Effect of antiresorptive and anabolic bone therapy on development of osteoarthritis in a posttraumatic rat model of OA

Cedo M Bagi, Edwin Berryman, David E Zakur, Dean Wilkie, Catharine J Andresen, Cedo M Bagi, Edwin Berryman, David E Zakur, Dean Wilkie, Catharine J Andresen

Abstract

Introduction: Osteoarthritis (OA) is a leading cause of disability, but despite the high unmet clinical need and extensive research seeking dependable therapeutic interventions, no proven disease-modifying treatment for OA is currently available. Due to the close interaction and interplay between the articular cartilage and the subchondral bone plate, it has been hypothesized that antiresorptive drugs can also reduce cartilage degradation, inhibit excessive turnover of the subchondral bone plate, prevent osteophyte formation, and/or that bone anabolic drugs might also stimulate cartilage synthesis by chondrocytes and preserve cartilage integrity. The benefit of intensive zoledronate (Zol) and parathyroid hormone (PTH) therapy for bone and cartilage metabolism was evaluated in a rat model of OA.

Methods: Medial meniscectomy (MM) was used to induce OA in male Lewis rats. Therapy with Zol and human PTH was initiated immediately after surgery. A dynamic weight-bearing (DWB) system was deployed to evaluate the weight-bearing capacity of the front and hind legs. At the end of the 10-week study, the rats were euthanized and the cartilage pathology was evaluated by contrast (Hexabrix)-enhanced μCT imaging and traditional histology. Bone tissue was evaluated at the tibial metaphysis and epiphysis, including the subchondral bone. Histological techniques and dynamic histomorphometry were used to evaluate cartilage morphology and bone mineralization.

Results: The results of this study highlight the complex changes in bone metabolism in different bone compartments influenced by local factors, including inflammation, pain and mechanical loads. Surgery caused severe and extensive deterioration of the articular cartilage at the medial tibial plateau, as evidenced by contrast-enhanced μCT and histology. The study results showed the negative impact of MM surgery on the weight-bearing capacity of the operated limb, which was not corrected by treatment. Although both Zol and PTH improved subchondral bone mass and Zol reduced serum CTX-II level, both treatments failed to prevent or correct cartilage deterioration, osteophyte formation and mechanical incapacity.

Conclusions: The various methods utilized in this study showed that aggressive treatment with Zol and PTH did not have the capacity to prevent or correct the deterioration of the hyaline cartilage, thickening of the subchondral bone plate, osteophyte formation or the mechanical incapacity of the osteoarthritic knee.

Figures

Fig. 1
Fig. 1
a and b show two-dimensional micro-computed tomography (μCT) images of the proximal tibia from sham control (Sham) (a) and medial meniscectomy vehicle-treated (MM + veh) rats (b). Red line indicated the area of cancellous bone evaluation at tibial epiphysis (e) and metaphysis (m). Arrowhead points at the osteophyte. c and d show EPIC μCT images of the same tibias depicted in (a) and (b). The red arrow indicates normal articular cartilage whereas the dotted arrow indicates osteoarthritic cartilage. e and f show larger EPIC μCT images of the articular cartilage. The length of the medial tibial plateau was measured for each sample and then divided into three zones ranging from 0.8 to 1.0 mm in length. Zone 1 (Z1) was placed on the outside of the medial edge of the joint and Zone 3 (Z3) on the inside of the tibial plateau adjacent to the central collateral ligaments. Zones are delineated by dotted lines. The red arrow indicates normal articular cartilage whereas the dotted arrow indicates osteoarthritic cartilage
Fig. 2
Fig. 2
Changes in the body weight (a) and weight-bearing activity of the front feet (b), rear left leg (c) and on the operated rear right leg (d). The weight-bearing load on the front feet in all three groups of medial meniscectomy (MM) rats was greater at the 5-week time point compared to the sham control (Sham) rats. The load on the rear right leg was diminished in all three groups of MM rats at both week 5 and week 10. *p < 0.05 relative to Sham rats
Fig. 3
Fig. 3
Two-dimensional micro-computed tomography (μCT) images of the proximal tibia from rats assign to study group 3A to 3D. Arrows indicate cancellous bone at the tibial metaphysis. Graph underneath depicts trabecular bone volume (a), trabecular number (b) and trabecular thickness (c) parameter obtained by μCT at proximal tibial metaphysis of the operated right leg. ap < 0.05 relative to sham control (Sham) rats; *p < 0.05 or **p < 0.01 relative to medial meniscectomy vehicle-treated (MM + veh) rats
Fig. 4
Fig. 4
Two-dimensional micro-computed tomography (μCT) images of the medial tibial epiphysis from rats assign to study group 4A to 4D. Pink lines indicate area of the cancellous bone assessment. Arrowheads indicate osteophytes; arrows indicate accumulation of subchondral bone. Graph underneath depicts trabecular bone volume (a), trabecular number (b) and trabecular thickness (c) parameter obtained by μCT at proximal tibial metaphysis of the operated right leg. ap < 0.05 relative to sham control (Sham) rats; *p < 0.05 relative to medial meniscectomy vehicle-treated (MM + veh) rats
Fig. 5
Fig. 5
Top row shows EPIC micro-computed tomography (μCT) images of the articular cartilage covering the medial tibial plateau from rats assign to study group 5A to 5D. Arrows indicate cartilage defects present in all three groups of operated rats. Second row depicts large cartilage defects extending over the lateral half of Zone 1 and medial half of Zone 2, as indicated by arrows in three-dimensional μCT color thickness (“heat”) map of the articular cartilage at the medial tibial plateau
Fig. 6
Fig. 6
Polarized light picture of the proximal tibial epiphysis stained with hematoxylin and eosin (H&E) from rats assign to study group 6A to 6D. All three groups of medial meniscectomy (MM) rats had thicker subchondral bone plate (sbp), particularly the rats treated with zoledronate (Zol). Additionally, the calcified cartilage layer seemed to be better preserved in the Zol-treated group. The arrowhead indicates defects of the articular cartilage, and the green arrowhead indicates osteophytes
Fig. 7
Fig. 7
The grading of osteoarthritis (OA) lesions using damage score (a), significant cartilage degeneration width (b), osteophyte size (c), cartilage thickness (d), and cartilage matrix loss width (e). **Significantly different from sham control group (Sham) at p < 0.01
Fig. 8
Fig. 8
Ultraviolet (UV) images of the medial tibial epiphysis. There is little bone formation in the epiphysis of the sham control (Sham) (a) rat and more intensive bone formation and buildup of the subchondral bone and osteophyte formation (arrow) in the epiphysis of the medial meniscectomy vehicle-treated (MM + veh) rat (b). Intensive formation of subchondral bone plate and osteophyte formation is seen in the MM + zoledronic acid (Zol)- (c) and MM + parathyroid hormone (PTH)-treated rats (d); however, more intensive labeling with both alizarin red and osteocalcin is evident in the PTH-treated rats. The arrowheads indicate osteophyte formation; e – epiphysis; m – metaphysis; gp – growth plate

References

    1. Bijlsma JW, Berenbaum F, LaFeber F. Osteoarthritis: an update with relevance for clinical practice. Lancet. 2011;377:2115–26. doi: 10.1016/S0140-6736(11)60243-2.
    1. Hootman JM, Helmick CG. Projections of US prevalence of arthritis and associated activity limitations. Arthritis Rheuma. 2006;54:226–29. doi: 10.1002/art.21562.
    1. American College of Rheumathology Subcommittee on Osteoarthritis Guidelines Recommendations for the medical management of osteoarthritis of the hip and knee: 2000 update. Arthritis Rheuma. 2000;43:1905–15. doi: 10.1002/1529-0131(200009)43:9<1905::AID-ANR1>;2-P.
    1. Imhof H, Britenseher M, Kainberger F, Rand T, Tratting S. Importance of subchondral bone to articular cartilage in health and disease. Top Magn Reson Imaging. 1999;10:180–92. doi: 10.1097/00002142-199906000-00002.
    1. Felson DT, Neogi T. Osteoarthritis: is it a disease of cartilage or of bone? Arthritis Rheum. 2004;50:341–44. doi: 10.1002/art.20051.
    1. Bailey AJ, Mensell JP, Sims TJ, Bense X. Biochemical and mechanical properties of subchondral bone in osteoarthritis. Biorheology. 2004;41:349–58.
    1. Karsdal MA, Leeming DJ, Dam EB, Henriksen K, Alexandersen P, Pastoureau P, et al. Review: Should subchondral bone be targeted when treating osteoarthritis? Osteoarthritis Cartilage. 2008;16:638–46. doi: 10.1016/j.joca.2008.01.014.
    1. Castaneda S, Roman-Blas JA, Largo R, Herrero-Beaumont G. Subchondral bone as a key target for osteoarthritis treatment. Biochem Pharmacol. 2012;83:315–23. doi: 10.1016/j.bcp.2011.09.018.
    1. Karsdal MA, Bay-Jensen AC, Lories RJ, Abramson S, Spector T, Pastoureau P, et al. The coupling of bone and cartilage turnover in osteoarthritis: opportunities for bone antiresorptives and anabolics as potential treatments? Ann Rheum Dis. 2014;73:336–48. doi: 10.1136/annrheumdis-2013-204111.
    1. Hart DJ, Mootoosamy I, Doyle DV, Spector TD. The relationship between osteoarthritis and osteoporosis in the general population: the Chingford Study. Ann Rheum Dis. 1994;53:158–62. doi: 10.1136/ard.53.3.158.
    1. Nevitt MC, Lane NE, Scott JC, Hochberg MC, Pressman AR, Genant HK, et al. Radiographic osteoarthritis of the hip and bone mineral density. The study of Osteoporotic Fractures Research Group. Arthritis Rheum. 1995;38:907–16. doi: 10.1002/art.1780380706.
    1. Dieppe P, Cushnaghan J, Young P, Kirwan J. Prediction of the progression of joint space narrowing in osteoarthritis of the knee by bone scintigraphy. Ann Rheum Dis. 1993;52:557–63. doi: 10.1136/ard.52.8.557.
    1. Muehleman C, Green J, Williams JM, Kuettner KE, Thonar EM, Sumner DR. The effect of bone remodeling inhibition by zoledronic acid in an animal model of cartilage matrix damage. Osteoarthritis Cartil. 2002;10:226–33. doi: 10.1053/joca.2001.0506.
    1. Hayami T, Pickarski M, Weslowski GA, Mclane J, Bone A, Destefano J, et al. The role of subchondral bone remodeling in osteoarthritis: reduction of cartilage degeneration and prevention of osteophyte formation by alendronate in the rat anterior cruciate ligament transection model. Arthritis Rheum. 2004;50:1193–206. doi: 10.1002/art.20124.
    1. Siebelt M, Waarsing JH, Groen HC, Muller C, Koelewijn SJ, de Blois E, et al. Inhibited osteoclastic bone resorption through alendronate treatment in rats reduces severe osteoarthritis progression. Bone. 2014;66:163–70. doi: 10.1016/j.bone.2014.06.009.
    1. Mohan G, Perilli E, Parkinson IH, Humphries JM, Fazzlari NL, Kuliwaba JS. Pre-emptive, early, and delayed alendronate treatment in a rat model of knee osteoarthritis: effect on subchondral trabecular bone microarchitecture and cartilage degradation of the tibia, bone/cartilage turnover, and joint discomfort. Osteoarthritis Cartilage. 2013;21:1595–604. doi: 10.1016/j.joca.2013.06.020.
    1. Cmar BM, Ozkoc G, Bolat F, Karaeminogullari O, Sezgin N, Tandogan RN. Intra-articular zoledronic acid in a rat osteoarthritis model: significant reduced synovitis may indicate chondroprotective effect. Knee Surg Sports Traumatol Arthrosc. 2015;23:1410–18. doi: 10.1007/s00167-014-2955-z.
    1. Yu DG, Yu B, Mao YG, Zhao X, Wang XG, Ding HF, et al. Efficacy of zoledronic acid treatment of osteoarthritis is dependent on the disease progression stage in rat medial meniscal tear model. Acta Pharmacol Sin. 2012;33:924–34. doi: 10.1038/aps.2012.28.
    1. Bingham CO, III, Buckland-Wright JC, Garnero P, Cohen SB, Dougados M, Adami S, et al. Risedronate decrease biochemical markers of cartilage degradation but does not decrease symptoms or slow radiographic progression in patients with medial compartment osteoarthritis of the knee: results of the two-year multinational knee osteoarthritis structural arthritis study. Arthritis Rheum. 2006;54:3494–507. doi: 10.1002/art.22160.
    1. Neogi T, Nevitt MC, Ensrud KE, Bauer D, Felson DT. The effect of alendronate on progression of spinal osteophytes and disc space narrowing. Ann Rheum Dis. 2008;67:1257–30.
    1. Neer RM, Arnaud CD, Zanchetta JR, Prince R, Gaich GA, Reginster JY, et al. Effect of parathyroid hormone (1-34) on fractures and bone mineral density in postmenopausal women with osteoporosis. J Eng J Med. 2001;344:1434–41. doi: 10.1056/NEJM200105103441904.
    1. Lombardi G, Di S, Rubino M, Faggiano A, Vuolo L, Guerra E, et al. The roles of parathyroid hormone in bone remodeling: prospects for novel therapeutics. J Endocrinol Invest. 2011;34:18–22.
    1. Chang JK, Chang LH, Hung SH, Wu SC, Lee HY, Lin YS, et al. Parathyroid hormone 1-34 inhibits terminal differentiation of human articular chondrocytes and osteoarthritis progression in rats. Arthritis Rheum. 2009;60:3049–60. doi: 10.1002/art.24843.
    1. Mwale F, Yao G, Ouellet JA, Petit A, Antoniou J. Effect of parathyroid hormone on type X and type II collagen expression in mesenchymal stem cells from osteoarthritic patients. Tissue Eng Part A. 2010;16:3449–55. doi: 10.1089/ten.tea.2010.0091.
    1. Sampson ER, Hilton MJ, Tian Y, Chen D, Schwarz EM, Mooney RA, et al. Teriparatide, a chondro-regenerative therapy for injury-induced osteoarthritis. Sci Transl Med. 2011;3:101ra93. doi: 10.1126/scitranslmed.3002214.
    1. Kudo S, Mizuta H, Takagi K, Hiraki Y. Cartilaginous repair of full-thickness articular cartilage defects is induced by the intermittent activation of PTH/PTHrP signaling. Osteoarthritis Cartilage. 2011;19:886–94. doi: 10.1016/j.joca.2011.04.007.
    1. Weisser J, Riemer S, Schmidl M, Suva LJ, Poschl E, Brauer R, et al. Four distinct chondrocyte populations in the fetal bovine growth plate: highest expression levels of PTH/PTHrP receptor. Indian hedgehog, and MMP-13 in hypertrophyc chondrocytes and their suppression by PTH (1-34) and PTHrP (1-40) Exp Cell Res. 2002;279:1–13. doi: 10.1006/excr.2002.5580.
    1. Strassle BW, Mark L, Leventhal L, Piesla MJ, Jian Li X, Kennedy JD, et al. Inhibition of osteoclasts prevents cartilage loss and pain in a rat model of degenerative joint disease. Osteoarthritis Cartilage. 2010;18:1319–28. doi: 10.1016/j.joca.2010.06.007.
    1. Khorasini MS, Diko S, Hsia AH, Anderson MJ, Genetos DC, Haudenschild DR, et al. Effect of alendronate on post-traumatic osteoarthritis induced by anterior cruciate ligament rupture in mice. Arthritis Res Ther. 2015;17:30. doi: 10.1186/s13075-015-0546-0.
    1. Girotra M, Rubin MR, Bilezikian JP. The use of parathyroid hormone in the treatment of osteoporosis. Rev Endocr Metab Disord. 2006;7:113–21. doi: 10.1007/s11154-006-9007-z.
    1. Englund M. The role of biomechanics in the initiation and progression of OA of the knee. Best Pract Res Clin Rheumatol. 2010;24:39–46. doi: 10.1016/j.berh.2009.08.008.
    1. Bendele AM, McComb J, Gould T, McAbee T, Sennello G, Chlipala E, et al. Animal models of arthritis: relevance to human disease. Toxicol Pathol. 1999;27:134–42. doi: 10.1177/019262339902700125.
    1. Janusz MJ, Bendele AM, Brown KK, Taiwo YO, Hsieh L, Heitmeyer SA. Induction of osteoarthritis in the rat by surgical tear of the medial meniscus: inhibition of joint damage by a matrix metalloproteinase inhibitor. Osteoarthritis Cartilage. 2002;10:785–91. doi: 10.1053/joca.2002.0823.
    1. Gregory MH, Capito N, Kuroki K, Stoker AM, Cook JL, Sherman SL. A review of translational animal models for knee osteoarthritis. Arthritis. 2012;2012:764621. doi: 10.1155/2012/764621.
    1. National Research Council . The Guide for the Care and Use of Laboratory Animals. 7. Washington, DC: National Academy Press; 1996.
    1. Bendele AM. Animal models of osteoarthritis. J Muskuloskelet Neuronal Interact. 2001;1:363–76.
    1. Bomie H, Copeland M, Geiser AG, Hale LV, Harvey A, Ma YL, et al. Development of a highly sensitive, high-throughput, mass spectrometry-based assay for rat procollagen type-I N-Terminal Propeptide (PINP) to measure bone formation activity. J Proteome Research. 2007;6:4218–29. doi: 10.1021/pr070288s.
    1. Im HJ, Kim J, Li X, Kotwal N, Sumner DR, van Wijnen AJ, et al. Alteration of sensory neurons and spinal responses to an experimental osteoarthritis pain model. Arthritis Rheum. 2010;62:2995–3005. doi: 10.1002/art.27608.
    1. Xie L, Lin ASP, Levenston ME, Guldberg RE. Quantitative assessment of articular cartilage morphology via EPIC-μCT. Osteoarthritis Cartilage. 2009;17:313–20. doi: 10.1016/j.joca.2008.07.015.
    1. Xie L, Lin ASP, Guldberg RE, Levenston ME. Nondestructive assessment of sGAG content and distribution in normal and degraded rat articular cartilage via EPIC-μCT. Osteoarthritis Cartilage. 2010;18:65–72. doi: 10.1016/j.joca.2009.07.014.
    1. Laib A, Barou O. 3D microcomputed tomography of trabecular and cortical bone architecture with application to a rat model of immobilization osteoporosis. Med Biol Eng Comp. 2000;38:326–32. doi: 10.1007/BF02347054.
    1. Hanson N, Bagi CM. Alternative approach to assessment of bone quality using micro computed tomography. Bone. 2004;35:326–33. doi: 10.1016/j.bone.2004.02.019.
    1. Palmer AW, Guldberg RE, Levenston ME. Analysis of cartilage matrix fixed charge density and three-dimensional morphology via contrast-enhanced microcomputed tomography. Proc Natl Acad Sci U S A. 2006;103:19255–60. doi: 10.1073/pnas.0606406103.
    1. Kokkonen HT, Jurvelin JS, Tiitu V, Toyras J. Detection of mechanical injury of articular cartilage using contrast enhanced computed tomography. Osteoarthritis Cartilage. 2011;19:295–301. doi: 10.1016/j.joca.2010.12.012.
    1. Gerwin N, Bendele AM, Glasson S, Carlson CS. The OARSI histopathology initiative – recommendations for histological assessments of osteoarthritis in the rat. Osteoarthritis Cartilage. 2010;18:S24–34. doi: 10.1016/j.joca.2010.05.030.
    1. Pastoureau PC, Hunziker EB, Pelletier JP. Cartilage, bone and synovial histomorphometry in animal models of osteoarthritis. Osteoarthritis Cartilage. 2010;18:S106–12. doi: 10.1016/j.joca.2010.05.024.
    1. Pritzker KPH, Aigner T. Terminology of osteoarthritis cartilage and bone histopathology – a proposal for consensus. Osteoarthritis Cartilage. 2010;18:S7–9. doi: 10.1016/j.joca.2010.05.028.
    1. Salih S, Suton P. Obesity, knee osteoarthritis and knee arthroplasty: a review. BMC Sports Sci Med Rehabil. 2013;5:25. doi: 10.1186/2052-1847-5-25.
    1. Felson DT, Lawrence RC, Dieppe PA, Hirsch R, Helmick CG, Jordan JM, et al. Osteoarthritis: new insights. Part 1: the disease and its risk factors. Ann Inter Med. 2000;133:635–46. doi: 10.7326/0003-4819-133-8-200010170-00016.
    1. Biewner AA. Biomechanics of mammalian terrestrial locomotion. Science. 1990;250:1097–103. doi: 10.1126/science.2251499.
    1. Carter DR, Wong M, Orr TE. Musculoskeletal ontogeny, phylogeny, and functional adaptation. J Biomech. 1991;24:3–16. doi: 10.1016/0021-9290(91)90373-U.
    1. Frost HM. Skeletal structural adaptation to mechanical usage (SATMU): 1. Redefining Wolfff’s law: the bone modeling problem. Anat Rec. 1990;226:403–13. doi: 10.1002/ar.1092260402.
    1. Jee WSS, Li XJ, Ke HZ. The skeletal adaptation to mechanical usage in the rat. Cells Materials. 1991;1:131–42.
    1. Bagi CM, Miller SC. Comparison of osteopenic changes in cancellous bone induced by ovariectomy and/or immobilization in adult rats. Anat Record. 1994;239:243–54. doi: 10.1002/ar.1092390303.
    1. Dietz V, Michel J. Human bipeds use quadrupedal coordination during locomotion. Ann NY Acad Sci. 2009;1164:97–103. doi: 10.1111/j.1749-6632.2008.03710.x.
    1. Green JR, Rogers MJ. Pharmacologic profile of zoledronic acid: a highly potent inhibitor of bone resorption. Drug Dev Res. 2002;55:210–24. doi: 10.1002/ddr.10071.
    1. Rhee Y, Allen MR, Condon K, Lezcano V, Ronda AC, Galli C, et al. PTH receptor signaling in osteocytes governs periosteal bone formation and intracortical remodeling. J Bone Miner Res. 2011;26:1035–46. doi: 10.1002/jbmr.304.
    1. Kraus VB, Burnett B, Coindreau J, Cottrell S, Eyre D, Godreau M. Application of biomarkers in the development of drugs intended for the treatment of osteoarthritis. Osteoarthritis Cartilage. 2011;19:515–42. doi: 10.1016/j.joca.2010.08.019.
    1. Kumm J, Tamm A, Lintrop M, Tamm A. Diagnostic and prognostic value of bone biomarkers in progressive knee osteoarthritis: a 6-year follow-up study in middle-aged subjects. Osteoarthritis Cartilage. 2013;21:815–22. doi: 10.1016/j.joca.2013.03.008.
    1. Williams FM. Biomarkers: in combination they may do better. Arthritis Res Ther. 2009;11:130. doi: 10.1186/ar2839.
    1. Wheater G, Elshahaly M, Tuck SP, Datta HK, van Laar J. The clinical utility of bone marker measurements in osteoporosis. J Trans Med. 2013;11:201. doi: 10.1186/1479-5876-11-201.
    1. Panahifar A, Maksymovwych WP, Doschak MR. Potential mechanism of alendronate inhibition of osteophyte formation in the rat model of post-traumatic osteoarthritis: evaluation of elemental strontium as a molecular tracer of bone formation. Osteoarthritis Cartilage. 2012;20:694–702. doi: 10.1016/j.joca.2012.03.021.
    1. Zhang I, Hu H, Tian F, Song H, Zhang Y. Enhancement of subchondral bone quality by alendronate administration for the reduction of cartilage degradation in the early phase of experimental osteoarthritis. Clin Exp Med. 2011;11:235–43. doi: 10.1007/s10238-011-0131-z.
    1. Shirai T, Kobayashi M, Nishitani K, Satke T, Kuroki H, Nakagawa Y, et al. Chondroprotective effect of alendronate in rabbit model of osteoarthritis. J Orthop Res. 2011;29:1572–7. doi: 10.1002/jor.21394.
    1. Podworny NV, Kandel RA, Renlund RC, Grynpas MD. Partial chondroprotective effect of zoledronate in a rabbit model of inflammatory arthritis. J Rheumatol. 1999;26:1972–82.
    1. Garner P, Aronstein WS, Cohen SB, Conaghan PG, Cline GA, Christiansen C, et al. Relationship between biochemical markers of bone and cartilage degradation with radiological progression in patients with knee osteoarthritis receiving risedronate: the Knee Osteoarthritis Structural Arthritis randomized clinical trial. Osteoarthritis Cartilage. 2008;16:660–66. doi: 10.1016/j.joca.2007.10.002.
    1. van Spil WE, Drossaers-Bakker KW, Lafeber FP. Associations of CTX-II with biochemical markers of bone turnover raise questions on its tissue origin: data from CHECK, a cohort study of early osteoarthritis. Ann Rheum Dis. 2013;72:29–36. doi: 10.1136/annrheumdis-2011-201177.
    1. Catterall J, Dewitt Parr S, Fagerlund K, Caterson B. CTX-II is a marker of cartilage degradation but not of bone turnover. Osteoarthritis Cartilage Suppl [21], s77. 1-4-2013 BC. Ref Type: Abstract.
    1. Jee WS, Ma Y. Overview: animal models of osteopenia and osteoporosis. J Musculoskelet Neuronal Interact. 2001;1:193–207.
    1. Bagi CM, Berryman E, Moalli MR. Comparative bone anatomy of commonly used laboratory animals: implications for drug discovery. Comp Med. 2011;61:1–10.
    1. Roman-Blas JA, Herrero-Beaumont G. Targeting subchondral bone in osteoporotic osteoarthritis. Arthritis Res Therapy. 2014;16:494.
    1. Noble A, Pedersen CM, Bentzen SM, Jorgensen J, Hvid I. Studies of tibial subchondral bone density and its significance. J Bone Joint Surg Am. 1985;67:295–302.
    1. Muller-Gerbl M, Putz R, Hodapp N, Schulte E, Wimmer B. Computed tomography-osteoabsorbtiometry for assessing the density distribution of subchondral bone as a measure of long-term mechanical adaptation in individual joints. Skeletal Radiol. 1989;18:507–12. doi: 10.1007/BF00351749.
    1. Muller-Gerbl M, Dalstra M, Ding M, Linsenmeier U, Putz R, Hvid I. Distribution of strength and mineralization in the subchondral bone plate of human tibial heads. J Biomech. 1998;31:123. doi: 10.1016/S0021-9290(98)80249-2.
    1. Layton MW, Goldstein SA, Goulet RW, Feldkamp LA, Kubinski DJ, Bole GG. Examination of subchondral bone architecture in experimental osteoarthritis by microscopic compound axial tomography. Arthritis Rheum. 1988;31:1400–05. doi: 10.1002/art.1780311109.
    1. Shepherd DE, Seedhom BB. Thickness of human articular cartilage in joints of lower limb. Ann Rheum Dis. 1999;58:27–34. doi: 10.1136/ard.58.1.27.
    1. Bhosale AM, Richardson JB. Articular cartilage: structure, injuries and review of management. Br Med Bull. 2008;87:77–95. doi: 10.1093/bmb/ldn025.
    1. Bonde HV, Talman ML, Kofoed H. The area of the tidemark in osteoarthritis – a three-dimensional stereological study in 21 patients. APMIS. 2005;113:349–52. doi: 10.1111/j.1600-0463.2005.apm_113506.x.
    1. Hulth A. Does osteoarthritis depend on growth of the mineralized layer of cartilage? Clin Orthop Rel Res. 1993;287:19–24.
    1. Arkill KP, Winlove CP. Solute transport in the deep and calcified zones of articular cartilage. Osteorthr Cartil. 2008;16:708–14. doi: 10.1016/j.joca.2007.10.001.
    1. Lyons TJ, Stoddart RW, McClure SF, McClure J. The tidemark of the chondro-osseous junction of the normal human joint. J Mol Histol. 2005;36:207–15. doi: 10.1007/s10735-005-3283-x.
    1. Lyons TJ, McClure SF, Stoddart RW, McClure J. The normal human chondro-osseous junctional region: evidence for contact of undecalcified cartilage with subchondral bone and marrow spaces. BMC Musculoskelet Disord. 2006;7:52. doi: 10.1186/1471-2474-7-52.
    1. Buckland-Wright JC, Messent EA, Bingham CO, III, Ward RJ, Tonkin C. A 2 yr longitudinal radiographic study examining the effect of a bisphosphonate (risedronate) upon subchondral bone loss in osteoarthritic knee patients. Rheumatology (Oxford) 2007;46:257–64. doi: 10.1093/rheumatology/kel213.

Source: PubMed

3
订阅