Urine-sample-derived human induced pluripotent stem cells as a model to study PCSK9-mediated autosomal dominant hypercholesterolemia

Karim Si-Tayeb, Salam Idriss, Benoite Champon, Amandine Caillaud, Matthieu Pichelin, Lucie Arnaud, Patricia Lemarchand, Cédric Le May, Kazem Zibara, Bertrand Cariou, Karim Si-Tayeb, Salam Idriss, Benoite Champon, Amandine Caillaud, Matthieu Pichelin, Lucie Arnaud, Patricia Lemarchand, Cédric Le May, Kazem Zibara, Bertrand Cariou

Abstract

Proprotein convertase subtilisin kexin type 9 (PCSK9) is a critical modulator of cholesterol homeostasis. Whereas PCSK9 gain-of-function (GOF) mutations are associated with autosomal dominant hypercholesterolemia (ADH) and premature atherosclerosis, PCSK9 loss-of-function (LOF) mutations have a cardio-protective effect and in some cases can lead to familial hypobetalipoproteinemia (FHBL). However, limitations of the currently available cellular models preclude deciphering the consequences of PCSK9 mutation further. We aimed to validate urine-sample-derived human induced pluripotent stem cells (UhiPSCs) as an appropriate tool to model PCSK9-mediated ADH and FHBL. To achieve our goal, urine-sample-derived somatic cells were reprogrammed into hiPSCs by using episomal vectors. UhiPSC were efficiently differentiated into hepatocyte-like cells (HLCs). Compared to control cells, cells originally derived from an individual with ADH (HLC-S127R) secreted less PCSK9 in the media (-38.5%; P=0.038) and had a 71% decrease (P<0.001) of low-density lipoprotein (LDL) uptake, whereas cells originally derived from an individual with FHBL (HLC-R104C/V114A) displayed a strong decrease in PCSK9 secretion (-89.7%; P<0.001) and had a 106% increase (P=0.0104) of LDL uptake. Pravastatin treatment significantly enhanced LDL receptor (LDLR) and PCSK9 mRNA gene expression, as well as PCSK9 secretion and LDL uptake in both control and S127R HLCs. Pravastatin treatment of multiple clones led to an average increase of LDL uptake of 2.19 ± 0.77-fold in HLC-S127R compared to 1.38 ± 0.49 fold in control HLCs (P<0.01), in line with the good response to statin treatment of individuals carrying the S127R mutation (mean LDL cholesterol reduction=60.4%, n=5). In conclusion, urine samples provide an attractive and convenient source of somatic cells for reprogramming and hepatocyte differentiation, but also a powerful tool to further decipher PCSK9 mutations and function.

Keywords: Autosomal dominant hypercholesterolemia; Hepatocyte differentiation; Human induced pluripotent stem cells; PCSK9; Urine-derived somatic cells.

Conflict of interest statement

Competing interests

B.Cariou has received advisory board fees from Amgen and Sanofi/Regeneron Pharmaceuticals. The other authors have nothing to disclose.

© 2016. Published by The Company of Biologists Ltd.

Figures

Fig. 1.
Fig. 1.
Ucell characterization. (A) Urine-derived progenitor cell (Ucell) morphology after isolation and amplification. (B) Cell marker expression analysis (percentage of positive cells) of Ucells, bone-marrow-derived and adipose-tissue-derived mesenchymal stem cells by flow cytometry. (C) Osteoblastic and chondrogenic differentiation of Ucells detected by Alizarin Red and Alcian Blue staining, respectively. Scale bars: 100 µm.
Fig. 2.
Fig. 2.
UhiPSCcharacterization. (A) Detection of OCT3/4 and Tra1-60 expression by fluorescent immunostaining on control UhiPSCs and UhiPSCs carrying the PCSK9-S127R or PCSK9-R104C/V114A mutations. (B) Representative flow-cytometry analysis for the detection of SSEA4, SSEA3 and TRA1-60 expression by control (Ct) UhiPSCs. (C) Global gene-expression profile comparison between Ucell control (ct), Ucell S127R, UhiPSC control and UhiPSCs carrying the PCSK9-S127R mutation. (D) Hematoxylin- and eosin-stained histological section of teratomas showing, from left to right, ectoderm-derived neurons, mesoderm-derived cartilage and endoderm-derived intestinal-like tissue for UhiPSC-Control (Ct), and ectoderm-derived retinal cells, mesodermal-derived bone tissue and endodermal-derived exocrine pancreatic glands for UhiPSC PCSK9-S127R. Scale bars: 100 µm.
Fig. 3.
Fig. 3.
UhiPSCdifferentiation intoHLCs. (A) Pictures of HLCs carrying the S127R or R104C/V114A mutations. Left: HLC morphology observed by brightfield microscopy (the lower panel represents a magnification of the upper panel). Right: detection of the hepatic markers FOXA2, AFP, HNF4α and albumin by fluorescent immunostaining (nuclei were stained in blue in merged pictures). Scale bars: 100 µm. (B) Gene expression analysis by RT-qPCR of albumin, HNF4a, SREBF2, LDLR, PCSK9 and HMGCR in control, S127R and R104C/V114A HLCs (one clone per UhiPSC line; control n=6 differentiations, PCSK9-S127R n=3 differentiations, PCSK9-R104C/V114A n=3 differentiations). (C) Secreted PCSK9 detection by ELISA assay (one clone per UhiPSC line; control n=9 differentiations, PCSK9-S127R n=9 differentiations, PCSK9-R104C/V114A n=14 differentiations). (D,E) Quantification by flow cytometry of incorporated LDL from HLCs (D) PCSK9-S127R and (E) R104C/V114A compared to controls. MFI, mean fluorescence intensity. *P<0.05, **P<0.01, ***P<0.001.
Fig. 4.
Fig. 4.
Differentiated cell response to pravastatin treatment. (A,B) Gene expression analysis by RT-qPCR of albumin, HNF4a, SREBF2, LDLR, PCSK9 and HMGCR in an untreated condition (black bars) and after 24 h of pravastatin treatment at 10 µM (white bars) of control and S127R HLCs (one clone per UhiPSC line; control n=6 differentiation, PCSK9-S127R n=3 differentiation). (C) Secreted PCSK9 detection by ELISA assay (one clone per UhiPSC line; control n=6 differentiations, PCSK9-S127R n=6 differentiations). (D) Detection of incorporated LDL by flow cytometry (one clone per UhiPSC line; control n=6 differentiations, PCSK9-S127R n=3 differentiations). MFI, mean fluorescence intensity. *P<0.05, **P<0.01.
Fig. 5.
Fig. 5.
Comparative analysis of the response of control and PCSK9-S127R HLCs to pravastatin treatment, normalized to untreated conditions. (A) Gene expression analysis by RT-qPCR of SREBF2, LDLR, PCSK9 and HMGCR (three clones per UhiPSC line; n=3 differentiations per clone). (B) Secreted PCSK9 detected by ELISA assay (one clone per UhiPSC line; n=9 differentiations per clone). (C) Detection of incorporated LDL by flow cytometry (three clones per UhiPSC line; n=3 differentiations per clone). **P<0.01.

References

    1. Abifadel M., Varret M., Rabès J.-P., Allard D., Ouguerram K., Devillers M., Cruaud C., Benjannet S., Wickham L., Erlich D. et al. (2003). Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat. Genet. 34, 154-156. 10.1038/ng1161
    1. Benjannet S., Rhainds D., Essalmani R., Mayne J., Wickham L., Jin W., Asselin M.-C., Hamelin J., Varret M., Allard D. et al. (2004). NARC-1/PCSK9 and its natural mutants: zymogen cleavage and effects on the low density lipoprotein (LDL) receptor and LDL cholesterol. J. Biol. Chem. 279, 48865-48875. 10.1074/jbc.M409699200
    1. Berge K. E., Ose L. and Leren T. P. (2006). Missense mutations in the PCSK9 gene are associated with hypocholesterolemia and possibly increased response to statin therapy. Arterioscler. Thromb. Vasc. Biol. 26, 1094-1100. 10.1161/01.ATV.0000204337.81286.1c
    1. Bharadwaj S., Liu G., Shi Y., Wu R., Yang B., He T., Fan Y., Lu X., Zhou X., Liu H. et al. (2013). Multi-potential differentiation of human urine-derived stem cells: potential for therapeutic applications in urology. Stem Cells 31, 1840-1856. 10.1002/stem.1424
    1. Blom D. J., Hala T., Bolognese M., Lillestol M. J., Toth P. D., Burgess L., Ceska R., Roth E., Koren M. J., Ballantyne C. M. et al. (2014). A 52-week placebo-controlled trial of evolocumab in hyperlipidemia. N. Engl. J. Med. 370, 1809-1819. 10.1056/NEJMoa1316222
    1. Cameron J., Holla Ø. L., Ranheim T., Kulseth M. A., Berge K. E. and Leren T. P. (2006). Effect of mutations in the PCSK9 gene on the cell surface LDL receptors. Hum. Mol. Genet. 15, 1551-1558. 10.1093/hmg/ddl077
    1. Cannon C. P., Cariou B., Blom D., McKenney J. M., Lorenzato C., Pordy R., Chaudhari U. and Colhoun H. M. (2015). Efficacy and safety of alirocumab in high cardiovascular risk patients with inadequately controlled hypercholesterolaemia on maximally tolerated doses of statins: the ODYSSEY COMBO II randomized controlled trial. Eur. Heart J. 36, 1186-1194. 10.1093/eurheartj/ehv028
    1. Cariou B., Ouguerram K., Zair Y., Guerois R., Langhi C., Kourimate S., Benoit I., Le May C., Gayet C., Belabbas K. et al. (2009). PCSK9 dominant negative mutant results in increased LDL catabolic rate and familial hypobetalipoproteinemia. Arterioscler. Thromb. Vasc. Biol. 29, 2191-2197. 10.1161/ATVBAHA.109.194191
    1. Cariou B., Le May C. and Costet P. (2011). Clinical aspects of PCSK9. Atherosclerosis 216, 258-265. 10.1016/j.atherosclerosis.2011.04.018
    1. Cayo M. A., Cai J., DeLaForest A., Noto F. K., Nagaoka M., Clark B. S., Collery R. F., Si-Tayeb K. and Duncan S. A. (2012). JD induced pluripotent stem cell-derived hepatocytes faithfully recapitulate the pathophysiology of familial hypercholesterolemia. Hepatology 56, 2163-2171. 10.1002/hep.25871
    1. Cohen J. C., Boerwinkle E., Mosley T. H. and Hobbs H. H. (2006). Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N. Engl. J. Med. 354, 1264-1272. 10.1056/NEJMoa054013
    1. Costet P., Krempf M. and Cariou B. (2008). PCSK9 and LDL cholesterol: unravelling the target to design the bullet. Trends Biochem. Sci. 33, 426-434. 10.1016/j.tibs.2008.06.005
    1. DeLaForest A., Nagaoka M., Si-Tayeb K., Noto F. K., Konopka G., Battle M. A. and Duncan S. A. (2011). HNF4A is essential for specification of hepatic progenitors from human pluripotent stem cells. Development 138, 4143-4153. 10.1242/dev.062547
    1. Farnier M. (2013). PCSK9 inhibitors. Curr. Opin. Lipidol. 24, 251-258. 10.1097/MOL.0b013e3283613a3d
    1. Gerbal-Chaloin S., Funakoshi N., Caillaud A., Gondeau C., Champon B. and Si-Tayeb K. (2014). Human induced pluripotent stem cells in hepatology: beyond the proof of concept. Am. J. Pathol. 184, 332-347. 10.1016/j.ajpath.2013.09.026
    1. Holla Ø. L., Cameron J., Berge K. E., Kulseth M. A., Ranheim T. and Leren T. P. (2006). Low-density lipoprotein receptor activity in Epstein-Barr virus-transformed lymphocytes from heterozygotes for the D374Y mutation in the PCSK9 gene. Scand. J. Clin. Lab. Invest. 66, 317-328. 10.1080/00365510600672775
    1. Idriss S., Zibara K., Cariou B. and Si-Tayeb K. (2015). From human-induced pluripotent stem cells to liver disease modeling: a focus on dyslipidemia. Curr. Pathobiol. Rep. 3, 47-56. 10.1007/s40139-015-0067-1
    1. Jones P., Kafonek S., Laurora I. and Hunninghake D. (1998). Comparative dose efficacy study of atorvastatin versus simvastatin, pravastatin, lovastatin, and fluvastatin in patients with hypercholesterolemia (the CURVES study). Am. J. Cardiol. 81, 582-587. 10.1016/S0002-9149(97)00965-X
    1. Jones P. H., Davidson M. H., Stein E. A., Bays H. E., McKenney J. M., Miller E., Cain V. A. and Blasetto J. W. (2003). Comparison of the efficacy and safety of rosuvastatin versus atorvastatin, simvastatin, and pravastatin across doses (STELLAR* Trial). Am. J. Cardiol. 92, 152-160. 10.1016/S0002-9149(03)00530-7
    1. Lang R., Liu G., Shi Y., Bharadwaj S., Leng X., Zhou X., Liu H., Atala A. and Zhang Y. (2013). Self-renewal and differentiation capacity of urine-derived stem cells after urine preservation for 24 hours. PLoS ONE 8, e53980 10.1371/journal.pone.0053980.
    1. Miranda M. X., van Tits L. J., Lohmann C., Arsiwala T., Winnik S., Tailleux A., Stein S., Gomes A. P., Suri V., Ellis J. L. et al. (2015). The Sirt1 activator SRT3025 provides atheroprotection in Apoe-/- mice by reducing hepatic Pcsk9 secretion and enhancing Ldlr expression. Eur. Heart J. 36, 51-59. 10.1093/eurheartj/ehu095
    1. Pandit S., Wisniewski D., Santoro J. C., Ha S., Ramakrishnan V., Cubbon R. M., Cummings R. T., Wright S. D., Sparrow C. P., Sitlani A. et al. (2008). Functional analysis of sites within PCSK9 responsible for hypercholesterolemia. J. Lipid Res. 49, 1333-1343. 10.1194/jlr.M800049-JLR200
    1. Park S. W., Moon Y.-A. and Horton J. D. (2004). Post-transcriptional regulation of low density lipoprotein receptor protein by proprotein convertase subtilisin/kexin type 9a in mouse liver. J. Biol. Chem. 279, 50630-50638. 10.1074/jbc.M410077200
    1. Rashid S., Curtis D. E., Garuti R., Anderson N. N., Bashmakov Y., Ho Y. K., Hammer R. E., Moon Y.-A. and Horton J. D. (2005). Decreased plasma cholesterol and hypersensitivity to statins in mice lacking Pcsk9. Proc. Natl. Acad. Sci. USA 102, 5374-5379. 10.1073/pnas.0501652102
    1. Rashid S. T., Corbineau S., Hannan N., Marciniak S. J., Miranda E., Alexander G., Huang-Doran I., Griffin J., Ahrlund-Richter L., Skepper J. et al. (2010). Modeling inherited metabolic disorders of the liver using human induced pluripotent stem cells. J. Clin. Invest. 120, 3127-3136. 10.1172/JCI43122
    1. Romagnuolo R., Scipione C. A., Boffa M. B., Marcovina S. M., Seidah N. G. and Koschinsky M. L. (2015). Lipoprotein(a) catabolism is regulated by Proprotein Convertase Subtilisin/Kexin type 9 through the low density lipoprotein receptor. J. Biol. Chem. 290, 11649-11662. 10.1074/jbc.M114.611988
    1. Roth E. M. and Diller P. (2014). Alirocumab for hyperlipidemia: physiology of PCSK9 inhibition, pharmacodynamics and Phase I and II clinical trial results of a PCSK9 monoclonal antibody. Future Cardiol. 10, 183-199. 10.2217/fca.13.107
    1. Seidah N. G., Benjannet S., Wickham L., Marcinkiewicz J., Jasmin S. B., Stifani S., Basak A., Prat A. and Chretien M. (2003). The secretory proprotein convertase neural apoptosis-regulated convertase 1 (NARC-1): liver regeneration and neuronal differentiation. Proc. Natl. Acad. Sci. USA 100, 928-933. 10.1073/pnas.0335507100
    1. Seidah N. G., Awan Z., Chretien M. and Mbikay M. (2014). PCSK9: a key modulator of cardiovascular health. Circ. Res. 114, 1022-1036. 10.1161/CIRCRESAHA.114.301621
    1. Si-Tayeb K., Noto F. K., Nagaoka M., Li J., Battle M. A., Duris C., North P. E., Dalton S. and Duncan S. A. (2010). Highly efficient generation of human hepatocyte-like cells from induced pluripotent stem cells. Hepatology 51, 297-305. 10.1002/hep.23354
    1. Sniderman A. D., Qi Y., Ma C.-I. J., Wang R. H. L., Naples M., Baker C., Zhang J., Adeli K. and Kiss R. S. (2013). Hepatic cholesterol homeostasis: is the low-density lipoprotein pathway a regulatory or a shunt pathway? Arterioscler. Thromb. Vasc. Biol. 33, 2481-2490. 10.1161/ATVBAHA.113.301517
    1. Sun X.-M., Eden E. R., Tosi I., Neuwirth C. K., Wile D., Naoumova R. P. and Soutar A. K. (2005). Evidence for effect of mutant PCSK9 on apolipoprotein B secretion as the cause of unusually severe dominant hypercholesterolaemia. Hum. Mol. Genet. 14, 1161-1169. 10.1093/hmg/ddi128
    1. Xue Y., Cai X., Wang L., Liao B., Zhang H., Shan Y., Chen Q., Zhou T., Li X., Hou J. et al. (2013). Generating a non-integrating human induced pluripotent stem cell bank from urine-derived cells. PLoS ONE 8, e70573 10.1371/journal.pone.0070573
    1. Zaid A., Roubtsova A., Essalmani R., Marcinkiewicz J., Chamberland A., Hamelin J., Tremblay M., Jacques H., Jin W., Davignon J. et al. (2008). Proprotein convertase subtilisin/kexin type 9 (PCSK9): hepatocyte-specific low-density lipoprotein receptor degradation and critical role in mouse liver regeneration. Hepatology 48, 646-654. 10.1002/hep.22354
    1. Zhou T., Benda C., Dunzinger S., Huang Y., Ho J. C., Yang J., Wang Y., Zhang Y., Zhuang Q., Li Y. et al. (2012). Generation of human induced pluripotent stem cells from urine samples. Nat. Protoc. 7, 2080-2089. 10.1038/nprot.2012.115

Source: PubMed

3
订阅