The serine protease inhibitor camostat inhibits influenza virus replication and cytokine production in primary cultures of human tracheal epithelial cells

Mutsuo Yamaya, Yoshitaka Shimotai, Yukimasa Hatachi, Nadine Lusamba Kalonji, Yukiko Tando, Yasuo Kitajima, Kaori Matsuo, Hiroshi Kubo, Ryoichi Nagatomi, Seiji Hongo, Morio Homma, Hidekazu Nishimura, Mutsuo Yamaya, Yoshitaka Shimotai, Yukimasa Hatachi, Nadine Lusamba Kalonji, Yukiko Tando, Yasuo Kitajima, Kaori Matsuo, Hiroshi Kubo, Ryoichi Nagatomi, Seiji Hongo, Morio Homma, Hidekazu Nishimura

Abstract

Background: Serine proteases act through the proteolytic cleavage of the hemagglutinin (HA) of influenza viruses for the entry of influenza virus into cells, resulting in infection. However, the inhibitory effects of serine protease inhibitors on influenza virus infection of human airway epithelial cells, and on their production of inflammatory cytokines are unclear.

Methods: Primary cultures of human tracheal epithelial cells were treated with four types of serine protease inhibitors, including camostat, and infected with A/Sendai-H/108/2009/(H1N1) pdm09 or A/New York/55/2004(H3N2).

Results: Camostat reduced the amounts of influenza viruses in the supernatants and viral RNA in the cells. It reduced the cleavage of an influenza virus precursor protein, HA0, into the subunit HA1. Camostat also reduced the concentrations of the cytokines interleukin (IL)-6 and tumor necrosis factor (TNF)-α in the supernatants. Gabexate and aprotinin reduced the viral titers and RNA levels in the cells, and aprotinin reduced the concentrations of TNF-α in the supernatants. The proteases transmembrane protease serine S1 member (TMPRSS) 2 and HAT (human trypsin-like protease: TMPRSS11D), which are known to cleave HA0 and to activate the virus, were detected at the cell membrane and in the cytoplasm. mRNA encoding TMPRSS2, TMPRSS4 and TMPRSS11D was detectable in the cells, and the expression levels were not affected by camostat.

Conclusions: These findings suggest that human airway epithelial cells express these serine proteases and that serine protease inhibitors, especially camostat, may reduce influenza viral replication and the resultant production of inflammatory cytokines possibly through inhibition of activities of these proteases.

Keywords: Airway epithelial cell; Camostat; Cell culture; Influenza; Interleukin; Serine protease.

Copyright © 2015 Elsevier Ltd. All rights reserved.

Figures

Fig. 1
Fig. 1
A and B: The time course of virus release into the supernatants of primary cultures of human tracheal epithelial (HTE) cells that were obtained at different time-points after exposure to the influenza A/H1N1 pdm 2009 virus (A) or the seasonal influenza A/H3N2 virus (B) in the presence of camostat (10 μg/mL) (closed circles and open triangles) or the vehicle control (1% water) (Control, open circles) from 30 min prior to infection (open and closed circles) or from just after infection (open triangles) until the end of the experiments. The results are expressed as the mean ± SEM (n = 5). Significant differences compared to viral infection alone are indicated by *p 

Fig. 2

Western blot analysis of proteins…

Fig. 2

Western blot analysis of proteins in the supernatants of primary cultures of HTE…

Fig. 2
Western blot analysis of proteins in the supernatants of primary cultures of HTE cells 72 h post infection with the A/H1N1 pdm 2009 virus in the presence of camostat (0.1, 1 or 3 μg/mL) or vehicle (0), showing inhibition of HA0 cleavage. HA0: a hemagglutinin precursor protein, HA1: hemagglutinin subunit, MOCK: without infection.

Fig. 3

A and B: Indirect immunofluorescence…

Fig. 3

A and B: Indirect immunofluorescence staining of TMPRSS2 (A) and TMPRSS11D (B) in…

Fig. 3
A and B: Indirect immunofluorescence staining of TMPRSS2 (A) and TMPRSS11D (B) in primary cultures of HTE cells. TMPRSS2 and TMPRSS11D are stained orange at the cell membrane and in the cytoplasm. Nuclei are stained blue. Magnification: × 630. C: Expression of TMPRSS2 mRNA, TMPRSS4 mRNA and TMPRSS11D mRNA in HTE cells treated with camostat (10 μg/mL) or the vehicle control (1% water). The results are expressed as the ratio of TMPRSSs (TMPRSS2, TMPRSS4 or TMPRSS11D) mRNA expression compared with β-actin mRNA and are reported as the mean ± SEM (n = 3). Significant differences compared to the values of TMPRSS2 in the cells treated with vehicle alone (Vehicle) are indicated by **p 
Similar articles
Cited by
References
    1. Hayden F.G., Gwaltney J.M., Jr. Viral infections. In: Murray J., Nadel J.A., editors. Textbook of Respiratory Medicine. Saunders Co; Philadelphia: 1988. pp. 748–802.
    1. Perez-Padilla R., de la Rosa-Zamboni D., Ponce de Leon S., Hernandez M., Quinones-Falconi F., Bautista E. INER Working Group on influenza, Pneumonia and respiratory failure from swine-origin influenza A (H1N1) in Mexico. N. Engl. J. Med. 2009;361:680–689. - PubMed
    1. Minor T.E., Dick E.C., Baker J.W., Ouellette J.J., Cohen M., Reed C.E. Rhinovirus and influenza type A infections as precipitants of asthma. Am. Rev. Respir. Dis. 1976;113:149–153. - PubMed
    1. Rohde G., Wiethege A., Borg I., Kauth M., Bauer T.T., Gillissen A. Respiratory viruses in exacerbations of chronic obstructive pulmonary disease requiring hospitalisation: a case-control study. Thorax. 2003;58:37–42. - PMC - PubMed
    1. Nichol K.L., Margolis K.L., Wuorenma J., Von Sternberg T. The efficacy and cost effectiveness of vaccination against influenza among elderly persons living in the community. N. Engl. J. Med. 1994;331:778–784. - PubMed
Show all 54 references
Publication types
MeSH terms
[x]
Cite
Copy Download .nbib
Format: AMA APA MLA NLM
Fig. 2
Fig. 2
Western blot analysis of proteins in the supernatants of primary cultures of HTE cells 72 h post infection with the A/H1N1 pdm 2009 virus in the presence of camostat (0.1, 1 or 3 μg/mL) or vehicle (0), showing inhibition of HA0 cleavage. HA0: a hemagglutinin precursor protein, HA1: hemagglutinin subunit, MOCK: without infection.
Fig. 3
Fig. 3
A and B: Indirect immunofluorescence staining of TMPRSS2 (A) and TMPRSS11D (B) in primary cultures of HTE cells. TMPRSS2 and TMPRSS11D are stained orange at the cell membrane and in the cytoplasm. Nuclei are stained blue. Magnification: × 630. C: Expression of TMPRSS2 mRNA, TMPRSS4 mRNA and TMPRSS11D mRNA in HTE cells treated with camostat (10 μg/mL) or the vehicle control (1% water). The results are expressed as the ratio of TMPRSSs (TMPRSS2, TMPRSS4 or TMPRSS11D) mRNA expression compared with β-actin mRNA and are reported as the mean ± SEM (n = 3). Significant differences compared to the values of TMPRSS2 in the cells treated with vehicle alone (Vehicle) are indicated by **p 

References

    1. Hayden F.G., Gwaltney J.M., Jr. Viral infections. In: Murray J., Nadel J.A., editors. Textbook of Respiratory Medicine. Saunders Co; Philadelphia: 1988. pp. 748–802.
    1. Perez-Padilla R., de la Rosa-Zamboni D., Ponce de Leon S., Hernandez M., Quinones-Falconi F., Bautista E. INER Working Group on influenza, Pneumonia and respiratory failure from swine-origin influenza A (H1N1) in Mexico. N. Engl. J. Med. 2009;361:680–689.
    1. Minor T.E., Dick E.C., Baker J.W., Ouellette J.J., Cohen M., Reed C.E. Rhinovirus and influenza type A infections as precipitants of asthma. Am. Rev. Respir. Dis. 1976;113:149–153.
    1. Rohde G., Wiethege A., Borg I., Kauth M., Bauer T.T., Gillissen A. Respiratory viruses in exacerbations of chronic obstructive pulmonary disease requiring hospitalisation: a case-control study. Thorax. 2003;58:37–42.
    1. Nichol K.L., Margolis K.L., Wuorenma J., Von Sternberg T. The efficacy and cost effectiveness of vaccination against influenza among elderly persons living in the community. N. Engl. J. Med. 1994;331:778–784.
    1. Glezen W.P. Asthma, influenza, and vaccination. J. Allergy Clin. Immunol. 2006;118:1199–1206.
    1. Puig-Barbera J., Arnedo-Pena A., Pardo-Serrano F., Tirado-Balaguer M.D., Perez-Vilar S., Silvestre-Silvestre E. Surveillance and Vaccine Evaluation Group during the autumn 2009 H1N1 pandemic wave in Castellon, Spain, Effectiveness of seasonal 2008-2009, 2009-2010 and pandemic vaccines, to prevent influenza hospitalizations during the autumn 2009 influenza pandemic wave in Castellon, Spain. A test-negative, hospital-based, case-control study. Vaccine. 2010;28:7460–7467.
    1. Treanor J.J., Hayden F.G., Vrooman P.S., Barbarash R., Bettis R., Riff D. Efficacy and safety of the oral neuraminidase inhibitor oseltamivir in treating acute influenza: a randomized controlled trial. US Oral Neuraminidase Study Group. JAMA. 2000;283:1016–1024.
    1. Kumar A. Early versus late oseltamivir treatment in severely ill patients with 2009 pandemic influenza A (H1N1): speed is life. J. Antimicrob. Chemother. 2011;66:959–963.
    1. de Jong M.D., Simmons C.P., Thanh T.T., Hien V.M., Smith G.J., Chau T.N. Fatal outcome of human influenza A (H5N1) is associated with high viral load and hypercytokinemia. Nat. Med. 2006;12:1203–1207.
    1. Paquette S.G., Banner D., Zhao Z., Fang Y., Huang S.S., Leon A.J. Interleukin-6 is a potential biomarker for severe pandemic H1N1 influenza A infection. PLoS One. 2012;7:e38214.
    1. Gooskens J., Jonges M., Claas E.C., Meijer A., van den Broek P.J., Kroes A.M. Morbidity and mortality associated with nosocomial transmission of oseltamivir-resistant influenza A (H1N1) virus. JAMA. 2009;301:1042–1046.
    1. Homma M. Trypsin action on the growth of Sendai virus in tissue culture cells. I. Restoration of the infectivity for L cells by direct action of trypsin on L cell-borne Sendai virus. J. Virol. 1971;8:619–629.
    1. Ohuchi M., Homma M. Trypsin action on the growth of Sendai virus in tissue culture cells. IV. Evidence for activation of sendai virus by cleavage of a glycoprotein. J. Virol. 1976;18:1147–1150.
    1. Nagai Y. Protease-dependent virus tropism and pathogenicity. Trends Microbiol. 1993;1:81–87.
    1. Klenk H.D., Garten W. Host cell protease controlling virus pathogenicity. Trends Microbiol. 1994;2:39–43.
    1. Klenk H.D., Rott R., Orlich M., Blödorn J. Activation of influenza A viruses by trypsin treatment. Virology. 1975;68:426–439.
    1. Böttcher E., Matrosovich T., Beyerle M., Klenk H.D., Garten W., Matrosovich M. Proteolytic activation of influenza viruses by serine proteases TMPRSS2 and HAT from human airway epithelium. J. Virol. 2006;80:9896–9898.
    1. Zhirnov O.P., Klenk H.D., Wright P.F. Aprotinin and similar protease inhibitors as drugs against influenza. Antivir. Res. 2011;92:27–36.
    1. Hosoya M., Matsuyama S., Baba M., Suzuki H., Shigeta S. Effects of protease inhibitors on replication of various myxoviruses. Antimicrob. Agents Chemother. 1992;36:1432–1436.
    1. Lee M.G., Kim K.H., Park K.Y., Kim J.S. Evaluation of anti-influenza effects of camostat in mice infected with non-adapted human influenza viruses. Arch. Virol. 1996;141:1979–1989.
    1. Zhirnov O.P., Ikizler M.R., Wright P. Cleavage of influenza A virus hemagglutinin in human respiratory epithelium is cell-associated and sensitive to exogenous antiproteases. J. Virol. 2002;76:8682–8689.
    1. Hayakawa M., Katabami K., Wada T., Sugano M., Hoshino H., Sawamura A. Sivelestat (selective neutrophil elastase inhibitor) improves the mortality rate of sepsis associated with both respiratory distress syndrome and disseminated intravascular coagulation patients. Shock. 2010;33:14–18.
    1. Yamaya M., Finkbeiner W.E., Chun S.Y., Widdicombe J.H. Differentiated structure and function of cultures from human tracheal epithelium. Am. J. Physiol. 1992;262:L713–L724.
    1. Yamaya M., Shinya K., Hatachi Y., Kubo H., Asada M., Yasuda H. Clarithromycin inhibits type A seasonal influenza virus infection in human airway epithelial cells. J. Pharmacol. Exp. Ther. 2010;333:81–90.
    1. Numazaki Y., Oshima T., Ohmi A., Tanaka A., Oizumi Y., Komatsu S. A microplate method for isolation of viruses from infants and children with acute respiratory infections. Microbiol. Immunol. 1987;31:1085–1095.
    1. Condit R.C. Principles of virology. In: Knipe D.M., Howley P.M., editors. fifth ed. vol 1. Lippincott Williams & Wilkins Inc; Philadelphia: 2006. pp. 25–57. (Fields Virology).
    1. Lorusso A., Faaberg K.S., Killian M.L., Koster L., Vincent A.L. One-step real-time RT-PCR for pandemic influenza A virus (H1N1) 2009 matrix gene detection in swine samples. J. Virol. Methods. 2010;164:83–87.
    1. Yamaya M., Lusamba N., Ota C., Kubo H., Makiguchi T., Nagatomi R. Magnitude of influenza virus replication and cell damage is associated with interleukin-6 production in primary cultures of human tracheal epithelium. Respir. Physiol. Neurobiol. 2014;202:16–23.
    1. Peitsch C., Klenk H.D., Garten W., Böttcher-Friebertshauser E. Activation of influenza A viruses by host proteases from swine airway epithelium. J. Virol. 2014;88:282–291.
    1. Bertram S., Glowacka I., Blazejewska P., Soilleux E., Allen P., Danisch S. TMPRSS2 and TMPRSS4 facilitate trypsin-independent spread of influenza virus in Caco-2 cells. J. Virol. 2010;84:10016–10025.
    1. Bertram S., Dijkman R., Habjan M., Heurich A., Gierer S., Glowacka I. TMPRSS2 activates the human coronavirus 229E for cathepsin-independent host cell entry and is expressed in viral target cells in the respiratory epithelium. J. Virol. 2013;87:6150–6160.
    1. Hiraku S., Muryobayashi K., Ito H., Inagawa T., Tuboshima M. Absorption and excretion of camostat (FOY-305) orally administered to male rabbit and healthy subjects (English Abstract) Iyaku Kenkyu. 1982;13:756–765.
    1. Lin B., Ferguson C., White J.T., Wang S., Vessella R., True L.D. Prostate-localized and androgen-regulated expression of the membrane-bound serine protease TMPRSS2. Cancer Res. 1999;59:4180–4184.
    1. Donaldson S.H., Hirsh A., Li D.C., Holloway G., Chao J., Boucher R.C. Regulation of the epithelial sodium channel by serine proteases in human airways. J. Biol. Chem. 2002;277:8338–8345.
    1. Yamaoka K., Masuda K., Ogawa H., Takagi K., Umemoto N., Yasuoka S. Cloning and characterization of the cDNA for human airway trypsin-like protease. J. Biol. Chem. 1998;273:11895–11901.
    1. Ohler A., Becker-Pauly C. TMPRSS4 is a type II transmembrane serine protease involved in cancer and viral infections. Biol. Chem. 2012;393:907–914.
    1. Chokki M., Yamamura S., Eguchi H., Masegi T., Horiuchi H., Tanabe H. Human airway trypsin-like protease increases mucin gene expression in airway epithelial cells. Am. J. Respir. Cell Mol. Biol. 2004;30:470–478.
    1. Coote K., Atherton-Watson H.C., Sugar R., Young A., MacKenzie-Beevor A., Gosling M. Camostat attenuates airway epithelial sodium channel function in vivo through the inhibition of a channel-activating protease. J. Pharmacol. Exp. Ther. 2009;329:764–774.
    1. Kawase M., Shirato K., van der Hoek L., Taguchi F., Matsuyama S. Simultaneous treatment of human bronchial epithelial cells with serine and cysteine protease inhibitors prevents severe acute respiratory syndrome coronavirus entry. J. Virol. 2012;86:6537–6545.
    1. Sieczkarski S.B., Brown H.A., Whittaker G.R. Role of protein kinase C βII in influenza virus entry via late endosomes. J. Virol. 2003;77:460–469.
    1. Matsuyama S., Nagata N., Shirato K., Kawase M., Takeda M., Taguchi F. Efficient activation of the severe acute respiratory syndrome coronavirus spike protein by the transmembrane protease TMPRSS2. J. Virol. 2010;84:12658–12664.
    1. Tumurkhuu G., Koide N., Hiwasa T., Ookoshi M., Dagvadorj J., Abu Shadat Mohammod Noman ONO 3403, a synthetic serine protease inhibitor, inhibits lipopolysaccharide-induced tumor necrosis factor-α and nitric oxide production and protects mice from lethal endotoxic shock. Innate Immun. 2011;17:97–105.
    1. Kosai K., Seki M., Yanagihara K., Nakamura S., Kurihara S., Izumikawa K. Gabexate mesilate suppresses influenza pneumonia in mice through inhibition of cytokines. J. Int. Med. Res. 2008;36:322–328.
    1. Asimakopoulos G., Lidington E.A., Mason J., Haskard D.O., Taylor K.M., Landis R.C. Effect of aprotinin on endothelial cell activation. J. Thorac. Cardiovasc. Surg. 2001;122:123–128.
    1. Buerke M., Pruefer D., Sankat D., Carter J.M., Buerke U., Russ M. Effects of aprotinin on gene expression and protein synthesis after ischemia and reperfusion in rats. Circulation. 2007;116(Suppl I):I121–I126.
    1. Hayden F.G., Fritz R., Lobo M.C., Alvord W., Strober W., Straus S.E. Local and systemic cytokine responses during experimental human influenza A virus infection. Relation to symptom formation and host defense. J. Clin. Invest. 1998;101:643–649.
    1. Iwadou H., Morimoto Y., Iwagaki H., Sinoura S., Chouda Y., Kodama M. Differential cytokine response in host defence mechanisms triggered by gram-negative and gram-positive bacteria, and the roles of gabexate mesilate, a synthetic protease inhibitor. J. Intern. Med. Res. 2002;30:99–108.
    1. Kawabata K., Suzuki M., Sugitani M., Imaki K., Toda M., Miyamoto T. ONO-5046, a novel inhibitor of human neutrophil elastase. Biochem. Biophys. Res. Commun. 1991;177:814–820.
    1. Tamura Y., Hirado M., Okamura K., Minato Y., Fujii S. Synthetic inhibitors of trypsin, plasmin, kallikrein, thrombin, C1r-, and C1 esterase. Biochim. Biophys. Acta. 1977;484:417–422.
    1. Nakatani K., Takeshita S., Tsujimoto H., Kawamura Y., Sekine I. Inhibitory effect of serine protease inhibitors on neutrophil-mediated endothelial cell injury. J. Leukoc. Biol. 2001;69:241–247.
    1. Fritz H., Wunderer G. Biochemistry and applications of aprotinin, the kallikrein inhibitor from bovine organs. Arzneimittelforschung. 1983;33:479–494.
    1. Böttcher E., Freuer C., Steinmetzer T., Klenk H.D., Garten W. MDCK cells that express proteases TMPRSS2 and HAT provide a cell system to propagate influenza viruses in the absence of trypsin and to study cleavage of HA and its inhibition. Vaccine. 2009;27:6324–6329.
    1. Sai J.K., Suyama M., Kubokawa Y., Matsumura Y., Inami K., Watanabe S. Efficacy of camostat mesilate against dyspepsia associated with non-alcoholic mild pancreatic disease. J. Gastroenterol. 2010;45:335–341.

Source: PubMed

3
订阅