Role of Fluid Biomarkers and PET Imaging in Early Diagnosis and its Clinical Implication in the Management of Alzheimer's Disease

Shahul Hameed, Jong-Ling Fuh, Vorapun Senanarong, Esther Gunaseli M Ebenezer, Irene Looi, Jacqueline C Dominguez, Kyung Won Park, Ananda Krishna Karanam, Oliver Simon, Shahul Hameed, Jong-Ling Fuh, Vorapun Senanarong, Esther Gunaseli M Ebenezer, Irene Looi, Jacqueline C Dominguez, Kyung Won Park, Ananda Krishna Karanam, Oliver Simon

Abstract

Clinical diagnosis of Alzheimer's disease (AD) is based on symptoms; however, the challenge is to diagnose AD at the preclinical stage with the application of biomarkers and initiate early treatment (still not widely available). Currently, cerebrospinal fluid (CSF) amyloid-β 42 (Aβ42) and tau are used in the clinical diagnosis of AD; nevertheless, blood biomarkers (Aβ42 and tau) are less predictive. Amyloid-positron emission tomography (PET) imaging is an advancement in technology that uses approved radioactive diagnostic agents (florbetapir, flutemetamol, or florbetaben) to estimate Aβ neuritic plaque density in adults with cognitive impairment evaluated for AD and other causes of cognitive decline. There is no cure for AD to date-the disease progression cannot be stopped or reversed; approved pharmacological agents (donepezil, galantamine, and rivastigmine; memantine) provide symptomatic treatment. However, the disease-modifying therapies are promising; aducanumab and CAD106 are in phase III trials for the early stages of AD. In conclusion, core CSF biomarkers reflect pathophysiology of AD in the early and late stages; the application of approved radiotracers have potential in amyloid-PET brain imaging to detect early AD.

Keywords: Alzheimer’s disease; biomarker; blood; cerebrospinal fluid; early diagnosis; positron emission tomography.

Conflict of interest statement

Oliver Simon and Ananda Krishna Karanam are employees of Novartis. The remaining authors have nothing to disclose.

© 2020 – IOS Press and the authors. All rights reserved.

References

    1. Gale SA, Acar D, Daffner KR (2018) Dementia. Am J Med 131, 1161–1169.
    1. Scott KR, Barrett AM (2007) Dementia syndromes: Evaluation and treatment. Expert Rev Neurother 7, 407–422.
    1. Prizer LP, Zimmerman S (2018) Progressive support for activities of daily living for persons living with dementia. Gerontologist 58, S74–87.
    1. Jing W, Willis R, Feng Z (2016) Factors influencing quality of life of elderly people with dementia and care implications: A systematic review. Arch Gerontol Geriatr 66, 23–41.
    1. Prince M, Wimo A, Guerchet M, Ali G-C, Wu Y-T, Prina M (2015) World Alzheimer Report 2015. The global impact of dementia: An analysis of prevalence, incidence, cost and trends Alzheimer’s Disease International, London. . Accessed January 8, 2020.
    1. Zabalegui A, Hamers JP, Karlsson S, Leino-Kilpi H, Renom-Guiteras A, Saks K, Soto M, Sutcliffe C, Cabrera E (2014) Best practices interventions to improve quality of care of people with dementia living at home. Patient Educ Couns 95, 175–184.
    1. Overshott R, Burns A (2005) Treatment of dementia. J Neurol Neurosurg Psychiatry 76, v53–59.
    1. Magalingam KB, Radhakrishnan A, Ping NS, Haleagrahara N (2018) Current concepts of neurodegenerative mechanisms in Alzheimer’s disease. Biomed Res Int 2018, 3740461.
    1. Alzheimer’s Association (2017) 2017 Alzheimer’s disease facts and figures. Alzheimers Dement 17, 325–373.
    1. Kawas C, Gray S, Brookmeyer R, Fozard J, Zonderman A (2000) Age-specific incidence rates of Alzheimer’s disease: The Baltimore longitudinal study of aging. Neurology 54, 2072–2077.
    1. Kanekar S, Poot JD (2014) Neuroimaging of vascular dementia. Radiol Clin North Am 52, 383–401.
    1. O’Brien JT, Thomas A (2015) Vascular dementia. Lancet 386, 1698–1706.
    1. Hanagasi HA, Tufekcioglu Z, Emre M (2017) Dementia in Parkinson’s disease. J Neurol Sci 374, 26–31.
    1. Silbert LC, Kaye J (2010) Neuroimaging and cognition in Parkinson’s disease dementia. Brain Pathol 20, 646–653.
    1. Hanson JC, Lippa CF (2009) Lewy body dementia. Int Rev Neurobiol 84, 215–228.
    1. Yousaf T, Dervenoulas G, Valkimadi PE, Politis M (2019) Neuroimaging in Lewy body dementia. J Neurol 266, 1–26.
    1. Gordon E, Rohrer JD, Fox NC (2016) Advances in neuroimaging in frontotemporal dementia. J Neurochem 138, 193–210.
    1. Olney NT, Spina S, Miller BL (2017) Frontotemporal dementia. Neurol Clin 35, 339–374.
    1. Aisen PS, Cummings J, Jack CR Jr, Morris JC, Sperling R, Frölich L, Jones RW, Dowsett SA, Matthews BR, Raskin J, Scheltens P, Dubois B (2017) On the path to 2025: Understanding the Alzheimer’s disease continuum. Alzheimers Res Ther 9, 60.
    1. Wilson RS, Segawa E, Boyle PA, Anagnos SE, Hizel LP, Bennett DA (2012) The natural history of cognitive decline in Alzheimer’s disease. Psychol Aging 27, 1008–1017.
    1. Kamiya M, Osawa A, Kondo I, Sakurai T (2018) Factors associated with cognitive function that cause a decline in the level of activities of daily living in Alzheimer’s disease. Geriatr Gerontol Int 18, 50–56.
    1. Bancher C, Lassmann H, Breitschopf H, Jellinger KA (1997) Mechanisms of cell death in Alzheimer’s disease. J Neural Transm 50, 141–152.
    1. Donev R, Kolev M, Millet B, Thome J (2009) Neuronal death in Alzheimer’s disease and therapeutic opportunities. J Cell Mol Med 13, 4329–4348.
    1. Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R, Hansen LA, Katzman R (1991) Physical basis of cognitive alterations in Alzheimer’s disease: Synapse loss is the major correlate of cognitive impairment. Ann Neurol 30, 572–580.
    1. Riedel BC, Thompson PM, Brinton RD (2016) Age, APOE and sex: Triad of risk of Alzheimer’s disease. J Steroid Biochem Mol Biol 160, 134–147.
    1. Liu CC, Liu CC, Kanekiyo T, Xu H, Bu G (2013) Apolipoprotein E and Alzheimer disease: Risk, mechanisms and therapy. Nat Rev Neurol 9, 106–118.
    1. He W, Goodkind D, Kowal P. An aging world: 2015, international population reports. . Accessed January 8, 2020.
    1. Haberstroh J, Hampel H, Pantel J (2010) Optimal management of Alzheimer’s disease patients: Clinical guidelines and family advice. Neuropsychiatr Dis Treat 6, 243–253.
    1. Barage SH, Sonawane KD (2015) Amyloid cascade hypothesis: Pathogenesis and therapeutic strategies in Alzheimer’s disease. Neuropeptides 52, 1–18.
    1. Adalbert R, Gilley J, Coleman MP (2007) Aβ, tau and ApoE4 in Alzheimer’s disease: The axonal connection. Trends Mol Med 13, 135–142.
    1. Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics. Science 297, 353–356.
    1. Serrano-Pozo A, Frosch MP, Masliah E, Hyman BT (2011) Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med 1, 1–23.
    1. Haass C, Kaether C, Thinakaran G, Sisodia S (2012) Trafficking and proteolytic processing of APP. Cold Spring Harb Perspect Med 2, 1–25.
    1. Chow VW, Mattson MP, Wong PC, Gleichmann M (2010) An overview of APP processing enzymes and products. Neuromolecular Med 12, 1–12.
    1. O’Brien RJ, Wong PC (2011) Amyloid precursor protein processing and Alzheimer’s disease. Annu Rev Neurosci 34, 185–204.
    1. Storey E, Cappai R (1999) The amyloid precursor protein of Alzheimer’s disease and the Aβ peptide. Neuropathol Appl Neurobiol 25, 81–97.
    1. Hayden EY, Teplow DB (2013) Amyloid β-protein oligomers and Alzheimer’s disease. Alzheimers Res Ther 5, 60.
    1. Sengupta U, Nilson AN, Kayed R (2016) The role of amyloid-β oligomers in toxicity, propagation, and immunotherapy. EBioMedicine 6, 42–49.
    1. Wang JZ, Xia YY, Grundke-Iqbal I, Iqbal K (2013) Abnormal hyperphosphorylation of tau: Sites, regulation, and molecular mechanism of neurofibrillary degeneration. J Alzheimers Dis 33, S123–139.
    1. Eckert A, Schmitt K, Gotz J (2011) Mitochondrial dysfunction - the beginning of the end in Alzheimer’s disease? Separate and synergistic modes of tau and amyloid-β toxicity. Alzheimers Res Ther 3, 15.
    1. Reddy PH (2011) Abnormal tau, mitochondrial dysfunction, impaired axonal transport of mitochondria, and synaptic deprivation in Alzheimer’s disease. Brain Res 1415, 136–148.
    1. Swerdlow RH, Khan SM (2004) A “mitochondrial cascade hypothesis” for sporadic Alzheimer’s disease. Med Hypotheses 63, 8–20.
    1. Swerdlow RH, Khan SM (2009) The Alzheimer’s disease mitochondrial cascade hypothesis: An update. Exp Neurol 218, 308–315.
    1. Swerdlow RH, Burns JM, Khan SM (2010) The Alzheimer’s disease mitochondrial cascade hypothesis. J Alzheimers Dis 20, S265–279.
    1. Ferencz B, Karlsson S, Kalpouzos G (2012) Promising genetic biomarkers of preclinical Alzheimer’s disease: The influence of APOE and TOMM40 on brain integrity [Article ID 421452]. Int J Alzheimers Dis 2012, 421–452.
    1. Bronzuoli MR, Iacomino A, Steardo L, Scuderi C (2016) Targeting neuroinflammation in Alzheimer’s disease. J Inflamm Res 9, 199–208.
    1. Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL, Jacobs AH, Wyss-Coray T, Vitorica J, Ransohoff RM, Herrup K, Frautschy SA, Finsen B, Brown GC, Verkhratsky A, Yamanaka K, Koistinaho J, Latz E, Halle A, Petzold GC, Town T, Morgan D, Shinohara ML, Perry VH, Holmes C, Bazan NG, Brooks DJ, Hunot S, Joseph B, Deigendesch N, Garaschuk O, Boddeke E, Dinarello CA, Breitner JC, Cole GM, Golenbock DT, Kummer MP (2015) Neuroinflammation in Alzheimer’s disease. Lancet Neurol 14, 388–405.
    1. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM (1984) Clinical diagnosis of Alzheimer’s disease: Report of the NINCDS-ADRDA work group under the auspices of department of health and human services task force on Alzheimer’s Disease. Neurology 34, 939–944.
    1. American Psychiatric Association (2013) Diagnostic and Statistical Manual of Mental Disorders. American Psychiatric Association, Washington DC.
    1. Sachdev PS, Blacker D, Blazer DG, Ganguli M, Jeste DV, Paulsen JS, Petersen RC (2014) Classifying neurocognitive disorders: The DSM-5 approach. Nat Rev Neurol 10, 634–642.
    1. Dubois B, Feldman HH, Jacova C, Dekosky ST, Barberger-Gateau P, Cummings J, Delacourte A, Galasko D, Gauthier S, Jicha G, Meguro K, O’brien J, Pasquier F, Robert P, Rossor M, Salloway S, Stern Y, Visser PJ, Scheltens P (2007) Research criteria for the diagnosis of Alzheimer’s disease: Revising the NINCDS-ADRDA criteria. Lancet Neurol 6, 734–746.
    1. Dubois B, Feldman HH, Jacova C, Cummings JL, Dekosky ST, Barberger-Gateau P, Delacourte A, Frisoni G, Fox NC, Galasko D, Gauthier S, Hampel H, Jicha GA, Meguro K, O’Brien J, Pasquier F, Robert P, Rossor M, Salloway S, Sarazin M, de Souza LC, Stern Y, Visser PJ, Scheltens P (2010) Revising the definition of Alzheimer’s disease: A new lexicon. Lancet Neurol 9, 1118–1127.
    1. Dubois B, Feldman HH, Jacova C, Hampel H, Molinuevo JL, Blennow K, DeKosky ST, Gauthier S, Selkoe D, Bateman R, Cappa S, Crutch S, Engelborghs S, Frisoni GB, Fox NC, Galasko D, Habert MO, Jicha GA, Nordberg A, Pasquier F, Rabinovici G, Robert P, Rowe C, Salloway S, Sarazin M, Epelbaum S, de Souza LC, Vellas B, Visser PJ, Schneider L, Stern Y, Scheltens P, Cummings JL (2014) Advancing research diagnostic criteria for Alzheimer’s disease: The IWG-2 criteria. Lancet Neurol 13, 614–629.
    1. Dubois B, Hampel H, Feldman HH, Scheltens P, Aisen P, Andrieu S, Bakardjian H, Benali H, Bertram L, Blennow K, Broich K, Cavedo E, Crutch S, Dartigues JF, Duyckaerts C, Epelbaum S, Frisoni GB, Gauthier S, Genthon R, Gouw AA, Habert MO, Holtzman DM, Kivipelto M, Lista S, Molinuevo JL, O’Bryant SE, Rabinovici GD, Rowe C, Salloway S, Schneider LS, Sperling R, Teichmann M, Carrillo MC, Cummings J, Jack CR Jr (2016) Proceedings of the meeting of the international working (IWG) and the American Alzheimer’s Association on “The Preclinical State of AD, July 23, 2015; Washington DC, USA. Preclinical Alzheimer’s disease: Definition, natural history, and diagnostic criteria. Alzheimers Dement 12, 292–323.
    1. Jack CR Jr, Albert MS, Knopman DS, McKhann GM, Sperling RA, Carrillo MC, Thies B, Phelps CH (2011) Introduction to the recommendations from the national institute on aging-Alzheimer’s association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 257–262.
    1. Jack CR Jr, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, Holtzman DM, Jagust W, Jessen F, Karlawish J, Liu E, Molinuevo JL, Montine T, Phelps C, Rankin KP, Rowe CC, Scheltens P, Siemers E, Snyder HM, Sperling R; Contributors (2018) NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease. Alzheimers Dement 14, 535–562.
    1. McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr, Kawas CH, Klunk WE, Koroshetz WJ, Manly JJ, Mayeux R, Mohs RC, Morris JC, Rossor MN, Scheltens P, Carrillo MC, Thies B, Weintraub S, Phelps CH (2011) The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 263–269.
    1. Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, Gamst A, Holtzman DM, Jagust WJ, Petersen RC, Snyder PJ, Carrillo MC, Thies B, Phelps CH (2011) The diagnosis of mild cognitive impairment due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 270–279.
    1. Sperling RA, Aisen PS, Beckett LA, Bennett DA, Craft S, Fagan AM, Iwatsubo T, Jack CR Jr, Kaye J, Montine TJ, Park DC, Reiman EM, Rowe CC, Siemers E, Stern Y, Yaffe K, Carrillo MC, Thies B, Morrison-Bogorad M, Wagster MV, Phelps CH (2011) Toward defining the preclinical stages of Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7, 280–292.
    1. Visser PJ, Vos S, van Rossum I, Scheltens P (2012) Comparison of International Working Group criteria and National Institute on Aging-Alzheimer’s Association criteria for Alzheimer’s disease. Alzheimers Dement 8, 560–563.
    1. Jack CR Jr, Bennett DA, Blennow K, Carrillo MC, Feldman HH, Frisoni GB, Hampel H, Jagust WJ, Johnson KA, Knopman DS, Petersen RC, Scheltens P, Sperling RA, Dubois B (2016) A/T/N: An unbiased descriptive classification scheme for Alzheimer disease biomarkers. Neurology 87, 539–547.
    1. Verghese PB, Castellano JM, Holtzman DM (2011) Apolipoprotein E in Alzheimer’s disease and other neurological disorders. Lancet Neurol 10, 241–252.
    1. Farrer LA, Cupples LA, Haines JL, Hyman B, Kukull WA, Mayeux R, Myers RH, Pericak-Vance MA, Risch N, van Duijn CM (1997) Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. APOE and Alzheimer disease meta analysis consortium. JAMA 278, 1349–1356.
    1. Ward A, Crean S, Mercaldi CJ, Collins JM, Boyd D, Cook MN, Arrighi HM (2012) Prevalence of apolipoprotein E4 genotype and homozygotes (APOE e4/4) among patients diagnosed with Alzheimer’s disease: A systematic review and meta-analysis. Neuroepidemiology 38, 1–17.
    1. Liu M, Bian C, Zhang J, Wen F (2014) Apolipoprotein E gene polymorphism and Alzheimer’s disease in Chinese population: A meta-analysis. Sci Rep 4, 4383.
    1. Mielke MM, Vemuri P, Rocca WA (2014) Clinical epidemiology of Alzheimer’s disease: Assessing sex and gender differences. Clin Epidemiol 6, 37–48.
    1. Neu SC, Pa J, Kukull W, Beekly D, Kuzma A, Gangadharan P, Wang LS, Romero K, Arneric SP, Redolfi A, Orlandi D, Frisoni GB, Au R, Devine S, Auerbach S, Espinosa A, Boada M, Ruiz A, Johnson SC, Koscik R, Wang JJ, Hsu WC, Chen YL, Toga AW (2017) Apolipoprotein E genotype and sex risk factors for Alzheimer disease: A meta-analysis. JAMA Neurol 74, 1178–1189.
    1. Vemuri P, Wiste HJ, Weigand SD, Knopman DS, Shaw LM, Trojanowski JQ, Aisen PS, Weiner M, Petersen RC, Jack CR Jr; Alzheimer’s Disease Neuroimaging Initiative (2010) Effect of apolipoprotein E on biomarkers of amyloid load and neuronal pathology in Alzheimer disease. Ann Neurol 67, 308–316.
    1. Lautner R, Insel PS, Skillback T, Olsson B, Landén M, Frisoni GB, Herukka SK, Hampel H, Wallin A, Minthon L, Hansson O, Blennow K, Mattsson N, Zetterberg H (2017) Preclinical effects of APOE ɛ4 on cerebrospinal fluid Aβ42 concentrations. Alzheimers Res Ther 9, 87.
    1. Marioni RE, Campbell A, Scotland G, Hayward C, Porteous DJ, Deary IJ (2016) Differential effects of the APOE e4 allele on different domains of cognitive ability across the life-course. Eur J Hum Genet 24, 919–923.
    1. Mayeux R (2004) Biomarkers: Potential uses and limitations. NeuroRx 1, 182–188.
    1. Blennow K (2005) CSF biomarkers for Alzheimer’s disease: Use in early diagnosis and evaluation of drug treatment. Expert Rev Mol Diagn 5, 661–672.
    1. Csernansky JG, Miller JP, McKeel D, Morris JC (2002) Relationships among cerebrospinal fluid biomarkers in dementia of the Alzheimer type. Alzheimer Dis Assoc Disord 16, 144–149.
    1. Wallin AK, Blennow K, Andreasen N, Minthon L (2006) CSF biomarkers for Alzheimer’s disease: Levels of β-amyloid, tau, phosphorylated tau relate to clinical symptoms and survival. Dement Geriatr Cogn Disord 21, 131–138.
    1. Hansson O, Zetterberg H, Buchhave P, Londos E, Blennow K, Minthon L (2006) Association between CSF biomarkers and incipient Alzheimer’s disease in patients with mild cognitive impairment: A follow-up study. Lancet Neurol 5, 228–234.
    1. Mattsson N, Zetterberg H, Hansson O, Andreasen N, Parnetti L, Jonsson M, Herukka SK, van der Flier WM, Blankenstein MA, Ewers M, Rich K, Kaiser E, Verbeek M, Tsolaki M, Mulugeta E, Rosén E, Aarsland D, Visser PJ, Schröder J, Marcusson J, de Leon M, Hampel H, Scheltens P, Pirttilä T, Wallin A, Jönhagen ME, Minthon L, Winblad B, Blennow K (2009) CSF biomarkers and incipient Alzheimer disease in patients with mild cognitive impairment. JAMA 302, 385–393.
    1. Shea YF, Chu LW, Zhou L, Li WM, Lin OY, Chan MN, Xu A, Wong R, Ho TY, Liu KW, Ha J, Daniel TW, Song YQ, Lam KS (2013) Cerebrospinal fluid biomarkers of Alzheimer’s disease in Chinese patients: A pilot study. Am J Alzheimers Dis Other Demen 28, 769–775.
    1. Hansson O, Zetterberg H, Buchhave P, Andreasson U, Londos E, Minthon L, Blennow K (2007) Prediction of Alzheimer’s disease using the CSF Aβ42/Aβ40 ratio in patients with mild cognitive impairment. Dement Geriatr Cogn Disord 23, 316–320.
    1. Park SA, Chae WS, Kim HJ, Shin HS, Kim S, Im JY, Ahn SI, Min KD, Yim SJ, Ye BS, Seo SW, Jeong JH, Park KW, Choi SH, Na DL (2017) Cerebrospinal fluid biomarkers for the diagnosis of Alzheimer disease in South Korea. Alzheimer Dis Assoc Disord 31, 13–18.
    1. Lafirdeen ASM, Cognat E, Sabia S, Hourregue C, Lilamand M, Dugravot A, Bouaziz-Amar E, Laplanche JL, Hugon J, Singh-Manoux A, Paquet C, Dumurgier J (2019) Biomarker profiles of Alzheimer’s disease and dynamic of the association between cerebrospinal fluid levels of β-amyloid peptide and tau. PLoS One 14, 1–13.
    1. Olsson B, Lautner R, Andreasson U, Öhrfelt A, Portelius E, Bjerke M, Hölttä M, Rosén C, Olsson C, Strobel G, Wu E, Dakin K, Petzold M, Blennow K, Zetterberg H (2016) CSF and blood biomarkers for the diagnosis of Alzheimer’s disease: A systematic review and meta-analysis. Lancet Neurol 15, 673–684.
    1. Alzforum Alzbiomarker Version 2.0 (2017) . Accessed January 8, 2020.
    1. Virk Kaur Gurjeet, Poljak Anne, Braidy Nady, Sachdev Perminder S. (2018) CSF and blood biomarkers of early-onset Alzheimer’s disease: A systematic review and meta-analysis [poster p3-226]. Alzheimers Dement 14, P1158.
    1. Hansson O, Zetterberg H, Vanmechelen E, Scheltens P, Blankenstein MA (2010) Evaluation of plasma Aβ40 and Aβ42 as predictors of conversion to Alzheimer’s disease in patients with mild cognitive impairment. Neurobiol Aging 31, 357–367.
    1. Lövheim H, Elgh F, Johansson A, Zetterberg H, Blennow K, Hallmans G, Eriksson S (2017) Plasma concentrations of free amyloid β cannot predict the development of Alzheimer’s disease. Alzheimers Dement 13, 778–782.
    1. Mattsson N, Zetterberg H, Janelidze S, Insel PS, Andreasson U, Stomrud E, Palmqvist S, Baker D, Tan Hehir CA, Jeromin A, Hanlon D, Song L, Shaw LM, Trojanowski JQ, Weiner MW, Hansson O, Blennow K; ADNI Investigators (2016) Plasma tau in Alzheimer disease. Neurology 87, 1827–1835.
    1. Nakamura A, Kaneko N, Villemagne VL, Kato T, Doecke J, Doré V, Fowler C, Li QX, Martins R, Rowe C, Tomita T, Matsuzaki K, Ishii K, Ishii K, Arahata Y, Iwamoto S, Ito K, Tanaka K, Masters CL, Yanagisawa K (2018) High performance plasma amyloid-β biomarkers for Alzheimer’s disease. Nature 554, 249–254.
    1. Mattsson N, Andreasson U, Zetterberg H, Blennow K; Alzheimer’s Disease Neuroimaging Initiative (2017) Association of plasma neurofilament light with neurodegeneration in patients with Alzheimer disease. JAMA Neurol 74, 557–566.
    1. Zhou W, Zhang J, Ye F, Xu G, Su H, Su Y, Zhang X; Alzheimer’s Disease Neuroimaging Initiative (2017) Plasma neurofilament light chain levels in Alzheimer’s disease. Neurosci Lett 650, 60–64.
    1. Neergaard JS, Dragsbæk K, Christiansen C, Karsdal MA, Brix S, Henriksen K (2018) Two novel blood-based biomarker candidates measuring degradation of tau are associated with dementia: A prospective study. PLoS One 13, 1–13.
    1. Nabers A, Perna L, Lange J, Mons U, Schartner J, Güldenhaupt J, Saum KU, Janelidze S, Holleczek B, Rujescu D, Hansson O, Gerwert K, Brenner H (2018) Amyloid blood biomarker detects Alzheimer’s disease. EMBO Mol Med 10, 1–11.
    1. Mielke MM, Hagen CE, Xu J, Chai X, Vemuri P, Lowe VJ, Airey DC, Knopman DS, Roberts RO, Machulda MM, Jack CR Jr, Petersen RC, Dage JL (2018) Plasma phospho-tau181 increases with Alzheimer’s disease clinical severity and is associated with tau- and amyloid-positron emission tomography. Alzheimers Dement 14, 989–997.
    1. Shahpasand-Kroner H, Klafki HW, Bauer C, Schuchhardt J, Hüttenrauch M, Stazi M, Bouter C, Wirths O, Vogelgsang J, Wiltfang J (2018) A two-step immunoassay for the simultaneous assessment of Aβ38, Aβ40 and Aβ42 in human blood plasma supports the Aβ42/Aβ40 ratio as a promising biomarker candidate of Alzheimer’s disease. Alzheimers Res Ther 10, 121.
    1. Park JC, Han SH, Yi D, Byun MS, Lee JH, Jang S, Ko K, Jeon SY, Lee YS, Kim YK, Lee DY, Mook-Jung I (2019) Plasma tau/amyloid-β1-42 ratio predicts brain tau deposition and neurodegeneration in Alzheimer’s disease. Brain 142, 771–786.
    1. Schindler SE, Bollinger JG, Ovod V, Mawuenyega KG, Li Y, Gordon BA, Holtzman DM, Morris JC, Benzinger TLS, Xiong C, Fagan AM, Bateman RJ (2019) High-precision plasma β-amyloid 42/40 predicts current and future brain amyloidosis. Neurology 93, e1647–e1659.
    1. Palmqvist S, Janelidze S, Stomrud E, Zetterberg H, Karl J, Zink K, Bittner T, Mattsson N, Eichenlaub U, Blennow K, Hansson O (2019) Performance of fully automated plasma assays as screening tests for Alzheimer disease-related β-Amyloid status. JAMA Neurol 76, 1060–1069.
    1. Florbetapir F 18 Injection (AmyvidTM). . Accessed January 8, 2020.
    1. Flutemetamol F 18 Injection (VizamylTM). . Accessed January 8, 2020.
    1. Florbetaben F 18 Injection (NeuraCeqTM). . Accessed January 8, 2020.
    1. Clark CM, Schneider JA, Bedell BJ, Beach TG, Bilker WB, Mintun MA, Pontecorvo MJ, Hefti F, Carpenter AP, Flitter ML, Krautkramer MJ, Kung HF, Coleman RE, Doraiswamy PM, Fleisher AS, Sabbagh MN, Sadowsky CH, Reiman EP, Zehntner SP, Skovronsky DM; AV45-A07 study group (2011) Use of Florbetapir-PET for imaging β-amyloid pathology. JAMA 305, 275–283.
    1. Clark CM, Pontecorvo MJ, Beach TG, Bedell BJ, Coleman RE, Doraiswamy PM, Fleisher AS, Reiman EM, Sabbagh MN, Sadowsky CH, Schneider JA, Arora A, Carpenter AP, Flitter ML, Joshi AD, Krautkramer MJ, Lu M, Mintun MA, Skovronsky DM; AV-45-A16 Study Group (2012) Cerebral PET with florbetapir compared with neuropathology at autopsy for detection of neuritic amyloid-β plaques: A prospective cohort study. Lancet Neurol 11, 669–678.
    1. Curtis C, Gamez JE, Singh U, Sadowsky CH, Villena T, Sabbagh MN, Beach TG, Duara R, Fleisher AS, Frey KA, Walker Z, Hunjan A, Holmes C, Escovar YM, Vera CX, Agronin ME, Ross J, Bozoki A, Akinola M, Shi J, Vandenberghe R, Ikonomovic MD, Sherwin PF, Grachev ID, Farrar G, Smith AP, Buckley CJ, McLain R, Salloway S (2015) Phase 3 trial of flutemetamol labeled with radioactive fluorine 18 imaging and neuritic plaque density. JAMA Neurol 72, 287–294.
    1. Sabri O, Sabbagh MN, Seibyl J, Barthel H, Akatsu H, Ouchi Y, Senda K, Murayama S, Ishii K, Takao M, Beach TG, Rowe CC, Leverenz JB, Ghetti B, Ironside JW, Catafau AM, Stephens AW, Mueller A, Koglin N, Hoffmann A, Roth K, Reininger C, Schulz-Schaeffer WJ; Florbetaben Phase 3 Study Group (2015) Florbetaben PET imaging to detect amyloid beta plaques in Alzheimer’s disease: Phase 3 study. Alzheimers Dement 11, 964–974.
    1. Brier MR, Gordon B, Friedrichsen K, McCarthy J, Stern A, Christensen J, Owen C, Aldea P, Su Y, Hassenstab J, Cairns NJ, Holtzman DM, Fagan AM, Morris JC, Benzinger TL, Ances BM (2016) Tau and Aβ imaging, CSF measures, and cognition in Alzheimer’s disease. Sci Transl Med 8, 1–10.
    1. Ossenkoppele R, Smith R, Ohlsson T, Strandberg O, Mattsson N, Insel PS, Palmqvist S, Hansson O (2019) Associations between tau, Aβ, and cortical thickness with cognition in Alzheimer disease. Neurology 92, e601–e612.
    1. Avila J (2010) Intracellular and extracellular tau. Front Neurosci 4, 1–10.
    1. Pike VW (2009) PET radiotracers: Crossing the blood-brain barrier and surviving metabolism. Trends Pharmacol Sci 30, 431–440.
    1. Martin L, Latypova X, Terro F (2011) Post-translational modifications of tau protein: Implications for Alzheimer’s disease. Neurochem Int 58, 458–471.
    1. Buée L, Bussière T, Buée-Scherrer V, Delacourte A, Hof PR (2000) Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res Brain Res Rev 33, 95–130.
    1. Villemagne VL, Fodero-Tavoletti MT, Masters CL, Rowe CC (2015) Tau imaging: Early progress and future directions. Lancet Neurol 14, 114–124.
    1. Ossenkoppele R, Rabinovici GD, Smith R, Cho H, Schöll M, Strandberg O, Palmqvist S, Mattsson N, Janelidze S, Santillo A, Ohlsson T, Jögi J, Tsai R, La Joie R, Kramer J, Boxer AL, Gorno-Tempini ML, Miller BL, Choi JY, Ryu YH, Lyoo CH, Hansson O (2018) Discriminative accuracy of [18F] flortaucipir positron emission tomography for Alzheimer disease vs other neurodegenerative disorders. JAMA 320, 1151–1162.
    1. Smith R, Wibom M, Pawlik D, Englund E, Hansson O (2019) Correlation of in vivo [18F] flortaucipir with postmortem Alzheimer disease tau pathology. JAMA Neurol 76, 310–317.
    1. U.S. National library of medicine. 18F-AV-1451 autopsy study. . Accessed January 8, 2020.
    1. PR Newswire. . Accessed January 8, 2020.
    1. Hampel H, Mesulam MM, Cuello AC, Farlow MR, Giacobini E, Grossberg GT, Khachaturian AS, Vergallo A, Cavedo E, Snyder PJ, Khachaturian ZS (2018) The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease. Brain 141, 1917–1933.
    1. Deardorff WJ, Feen E, Grossberg GT (2015) The use of cholinesterase inhibitors across all stages of Alzheimer’s disease. Drug Aging 32, 537–547.
    1. Olivares D, Deshpande VK, Shi Y, Lahiri DK, Greig NH, Rogers JT, Huang X (2012) N-methyl D-aspartate (NMDA) receptor antagonists and memantine treatment for Alzheimer’s disease, vascular dementia and Parkinson’s disease. Curr Alzheimer Res 9, 746–758.
    1. Kandiah N, Pai MC, Senanarong V, Looi I, Ampil E, Park KW, Karanam AK, Christopher S (2017) Rivastigmine: The advantages of dual inhibition of acetylcholinesterase and butyrylcholinesterase and its role in subcortical vascular dementia and Parkinson’s disease dementia. Clin Interv Aging 12, 697–707.
    1. Donepezil (Aricept®). . Accessed January 8, 2020.
    1. Rogers SL, Doody RS, Mohs RC, Friedhoff LT (1998) Donepezil improves cognition and global function in Alzheimer disease: A 15-week, double-blind, placebo-controlled study. Donepezil Study Group. Arch Intern Med 158, 1021–1031.
    1. Winblad B, Kilander L, Eriksson S, Minthon L, Båtsman S, Wetterholm AL, Jansson-Blixt C, Haglund A; Severe Alzheimer’s Disease Study Group (2006) Donepezil in patients with severe Alzheimer’s disease: Double-blind, parallel-group, placebo-controlled study. Lancet 367, 1057–1065.
    1. Homma A, Imai Y, Tago H, Asada T, Shigeta M, Iwamoto T, Takita M, Arimoto I, Koma H, Ohbayashi T (2008) Donepezil treatment of patients with severe Alzheimer’s disease in a Japanese population: Results from a 24-week, double-blind, placebo-controlled, randomized trial. Dement Geriatr Cogn Disord 25, 399–407.
    1. Galantamine (Razadyne ER® and Razadyne®). . Accessed January 8, 2020.
    1. Raskind MA, Peskind ER, Wessel T, Yuan W (2000) Galantamine in AD: A 6-month randomized, placebo-controlled trial with a 6-month extension. The Galantamine USA-1 study group. Neurology 54, 2261–2268.
    1. Rockwood K, Mintzer J, Truyen L, Wessel T, Wilkinson D (2001) Effects of a flexible Galantamine dose in Alzheimer’s disease: A randomised, controlled trial. J Neurol Neurosurg Psychiatry 71, 589–595.
    1. Tariot PN, Solomon PR, Morris JC, Kershaw P, Lilienfeld S, Ding C (2000) A 5-month, randomized, placebo-controlled trial of Galantamine in AD. The Galantamine USA-10 study group. Neurology 54, 2269–2276.
    1. Wilcock GK, Lilienfeld S, Gaens E (2000) Efficacy and safety of galantamine in patients with mild to moderate Alzheimer’s disease: Multicentre randomised controlled trial. Galantamine international-1 study group. BMJ 321, 1445–1449.
    1. Rivastigmine (Exelon®). . Accessed January 8, 2020.
    1. Rivastigmine patch (Exelon Patch®). . Accessed January 8, 2020.
    1. Farlow M, Anand R, Messina J Jr, Hartman R, Veach J (2000) A 52-week study of the efficacy of rivastigmine in patients with mild to moderately severe Alzheimer’s disease. Eur Neurol 44, 236–241.
    1. Winblad B, Cummings J, Andreasen N, Grossberg G, Onofrj M, Sadowsky C, Zechner S, Nagel J, Lane R (2007) A six-month double-blind, randomized, placebo-controlled study of a transdermal patch in Alzheimer’s disease-Rivastigmine patch versus capsule. Int J Geriatr Psychiatry 22, 456–467.
    1. Memantine (Namenda®). . Accessed January 8, 2020.
    1. Bakchine S, Loft H (2008) Memantine treatment in patients with mild to moderate Alzheimer’s disease: Results of a randomised, double-blind, placebo-controlled 6-month study. J Alzheimers Dis 13, 97–107.
    1. Peskind ER, Potkin SG, Pomara N, Ott BR, Graham SM, Olin JT, McDonald S (2006) Memantine treatment in mild to moderate Alzheimer disease: A 24-week randomized, controlled trial. Am J Geriatr Psychiatry 14, 704–715.
    1. Wang J, Logovinsky V, Hendrix SB, Stanworth SH, Perdomo C, Xu L, Dhadda S, Do I, Rabe M, Luthman J, Cummings J, Satlin A (2016) ADCOMS: A composite clinical outcome for prodromal Alzheimer’s disease trials. J Neurol Neurosurg Psychiatry 87, 993–999.
    1. Li DD, Zhang YH, Zhang W, Zhao P (2019) Meta-analysis of randomized controlled trials on the efficacy and safety of donepezil, galantamine, rivastigmine, and memantine for the treatment of Alzheimer’s disease. Front Neurosci 13, 472.
    1. Cummings J, Lee G, Ritter A, Zhong K (2018) Alzheimer’s disease drug development pipeline: 2018. Alzheimers Dement (N Y) 4, 195–214.
    1. Cummings J, Lee G, Ritter A, Sabbagh M, Zhong K (2019) Alzheimer’s disease drug development pipeline. Alzheimers Dement (N Y) 5, 272–293.
    1. Arndt JW, Qian F, Smith BA, Quan C, Kilambi KP, Bush MW, Walz T, Pepinsky RB, Bussière T, Hamann S, Cameron TO, Weinreb PH (2018) Structural and kinetic basis for the selectivity of Aducanumab for aggregated forms of amyloid-β. Sci Rep 8, 6412.
    1. Sevigny J, Chiao P, Bussière T, Weinreb PH, Williams L, Maier M, Dunstan R, Salloway S, Chen T, Ling Y, O’Gorman J, Qian F, Arastu M, Li M, Chollate S, Brennan MS, Quintero-Monzon O, Scannevin RH, Arnold HM, Engber T, Rhodes K, Ferrero J, Hang Y, Mikulskis A, Grimm J, Hock C, Nitsch RM, Sandrock A (2016) The antibody Aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature 537, 50–56.
    1. U.S. National library of medicine. Multiple dose study of Aducanumab (biib037) (recombinant, fully human anti-Aβ IgG1 mAb) in participants with prodromal or mild Alzheimer’s disease (PRIME). . Accessed January 8, 2020.
    1. U.S. National library of medicine. 221AD301 Phase 3 Study of Aducanumab (BIIB037) in early Alzheimer’s disease (ENGAGE). . Accessed January 8, 2020.
    1. U.S. National library of medicine. 221AD302 Phase 3 Study of Aducanumab (BIIB037) in Early Alzheimer’s Disease (EMERGE). . Accessed January 8, 2020.
    1. . Accessed January 8, 2020.
    1. Wiessner C, Wiederhold KH, Tissot AC, Frey P, Danner S, Jacobson LH, Jennings GT, Lüönd R, Ortmann R, Reichwald J, Zurini M, Mir A, Bachmann MF, Staufenbiel M (2011) The second-generation active Aβ immunotherapy CAD106 reduces amyloid accumulation in APP transgenic mice while minimizing potential side effects. J Neurosci 31, 9323–9331.
    1. Neumann U, Ufer M, Jacobson LH, Rouzade-Dominguez ML, Huledal G, Kolly C, Lüönd RM, Machauer R, Veenstra SJ, Hurth K, Rueeger H, Tintelnot-Blomley M, Staufenbiel M, Shimshek DR, Perrot L, Frieauff W, Dubost V, Schiller H, Vogg B, Beltz K, Avrameas A, Kretz S, Pezous N, Rondeau JM, Beckmann N, Hartmann A, Vormfelde S, David OJ, Galli B, Ramos R, Graf A, Lopez Lopez C (2018) The BACE-1 inhibitor CNP520 for prevention trials in Alzheimer’s disease. EMBO Mol Med 10, e9316.
    1. U.S. National Library of Medicine. A study of CAD106 and CNP520 versus placebo in participants at risk for the onset of clinical symptoms of Alzheimer’s disease (Generation S1). . Accessed January 8, 2020.
    1. U.S. National Library of Medicine. A study of CNP520 versus placebo in participants at risk for the onset of clinical symptoms of Alzheimer’s disease (Generation S2). . Accessed January 8, 2020.
    1. PR Newswire. . Accessed January 8, 2020.

Source: PubMed

3
订阅