H., Tsang T., Lim W., Chan S. K. K., Chau P., Donnelly C. A., Ghani A. C., Fraser C., Riley S., Ferguson N. M., Anderson R. M., Law Y.-L., Mok T., Ng T., Fu A., Leung P.-Y., Peiris J. S. M., Lam T.-H., Hedley A. J., SARS-CoV antibody prevalence in all Hong Kong patient contacts. Emerg. Infect. Dis. 10, 1653–1656 (2004). 10.3201/eid1009.040155
    1. Kam K.-Q., Yung C. F., Cui L., Tzer Pin Lin R., Mak T. M., Maiwald M., Li J., Chong C. Y., Nadua K., Tan N. W. H., Thoon K. C., A Well Infant with Coronavirus Disease 2019 with High Viral Load. Clin. Infect. Dis. ciaa201 (2020). 10.1093/cid/ciaa201
    1. Lu X., Zhang L., Du H., Zhang J., Li Y. Y., Qu J., Zhang W., Wang Y., Bao S., Li Y., Wu C., Liu H., Liu D., Shao J., Peng X., Yang Y., Liu Z., Xiang Y., Zhang F., Silva R. M., Pinkerton K. E., Shen K., Xiao H., Xu S., Wong G. W. K., SARS-CoV-2 Infection in Children. N. Engl. J. Med. NEJMc2005073 (2020). 10.1056/NEJMc2005073
    1. Kampf G., Todt D., Pfaender S., Steinmann E., Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. J. Hosp. Infect. 104, 246–251 (2020). 10.1016/j.jhin.2020.01.022
    1. The code used for our analyses is available at .
    1. L. Ferretti, C. Wymant, M. Kendall, L. Zhao, A. Nurtay, D. G. Bonsall, C. Fraser, Quantifying dynamics of SARS-CoV-2 transmission suggests that epidemic control and avoidance is feasible through instantaneous digital contact tracing. medRxiv [preprint]. 12 March 2020.
    1. China Centre for Disease Control, Distribution of New Coronavirus Pneumonia; .
    1. Phan L. T., Nguyen T. V., Luong Q. C., Nguyen T. V., Nguyen H. T., Le H. Q., Nguyen T. T., Cao T. M., Pham Q. D., Importation and Human-to-Human Transmission of a Novel Coronavirus in Vietnam. N. Engl. J. Med. 382, 872–874 (2020). 10.1056/NEJMc2001272
    1. Ki M., Task Force for 2019-nCoV , Epidemiologic characteristics of early cases with 2019 novel coronavirus (2019-nCoV) disease in Republic of Korea. Epidemiol. Health 42, e2020007 (2020). 10.4178/epih.e2020007
    1. Rothe C., Schunk M., Sothmann P., Bretzel G., Froeschl G., Wallrauch C., Zimmer T., Thiel V., Janke C., Guggemos W., Seilmaier M., Drosten C., Vollmar P., Zwirglmaier K., Zange S., Wölfel R., Hoelscher M., Transmission of 2019-nCoV Infection from an Asymptomatic Contact in Germany. N. Engl. J. Med. 382, 970–971 (2020). 10.1056/NEJMc2001468

Source: PubMed

3
订阅