MERS-CoV infection in humans is associated with a pro-inflammatory Th1 and Th17 cytokine profile

Waleed H Mahallawi, Omar F Khabour, Qibo Zhang, Hatim M Makhdoum, Bandar A Suliman, Waleed H Mahallawi, Omar F Khabour, Qibo Zhang, Hatim M Makhdoum, Bandar A Suliman

Abstract

The Middle East respiratory syndrome coronavirus (MERS-CoV) has been recognized as a highly pathogenic virus to humans that infects the respiratory tract and is associated with high morbidity and mortality. Studies in animal models suggest that MERS-CoV infection induces a strong inflammatory response, which may be related to the severity of disease. Data showing the cytokine profiles in humans during the acute phase of MERS-CoV infection are limited. In this study, we have analyzed the profile of cytokine responses in plasma samples from patients with confirmed MERS-CoV infections (n = 7) compared to healthy controls (n = 13). The cytokine profiles, including T helper (Th) 1, Th2 and Th17 responses, were analyzed using cytometric bead array (CBA). A prominent pro-inflammatory Th1 and Th17 response was clearly seen in patients with MERS-CoV infection, with markedly increased concentrations of IFN-γ, TNF-α, IL-15 and IL-17 compared to controls. IL-12 expression levels showed no difference between patients with MERS-CoV infection and the healthy controls despite the significantly increased levels of IFN-α2 and IFN-γ (P < .01). No changes were observed in the levels of IL-2, IL-4, IL-5, IL-13, and TGF-α (P > .05). Our results demonstrate a marked pro-inflammatory cytokine response during the acute phase of MERS-CoV infection in humans.

Keywords: Cytokines; Humans; Interferons; MERS-CoV.

Conflict of interest statement

Authors have nothing to declare.

Copyright © 2018 Elsevier Ltd. All rights reserved.

Figures

Fig. 1
Fig. 1
Changes in the plasma levels of interferons in patients with MERS-CoV infection. Significant increases in the plasma levels of (A) IFN-α2 and (B) IFN-γ. Data are expressed as Mean ± SEM. * indicates significant difference.
Fig. 3
Fig. 3
Levels of selected cytokines in patients with MERS-CoV infection. Plasma levels of (A) IL-5, (B) IL-10, (C) IL-13, (D) IL-17, (E) TNF-α, and (F) TGF-α in patients with MERS-CoV infection. Significant elevations were observed for IL-10, IL-17 and TNF-α while no changes were observed in the levels of IL-5, IL-13 and TGF-α. Data are expressed as Mean ± SEM. * indicates significant difference.
Fig. 2
Fig. 2
Changes in the levels of four α-helix bundle-containing cytokines in patients with MERS-CoV infection. Levels of (A) IL-2, (B) IL-4, (C) IL-12p40, (D) IL-12p70 and (E) IL-15 were measured in plasma samples. Strong elevation only in the levels of IL-15 in all patients (P 

References

    1. Mackay I.M., Arden K.E. MERS coronavirus: diagnostics, epidemiology and transmission. Virol. J. 2015;12:222.
    1. Thomas C. MERS-CoV: where are we now? Ann. Acad. Med. Singapore. 2015;44:155–156.
    1. Almaghrabi R.S., Omrani A.S. Middle East respiratory syndrome coronavirus (MERS-CoV) infection. Brit. J. Hospital Med. 2017;78:23–26.
    1. Liu W.J., Zhao M., Liu K., Xu K., Wong G., Tan W. T-cell immunity of SARS-CoV: implications for vaccine development against MERS-CoV. Antiviral Res. 2017;137:82–92.
    1. Lu G., Hu Y., Wang Q., Qi J., Gao F., Li Y. Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26. Nature. 2013;500:227–231.
    1. Song W., Wang Y., Wang N., Wang D., Guo J., Fu L. Identification of residues on human receptor DPP4 critical for MERS-CoV binding and entry. Virology. 2014;471–473:49–53.
    1. Al-Tawfiq J.A., Memish Z.A. Emerging respiratory viral infections: MERS-CoV and influenza. Lancet Respirat. Med. 2014;2:23–25.
    1. Badawi A., Ryoo S.G. Prevalence of comorbidities in the Middle East respiratory syndrome coronavirus (MERS-CoV): a systematic review and meta-analysis. Int. J. Infect. Diseases: IJID: official publication of the International Society for Infectious Diseases. 2016;49:129–133.
    1. Banik G.R., Khandaker G., Rashid H. Middle East respiratory syndrome coronavirus “MERS-CoV”: current knowledge gaps. Paediat. Respir. Rev. 2015;16:197–202.
    1. Hsieh Y.H. 2015 Middle East Respiratory Syndrome Coronavirus (MERS-CoV) nosocomial outbreak in South Korea: insights from modeling. PeerJ. 2015;3:e1505.
    1. Bermingham A., Chand M.A., Brown C.S., Aarons E., Tong C., Langrish C. Severe respiratory illness caused by a novel coronavirus, in a patient transferred to the United Kingdom from the Middle East, September 2012. Euro surveillance: bulletin Europeen sur les maladies transmissibles =European communicable disease bulletin. 2012;17:20290.
    1. Fisman D.N., Tuite A.R. The epidemiology of MERS-CoV. Lancet Infect. Diseases. 2014;14:6–7.
    1. Gautret P., Gray G.C., Charrel R.N., Odezulu N.G., Al-Tawfiq J.A., Zumla A. Emerging viral respiratory tract infections–environmental risk factors and transmission. The Lancet Infect. Diseases. 2014;14:1113–1122.
    1. Hemida M.G., Elmoslemany A., Al-Hizab F., Alnaeem A., Almathen F., Faye B. Dromedary camels and the transmission of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Transbound. Emerg. Diseases. 2015
    1. A. Mailles, K. Blanckaert, P. Chaud, S. van der Werf, B. Lina, V. Caro, et al., First cases of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) infections in France, investigations and implications for the prevention of human-to-human transmission, France, May 2013. Euro surveillance: bulletin Europeen sur les maladies transmissibles = European Communicable Disease Bulletin 18 (2013).
    1. J. Premila Devi, W. Noraini, R. Norhayati, C. Chee Kheong, A.S. Badrul, S. Zainah, et al., Laboratory-confirmed case of Middle East respiratory syndrome coronavirus (MERS-CoV) infection in Malaysia: preparedness and response, April 2014. Euro surveillance: bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin 19 (2014).
    1. Regan J.J., Jungerman M.R., Lippold S.A., Washburn F., Roland E., Objio T. Tracing airline travelers for a public health investigation: Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Infection in the United States, 2014. Public Health Reports. 2016;131:552–559.
    1. T. Briese, N. Mishra, K. Jain, I.S. Zalmout, O.J. Jabado, W.B. Karesh, et al., Middle East respiratory syndrome coronavirus quasispecies that include homologues of human isolates revealed through whole-genome analysis and virus cultured from dromedary camels in Saudi Arabia, mBio 5 (2014) e01146–e01214.
    1. Omrani A.S., Al-Tawfiq J.A., Memish Z.A. Middle East respiratory syndrome coronavirus (MERS-CoV): animal to human interaction. Pathogens and Global Health. 2015;109:354–362.
    1. Reeves T., Samy A.M., Peterson A.T. MERS-CoV geography and ecology in the Middle East: analyses of reported camel exposures and a preliminary risk map. BMC Res. Notes. 2015;8:801.
    1. Reperant L.A., Osterhaus A.D. Dromedary MERS-CoV replicates in human respiratory tissues. The Lancet Respir. Med. 2014;2:779–781.
    1. Yusof M.F., Eltahir Y.M., Serhan W.S., Hashem F.M., Elsayed E.A., Marzoug B.A. Prevalence of Middle East respiratory syndrome coronavirus (MERS-CoV) in dromedary camels in Abu Dhabi Emirate, United Arab Emirates. Virus Genes. 2015;50:509–513.
    1. Cauchemez S., Nouvellet P., Cori A., Jombart T., Garske T., Clapham H. Unraveling the drivers of MERS-CoV transmission. Proc. Natl. Acad. Sci. USA. 2016;113:9081–9086.
    1. Mohd H.A., Memish Z.A., Alfaraj S.H., McClish D., Altuwaijri T., Alanazi M.S. Predictors of MERS-CoV infection: a large case control study of patients presenting with ILI at a MERS-CoV referral hospital in Saudi Arabia. Travel Med. Infect. Disease. 2016;14:464–470.
    1. Zumla A., Hui D.S. Infection control and MERS-CoV in health-care workers. Lancet. 2014;383:1869–1871.
    1. Arabi Y.M., Harthi A., Hussein J., Bouchama A., Johani S., Hajeer A.H. Severe neurologic syndrome associated with Middle East respiratory syndrome corona virus (MERS-CoV) Infection. 2015;43:495–501.
    1. Cha R.H., Joh J.S., Jeong I., Lee J.Y., Shin H.S., Kim G. Renal complications and their prognosis in Korean patients with Middle East Respiratory Syndrome-Coronavirus from the central MERS-CoV designated hospital. J. Kor. Med. Sci. 2015;30:1807–1814.
    1. Khalid I., Alraddadi B.M., Dairi Y., Khalid T.J., Kadri M., Alshukairi A.N. Acute management and long-term survival among subjects with severe Middle East Respiratory Syndrome coronavirus Pneumonia and Ards. Respir. Care. 2016;61:340–348.
    1. Assiri A., McGeer A., Perl T.M., Price C.S., Al Rabeeah A.A., Cummings D.A. Hospital outbreak of Middle East respiratory syndrome coronavirus. N. Engl. J. Med. 2013;369:407–416.
    1. Ko J.H., Park G.E., Lee J.Y., Lee J.Y., Cho S.Y., Ha Y.E. Predictive factors for pneumonia development and progression to respiratory failure in MERS-CoV infected patients. J. Infect. 2016;73:468–475.
    1. Sherbini N., Iskandrani A., Kharaba A., Khalid G., Abduljawad M., Al-Jahdali H. Middle East respiratory syndrome coronavirus in Al-Madinah City, Saudi Arabia: demographic, clinical and survival data. J. Epidemiol. Global Health. 2017;7:29–36.
    1. Lee H., Ki C.S., Sung H., Kim S., Seong M.W., Yong D. Guidelines for the laboratory diagnosis of Middle East respiratory syndrome coronavirus in Korea. Infect. Chemother. 2016;48:61–69.
    1. Morgan E., Varro R., Sepulveda H., Ember J.A., Apgar J., Wilson J. Cytometric bead array: a multiplexed assay platform with applications in various areas of biology. Clin. Immunol. 2004;110:252–266.
    1. Gattoni A., Parlato A., Vangieri B., Bresciani M., Derna R. Interferon-gamma: biologic functions and HCV terapy (type I/II) (2 of 2 parts) La Clinica terapeutica. 2006;157:457–468.
    1. Tovey M.G., Lallemand C. Safety, tolerability, and immunogenicity of interferons. Pharmaceuticals. 2010;3:1162–1186.
    1. Manni M.L., Robinson K.M., Alcorn J.F. A tale of two cytokines: IL-17 and IL-22 in asthma and infection. Expert Rev. Respir. Med. 2014;8:25–42.
    1. Herbein G., O'Brien W.A. Tumor necrosis factor (TNF)-alpha and TNF receptors in viral pathogenesis. Proc. Soc. Exper. Biol. Med. Soc. Exper. Biol. Med. 2000;223:241–257.
    1. Dumoutier L., Renauld J.C. Viral and cellular interleukin-10 (IL-10)-related cytokines: from structures to functions. Eur. Cytokine Network. 2002;13:5–15.
    1. Carey A.J., Tan C.K., Ulett G.C. Infection-induced IL-10 and JAK-STAT: a review of the molecular circuitry controlling immune hyperactivity in response to pathogenic microbes. Jak-Stat. 2012;1:159–167.
    1. Wang L., Li G., Yao Z.Q., Moorman J.P., Ning S. MicroRNA regulation of viral immunity, latency, and carcinogenesis of selected tumor viruses and HIV. Rev. Med. Virol. 2015;25:320–341.
    1. Faure E., Poissy J., Goffard A., Fournier C., Kipnis E., Titecat M. Distinct immune response in two MERS-CoV-infected patients: can we go from bench to bedside? PloS One. 2014;9:e88716.
    1. Zaki A.M., Van Boheemen S., Bestebroer T.M., Osterhaus A.D., Fouchier R.A. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. New Engl. J. Med. 2012;367:1814–1820.
    1. Zaritsky L.A., Bedsaul J.R., Zoon K.C. Virus multiplicity of infection affects type I interferon subtype induction profiles and interferon-stimulated genes. J. Virol. 2015;89:11534–11548.
    1. Kim I.W., Hwang J.Y., Kim S.K., Kim J.K., Park H.S. Interferon-stimulated genes response in endothelial cells following Hantaan virus infection. J. Kor. Med. Sci. 2007;22:987–992.
    1. Kroetz D.N., Allen R.M., Schaller M.A., Cavallaro C., Ito T., Kunkel S.L. Type I interferon induced epigenetic regulation of macrophages suppresses innate and adaptive immunity in acute respiratory viral infection. PLoS Pathogens. 2015;11:e1005338.
    1. Stubblefield Park S.R., Widness M., Levine A.D., Patterson C.E. T cell-, interleukin-12-, and gamma interferon-driven viral clearance in measles virus-infected brain tissue. J. Virol. 2011;85:3664–3676.
    1. Zhou J., Chu H., Li C., Wong B.H., Cheng Z.S., Poon V.K. Active replication of Middle East respiratory syndrome coronavirus and aberrant induction of inflammatory cytokines and chemokines in human macrophages: implications for pathogenesis. J. Infect. Diseases. 2014;209:1331–1342.
    1. Selinger C., Tisoncik-Go J., Menachery V.D., Agnihothram S., Law G.L., Chang J. Cytokine systems approach demonstrates differences in innate and pro-inflammatory host responses between genetically distinct MERS-CoV isolates. BMC Genom. 2014;15:1161.
    1. DeDiego M.L., Nieto-Torres J.L., Jimenez-Guardeno J.M., Regla-Nava J.A., Castano-Rodriguez C., Fernandez-Delgado R. Coronavirus virulence genes with main focus on SARS-CoV envelope gene. Virus Res. 2014;194:124–137.
    1. Seo S.H., Webster R.G. Tumor necrosis factor alpha exerts powerful anti-influenza virus effects in lung epithelial cells. J. Virol. 2002;76:1071–1076.
    1. L. Josset, V.D. Menachery, L.E. Gralinski, S. Agnihothram, P. Sova, V.S. Carter, et al., Cell host response to infection with novel human coronavirus EMC predicts potential antivirals and important differences with SARS coronavirus, mBio 4 (2013) e00165–e00213.
    1. Jin W., Dong C. IL-17 cytokines in immunity and inflammation. Emerg. Microbes Infect. 2013;2:e60.
    1. Blackburn S.D., Wherry E.J. IL-10, T cell exhaustion and viral persistence. Trends Microbiol. 2007;15:143–146.
    1. Ogura H., Murakami M., Okuyama Y., Tsuruoka M., Kitabayashi C., Kanamoto M. Interleukin-17 promotes autoimmunity by triggering a positive-feedback loop via interleukin-6 induction. Immunity. 2008;29:628–636.
    1. Donnelly R.P., Dickensheets H., Finbloom D.S. The interleukin-10 signal transduction pathway and regulation of gene expression in mononuclear phagocytes. J. Interferon Cytokine Res. 1999;19:563–573.
    1. Darnell J.E., Jr, Kerr I.M., Stark G.R. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science-AAAS-weekly paper edition-including guide to scientific information. 1994;264:1415–1420.
    1. Waris G., Siddiqui A. Interaction between STAT-3 and HNF-3 leads to the activation of liver-specific hepatitis B virus enhancer 1 function. J. Virol. 2002;76:2721–2729.
    1. Stevenson N.J., Bourke N.M., Ryan E.J., Binder M., Fanning L., Johnston J.A. Hepatitis C virus targets the interferon-α JAK/STAT pathway by promoting proteasomal degradation in immune cells and hepatocytes. FEBS Lett. 2013;587:1571–1578.
    1. Jia D., Rahbar R., Chan R.W., Lee S.M., Chan M.C., Wang B.X. Influenza virus non-structural protein 1 (NS1) disrupts interferon signaling. PloS One. 2010;5:e13927.
    1. Mizutani T., Fukushi S., Murakami M., Hirano T., Saijo M., Kurane I. Tyrosine dephosphorylation of STAT3 in SARS coronavirus-infected Vero E6 cells. FEBS Lett. 2004;577:187–192.
    1. Ali A.K., Nandagopal N., Lee S.H. IL-15-PI3K-AKT-mTOR: a critical pathway in the life journey of natural killer cells. Front. Immunol. 2015;6:355.
    1. Adib-Conquy M., Scott-Algara D., Cavaillon J.M., Souza-Fonseca-Guimaraes F. TLR-mediated activation of NK cells and their role in bacterial/viral immune responses in mammals. Immunol Cell Biol. 2014;92:256–262.
    1. Gee K., Guzzo C., Che Mat N.F., Ma W., Kumar A. The IL-12 family of cytokines in infection, inflammation and autoimmune disorders. Inflam. Allergy Drug Targets. 2009;8:40–52.
    1. Chu H., Zhou J., Wong B.H.-Y., Li C., Cheng Z.-S., Lin X. Productive replication of Middle East respiratory syndrome coronavirus in monocyte-derived dendritic cells modulates innate immune response. Virology. 2014;454:197–205.
    1. Lu R., Moore P.A., Pitha P.M. Stimulation of IRF-7 gene expression by tumor necrosis factor α requirement for NFκB transcription factor and gene accessibility. J. Biolog. Chem. 2002;277:16592–16598.

Source: PubMed

3
订阅