Estimated Maximal Safe Dosages of Tumescent Lidocaine

Jeffrey A Klein, Daniel R Jeske, Jeffrey A Klein, Daniel R Jeske

Abstract

Background: Tumescent lidocaine anesthesia consists of subcutaneous injection of relatively large volumes (up to 4 L or more) of dilute lidocaine (≤1 g/L) and epinephrine (≤1 mg/L). Although tumescent lidocaine anesthesia is used for an increasing variety of surgical procedures, the maximum safe dosage is unknown. Our primary aim in this study was to measure serum lidocaine concentrations after subcutaneous administration of tumescent lidocaine with and without liposuction. Our hypotheses were that even with large doses (i.e., >30 mg/kg), serum lidocaine concentrations would be below levels associated with mild toxicity and that the concentration-time profile would be lower after liposuction than without liposuction.

Methods: Volunteers participated in 1 to 2 infiltration studies without liposuction and then one study with tumescent liposuction totally by local anesthesia. Serum lidocaine concentrations were measured at 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, and 24 hours after each tumescent lidocaine infiltration. Area under the curve (AUC∞) of the serum lidocaine concentration-time profiles and peak serum lidocaine concentrations (Cmax) were determined with and without liposuction. For any given milligram per kilogram dosage, the probability that Cmax >6 μg/mL, the threshold for mild lidocaine toxicity was estimated using tolerance interval analysis.

Results: In 41 tumescent infiltration procedures among 14 volunteer subjects, tumescent lidocaine dosages ranged from 19.2 to 52 mg/kg. Measured serum lidocaine concentrations were all <6 μg/mL over the 24-hour study period. AUC∞s with liposuction were significantly less than those without liposuction (P = 0.001). The estimated risk of lidocaine toxicity without liposuction at a dose of 28 mg/kg and with liposuction at a dose of 45 mg/kg was ≤1 per 2000.

Conclusions: Preliminary estimates for maximum safe dosages of tumescent lidocaine are 28 mg/kg without liposuction and 45 mg/kg with liposuction. As a result of delayed systemic absorption, these dosages yield serum lidocaine concentrations below levels associated with mild toxicity and are a nonsignificant risk of harm to patients.

Conflict of interest statement

Conflict of Interest: See Disclosures at the end of the article.

Figures

Figure 1.
Figure 1.
Serum lidocaine concentrations over time for each of the 14 subjects after subcutaneous infiltration of tumescent lidocaine anesthesia. Subject number and anatomic area of infiltration are presented on the top of each plot. The figure legend presents whether or not liposuction was done after tumescent infiltration indicated by “No Lipo” and “Lipo,” respectively, and the tumescent lidocaine dosage (mg/kg).
Figure 2.
Figure 2.
Comparison of serum lidocaine concentrations at sequential times over 24 h following 45 mg/kg tumescent lidocaine, without liposuction (closed circles) and with liposuction (open circles). The AUC∞ of the mean concentrations (solid line) at each time point without liposuction (56.2 μg·h/mL) is 28% greater than the AUC∞ of the mean concentrations (dashed line) with liposuction (40.7 μg·h/mL).
Figure 3.
Figure 3.
Scatter plot of tumescent lidocaine dosage versus peak serum lidocaine concentrations (Cmax) without liposuction. The solid line represents the line of regression with a coefficient of determination (R2) of 0.85.
Figure 4.
Figure 4.
Scatter plot of tumescent lidocaine dosage versus peak serum lidocaine concentrations (Cmax) with liposuction. The solid line represents the line of regression with a coefficient of determination (R2) of 0.35.
Figure 5.
Figure 5.
“Safety Label” applied to a bag tumescent lidocaine solution. The label overhangs the port for the IV tubing spike. A “Safety Label” is a visual reminder that the bag contains tumescent lidocaine for subcutaneous delivery and is not for IV delivery.

References

    1. Klein JA. The tumescent technique for liposuction surgery. J Am Acad Cosmetic Surg. 1987;4:263–7.
    1. Klein JA. Tumescent technique for local anesthesia improves safety in large-volume liposuction. Plast Reconstr Surg. 1993;92:1085–98.
    1. Shimizu Y, Nagasao T, Taneda H, Sakamoto Y, Asou T, Imanishi N, Kishi K. Combined usage of intercostal nerve block and tumescent anaesthesia: an effective anaesthesia technique for breast augmentation. J Plast Surg Hand Surg. 2014;48:51–5.
    1. Sleth JC, Servais R, Saizy C. [Tumescent infiltrative anaesthesia for mastectomy: about six cases]. Ann Fr Anesth Reanim. 2008;27:941–4.
    1. Orgill DP. Excision and skin grafting of thermal burns. N Engl J Med. 2009;360:893–901.
    1. Bussolin L, Busoni P, Giorgi L, Crescioli M, Messeri A. Tumescent local anesthesia for the surgical treatment of burns and postburn sequelae in pediatric patients. Anesthesiology. 2003;99:1371–5.
    1. Gümüş N. Tumescent infiltration of lidocaine and adrenaline for burn surgery. Ann Burns Fire Disasters. 2011;24:144–8.
    1. Blome-Eberwein S, Abboud M, Lozano DD, Sharma R, Eid S, Gogal C. Effect of subcutaneous epinephrine/saline/local anesthetic versus saline-only injection on split-thickness skin graft donor site perfusion, healing, and pain. J Burn Care Res. 2013;34:e80–6.
    1. Cohn MS, Seiger E, Goldman S. Ambulatory phlebectomy using the tumescent technique for local anesthesia. Dermatol Surg. 1995;21:315–8.
    1. Vuylsteke ME, Mordon SR. Endovenous laser ablation: a review of mechanisms of action. Ann Vasc Surg. 2012;26:424–33.
    1. Barkmeier LD, Hood DB, Sumner DS, Mansour MA, Hodgson KJ, Mattos MA, Ramsey D. Local anesthesia for infrainguinal arterial reconstruction. Am J Surg. 1997;174:202–4.
    1. Bush RG, Hammond KA. Tumescent anesthetic technique for long saphenous stripping. J Am Coll Surg. 1999;189:626–8.
    1. Haines WY, Deets R, Lu N, Matsuura JH. Tumescent anesthesia reduces pain associated with balloon angioplasty of hemodialysis fistulas. J Vasc Surg. 2012;56:1453–6.
    1. Behroozan DS, Goldberg LH. Dermal tumescent local anesthesia in cutaneous surgery. J Am Acad Dermatol. 2005;53:828–30.
    1. Girard C, Debu A, Bessis D, Blatière V, Dereure O, Guillot B. Treatment of Gorlin syndrome (nevoid basal cell carcinoma syndrome) with methylaminolevulinate photodynamic therapy in seven patients, including two children: interest of tumescent anesthesia for pain control in children. J Eur Acad Dermatol Venereol. 2013;27:e171–5.
    1. Kendler M, Micheluzzi M, Wetzig T, Simon JC. Electrochemotherapy under tumescent local anesthesia for treatment of cutaneous metastases. Dermatolog Surg. 2013;39:1023–32.
    1. Stoffels I, Dissemond J, Schulz A, Hillen U, Schadendorf D, Klode J. Reliability and cost-effectiveness of complete lymph node dissection under tumescent local anaesthesia vs. general anaesthesia: a retrospective analysis in patients with malignant melanoma AJCC stage III. J Eur Acad Dermatol Venereol. 2012;26:200–6.
    1. Ramon Y, Barak Y, Ullmann Y, Hoffer E, Yarhi D, Bentur Y. Pharmacokinetics of high-dose diluted lidocaine in local anesthesia for facelift procedures. Ther Drug Monit. 2007;29:644–7.
    1. Abramson DL. Tumescent abdominoplasty: an ambulatory office procedure. Aesthetic Plast Surg. 1998;22:404–7.
    1. Narita M, Sakano S, Okamoto S, Uemoto S, Yamamoto M. Tumescent local anesthesia in inguinal herniorrhaphy with a PROLENE hernia system: original technique and results. Am J Surg. 2009;198:e27–31.
    1. Kayaalp C, Olmez A, Aydin C, Piskin T. Tumescent local anesthesia for excision and flap procedures in treatment of pilonidal disease. Dis Colon Rectum. 2009;52:1780–3.
    1. Locke M, Windsor J, Dunbar PR. Human adipose-derived stem cells: isolation, characterization and applications in surgery. ANZ J Surg. 2009;79:235–44.
    1. Prasetyono TO. Tourniquet-Free Hand Surgery Using the One-per-Mil Tumescent Technique. Arch Plast Surg. 2013;40:129–33.
    1. Mizukami T, Hamamoto M. Tumescent local anesthesia for a revascularization of a coronary subclavian steal syndrome. Ann Thorac Cardiovasc Surg. 2007;13:352–4.
    1. Carlson GW. Total mastectomy under local anesthesia: the tumescent technique. Breast J. 2005;11:100–2.
    1. Rosenberg PH, Veering BT, Urmey WF. Maximum recommended doses of local anesthetics: a multifactorial concept. Reg Anesth Pain Med. 2004;29:564–75.
    1. Scott DB. “Maximum recommended doses” of local anaesthetic drugs. Br J Anaesth. 1989;63:373–4.
    1. Coldiron B, Coleman III WP, Cox SE, Jacob C, Lawrence N, Kaminer M, Narins RS. ASDS guidelines of care for tumescent liposuction. Dermatol Surg. 206;32:709–16.
    1. McKay W, Morris R, Mushlin P. Sodium bicarbonate attenuates pain on skin infiltration with lidocaine, with or without epinephrine. Anesth Analg. 1987;66:572–4.
    1. Gianelly R, von der Groeben JO, Spivack AP, Harrison DC. Effect of lidocaine on ventricular arrhythmias in patients with coronary heart disease. N Engl J Med. 1967;277:1215–9.
    1. Scott DB. Evaluation of the toxicity of local anaesthetic agents in man. Br J Anaesth. 1975;47:56–61.
    1. Rosaeg OP, Bell M, Cicutti NJ, Dennehy KC, Lui AC, Krepski B. Pre-incision infiltration with lidocaine reduces pain and opioid consumption after reduction mammoplasty. Reg Anesth Pain Med. 1998;23:575–9.
    1. Garutti I, Rancan L, Simón C, Cusati G, Sanchez-Pedrosa G, Moraga F, Olmedilla L, Lopez-Gil MT, Vara E. Intravenous lidocaine decreases tumor necrosis factor alpha expression both locally and systemically in pigs undergoing lung resection surgery. Anesth Analg. 2014;119:815–28.
    1. De Oliveira GS, Jr, Fitzgerald P, Streicher LF, Marcus RJ, McCarthy RJ. Systemic lidocaine to improve postoperative quality of recovery after ambulatory laparoscopic surgery. Anesth Analg. 2012;115:262–7.
    1. Yon JH, Choi GJ, Kang H, Park JM, Yang HS. Intraoperative systemic lidocaine for pre-emptive analgesics in subtotal gastrectomy: a prospective, randomized, double-blind, placebo-controlled study. Can J Surg. 2014;57:175–82.
    1. Kim KT, Cho DC, Sung JK, Kim YB, Kang H, Song KS, Choi GJ. Intraoperative systemic infusion of lidocaine reduces postoperative pain after lumbar surgery: a double-blinded, randomized, placebo-controlled clinical trial. Spine J. 2014;14:1559–66.
    1. Grigoras A, Lee P, Sattar F, Shorten G. Perioperative intravenous lidocaine decreases the incidence of persistent pain after breast surgery. Clin J Pain. 2012;28:567–72.
    1. Hill J, Roussin A, Lelorier J, Caille G. High-pressure liquid chromatographic determination of lidocaine and its active deethylated metabolites. J Pharm Sci. 1980;69:1341–3.
    1. Krishnamoorthy K, Mathew T. Statistical Tolerance Regions. Hoboken, NJ: John Wiley & Sons, Inc.; 2009.
    1. Hahn G, Meeker WQ. Statistical Intervals: A Guide for Practitioners. John Wiley & Sons, Inc; 1991.
    1. Myhre J, Jeske DR, Rennie M, Bi Y. Tolerance intervals in a heteroscedastic linear regression context with applications to Aerospace equipment surveillance. International J Quality Statistics Reliability. 2009;2009:Article ID 126283, 8 pages.
    1. Piegeler T, Votta-Velis EG, Liu G, Place AT, Schwartz DE, Beck-Schimmer B, Minshall RD, Borgeat A. Antimetastatic potential of amide-linked local anesthetics: inhibition of lung adenocarcinoma cell migration and inflammatory Src signaling independent of sodium channel blockade. Anesthesiology. 2012;117:548–59.
    1. McKay A, Gottschalk A, Ploppa A, Durieux ME, Groves DS. Systemic lidocaine decreased the perioperative opioid analgesic requirements but failed to reduce discharge time after ambulatory surgery. Anesth Analg. 2009;109:1805–8.
    1. de Klaver MJ, Buckingham MG, Rich GF. Lidocaine attenuates cytokine-induced cell injury in endothelial and vascular smooth muscle cells. Anesth Analg. 2003;97:465–70.
    1. McCarthy GC, Megalla SA, Habib AS. Impact of intravenous lidocaine infusion on postoperative analgesia and recovery from surgery: a systematic review of randomized controlled trials. Drugs. 2010;70:1149–63.
    1. Wang HL, Zhang WH, Lei WF, Zhou CQ, Ye T. The inhibitory effect of lidocaine on the release of high mobility group box 1 in lipopolysaccharide-stimulated macrophages. Anesth Analg. 2011;112:839–44.
    1. Kaczmarek DJ, Herzog C, Larmann J, Gillmann HJ, Hildebrand R, Schmitz M, Westermann A, Harendza T, Werdehausen R, Osthaus AW, Echtermeyer F, Hahnenkamp K, Wollert KC, Theilmeier G. Lidocaine protects from myocardial damage due to ischemia and reperfusion in mice by its antiapoptotic effects. Anesthesiology. 2009;110:1041–9.
    1. Ostad A, Kageyama N, Moy RL. Tumescent anesthesia with a lidocaine dose of 55 mg/kg is safe for liposuction. Dermatol Surg. 1996;22:921–7.
    1. Habbema L. Safety of liposuction using exclusively tumescent local anesthesia in 3,240 consecutive cases. Dermatol Surg. 2009;35:1728–35.
    1. Coldiron BM, Healy C, Bene NI. Office surgery incidents: what seven years of Florida data show us. Dermatol Surg. 2008;34:285–91.
    1. Grazer FM, de Jong RH. Fatal outcomes from liposuction: census survey of cosmetic surgeons. Plast Reconstr Surg. 2000;105:436–46.
    1. Lehnhardt M, Homann HH, Daigeler A, Hauser J, Palka P, Steinau HU. Major and lethal complications of liposuction: a review of 72 cases in Germany between 1998 and 2002. Plast Reconstr Surg. 2008;121:396e–403e.
    1. Moisés EC, Duarte Lde B, Cavalli Rde C, Marques MP, Lanchote VL, Duarte G, da Cunha SP. Pharmacokinetics of lidocaine and its metabolite in peridural anesthesia administered to pregnant women with gestational diabetes mellitus. Eur J Clin Pharmacol. 2008;64:1189–96.
    1. Olkkola KT, Isohanni MH, Hamunen K, Neuvonen PJ. The effect of erythromycin and fluvoxamine on the pharmacokinetics of intravenous lidocaine. Anesth Analg. 2005;100:1352–6.
    1. Yang LQ, Yu WF, Cao YF, Gong B, Chang Q, Yang GS. Potential inhibition of cytochrome P450 3A4 by propofol in human primary hepatocytes. World J Gastroenterol. 2003;9:1959–62.
    1. Copeland SE, Ladd LA, Gu XQ, Mather LE. The effects of general anesthesia on whole body and regional pharmacokinetics of local anesthetics at toxic doses. Anesth Analg. 2008;106:1440–9.
    1. Managing risk during transition to new ISO tubing connector standards. Sentinel Event Alert. The Joint Commission. . Accessed January 14, 2016.
    1. Klein JA, Kassarjdian N. Lidocaine toxicity with tumescent liposuction. A case report of probable drug interactions. Dermatol Surg. 1997;23:1169–74.
    1. Martínez MA, Ballesteros S, Segura LJ, García M. Reporting a fatality during tumescent liposuction. Forensic Sci Int. 2008;178:e11–6.
    1. Rao RB, Ely SF, Hoffman RS. Deaths related to liposuction. N Engl J Med. 1999;340:1471–5.

Source: PubMed

3
订阅