Effectiveness and Safety of a Probiotic-Mixture for the Treatment of Infantile Colic: A Double-Blind, Randomized, Placebo-Controlled Clinical Trial with Fecal Real-Time PCR and NMR-Based Metabolomics Analysis

Maria Elisabetta Baldassarre, Antonio Di Mauro, Silvio Tafuri, Valentina Rizzo, Maria Serena Gallone, Paola Mastromarino, Daniela Capobianco, Luca Laghi, Chenglin Zhu, Manuela Capozza, Nicola Laforgia, Maria Elisabetta Baldassarre, Antonio Di Mauro, Silvio Tafuri, Valentina Rizzo, Maria Serena Gallone, Paola Mastromarino, Daniela Capobianco, Luca Laghi, Chenglin Zhu, Manuela Capozza, Nicola Laforgia

Abstract

Introduction: To investigate the effectiveness and the safety of a probiotic-mixture (Vivomixx®, Visbiome®, DeSimone Formulation®; Danisco-DuPont, Madison, WI, USA) for the treatment of infantile colic in breastfed infants, compared with a placebo.

Methods: A randomized, double-blind, placebo-controlled trial was conducted in exclusively breastfed infants with colic, randomly assigned to receive a probiotic-mixture or a placebo for 21 days. A structured diary of gastrointestinal events of the infants was given to the parents to complete. Samples of feces were also collected to evaluate microbial content and metabolome using fecal real-time polymerase chain reaction (qPCR) and Nuclear magnetic resonance (NMR)-based analysis. Study registered at ClinicalTrials.gov (NCT01869426).

Results: Fifty-three exclusively-breastfed infants completed three weeks of treatment with a probiotic-mixture (n = 27) or a placebo (n = 26). Infants receiving the probiotic-mixture had less minutes of crying per day throughout the study by the end of treatment period (68.4 min/day vs. 98.7 min/day; p = 0.001). A higher rate of infants from the probiotic-mixture group responded to treatment (defined by reduction of crying times of ≥50% from baseline), on day 14, 12 vs. 5 (p = 0.04) and on day 21, 26 vs. 17 (p = 0.001). A higher quality of life, assessed by a 10-cm visual analogue scale, was reported by parents of the probiotic-mixture group on day 14, 7.1 ± 1.2 vs. 7.7 ± 0.9 (p = 0.02); and on day 21, 6.7 ± 1.6 vs. 5.9 ± 1.0 (p = 0.001). No differences between groups were found regarding anthropometric data, bowel movements, stool consistency or microbiota composition. Probiotics were found to affect the fecal molecular profile. No adverse events were reported.

Conclusions: Administration of a probiotic-mixture appears safe and reduces inconsolable crying in exclusively breastfed infants.

Keywords: infantile colic; metabolomics; microbiota; probiotics.

Conflict of interest statement

The authors have no conflicts of interest relevant to this article to disclose.

Figures

Figure 1
Figure 1
Study flow.
Figure 2
Figure 2
Lactobacilli concentration in feces of placebo (pbo)- and probiotics (prob)-supplemented infants.
Figure 3
Figure 3
rPCA model built on the space, constituted by the concentration of the molecules listed in Table 4. In the scoreplot (A), samples from people treated with the placebo and the probiotics are represented with squares and circles respectively. The wide, empty circles represent the median of the samples at the various time-points. Samples at T0 from the two groups are superimposed. In the barplot (B), describing the correlation between the concentration of each molecule and its importance over PC 2, gray bars highlight statistically significant correlations (p < 0.05).

References

    1. Lucassen P.L., Assendelft W.J., van Eijk J.T., Gubbels J.W., Douwes A.C., van Geldrop W.J. Systematic review of the occurrence of infantile colic in the community. Arch. Dis. Child. 2001;84:398–403. doi: 10.1136/adc.84.5.398.
    1. Pace C.A. Infantile Colic: What to Know for the Primary Care Setting. Clin. Pediatr. (Phila.) 2017;56:616–618. doi: 10.1177/0009922816664062.
    1. Hyman P.E., Milla P.J., Benninga M.A., Davidson G.P., Fleisher D.F., Taminiau J. Childhood functional gastrointestinal disorders: Neonate/toddler. Gastroenterology. 2006;130:1519–1526. doi: 10.1053/j.gastro.2005.11.065.
    1. Halpern R., Coelho R. Excessive crying in infants. J. Pediatr. (Rio J.) 2016;92:S40–S45. doi: 10.1016/j.jped.2016.01.004.
    1. Camilleri M., Park S.-Y., Scarpato E., Staiano A. Exploring hypotheses and rationale for causes of infantile colic. Neurogastroenterol. Motil. 2017;29:e12943. doi: 10.1111/nmo.12943.
    1. Indrio F., Di Mauro A., Di Mauro A., Riezzo G., Panza R., Cavallo L., Francavilla R. Prevention of functional gastrointestinal disorders in neonates: Clinical and socioeconomic impact. Benef. Microbes. 2015;6:195–198. doi: 10.3920/BM2014.0078.
    1. Savino F., Ceratto S., De Marco A., Cordero di Montezemolo L. Looking for new treatments of Infantile Colic. Ital. J. Pediatr. 2014;40:53. doi: 10.1186/1824-7288-40-53.
    1. Barnes D., Yeh A.M. Bugs and Guts: Practical Applications of Probiotics for Gastrointestinal Disorders in Children. Nutr. Clin. Pract. 2015;30:747–759. doi: 10.1177/0884533615610081.
    1. Cardile S., Alterio T., Arrigo T., Salpietro C. Role of prebiotics and probiotics in pediatric diseases. Minerva Pediatr. 2016;68:487–497.
    1. Xu M., Wang J., Wang N., Sun F., Wang L., Liu X.-H. The Efficacy and Safety of the Probiotic Bacterium Lactobacillus reuteri DSM 17938 for Infantile Colic: A Meta-Analysis of Randomized Controlled Trials. PLoS ONE. 2015;10:e0141445. doi: 10.1371/journal.pone.0141445.
    1. Sung V., D’Amico F., Cabana M.D., Chau K., Koren G., Savino F., Szajewska H., Deshpande G., Dupont C., Indrio F., et al. Lactobacillus reuteri to Treat Infant Colic: A Meta-analysis. Pediatrics. 2018;141:e20171811. doi: 10.1542/peds.2017-1811.
    1. Schreck Bird A., Gregory P.J., Jalloh M.A., Risoldi Cochrane Z., Hein D.J. Probiotics for the Treatment of Infantile Colic: A Systematic Review. J. Pharm. Pract. 2017;30:366–374. doi: 10.1177/0897190016634516.
    1. Szajewska H., Dryl R. Probiotics for the Management of Infantile Colic. J. Pediatr. Gastroenterol. Nutr. 2016;63(Suppl. 1):S22–S24. doi: 10.1097/01.mpg.0000489617.90064.4d.
    1. Guandalini S., Magazzù G., Chiaro A., La Balestra V., Di Nardo G., Gopalan S., Sibal A., Romano C., Canani R.B., Lionetti P., et al. VSL#3 Improves Symptoms in Children With Irritable Bowel Syndrome: A Multicenter, Randomized, Placebo-Controlled, Double-Blind, Crossover Study. J. Pediatr. Gastroenterol. Nutr. 2010;51:24–30. doi: 10.1097/MPG.0b013e3181ca4d95.
    1. Baldassarre M.E., Di Mauro A., Mastromarino P., Fanelli M., Martinelli D., Urbano F., Capobianco D., Laforgia N. Administration of a Multi-Strain Probiotic Product to Women in the Perinatal Period Differentially Affects the Breast Milk Cytokine Profile and May Have Beneficial Effects on Neonatal Gastrointestinal Functional Symptoms. A Randomized Clinical Trial. Nutrients. 2016;8:677. doi: 10.3390/nu8110677.
    1. Wessel M.A., Cobb J.C., Jackson E.B., Harris G.S., Detwiler A.C. Paroxysmal fussing in infancy, sometimes called colic. Pediatrics. 1954;14:421–435.
    1. Lust K.D., Brown J.E., Thomas W. Maternal intake of cruciferous vegetables and other foods and colic symptoms in exclusively breast-fed infants. J. Am. Diet. Assoc. 1996;96:46–48. doi: 10.1016/S0002-8223(96)00013-2.
    1. Lane M.M., Czyzewski D.I., Chumpitazi B.P., Shulman R.J. Reliability and validity of a modified Bristol Stool Form Scale for children. J. Pediatr. 2011;159:437–441. doi: 10.1016/j.jpeds.2011.03.002.
    1. Szajewska H., Gyrczuk E., Horvath A. Lactobacillus reuteri DSM 17938 for the Management of Infantile Colic in Breastfed Infants: A Randomized, Double-Blind, Placebo-Controlled Trial. J. Pediatr. 2013;162:257–262. doi: 10.1016/j.jpeds.2012.08.004.
    1. Mastromarino P., Capobianco D., Miccheli A., Praticò G., Campagna G., Laforgia N., Capursi T., Baldassarre M.E. Administration of a multistrain probiotic product (VSL#3) to women in the perinatal period differentially affects breast milk beneficial microbiota in relation to mode of delivery. Pharmacol. Res. 2015;95:63–70. doi: 10.1016/j.phrs.2015.03.013.
    1. Ventrella D., Laghi L., Barone F., Elmi A., Romagnoli N., Bacci M.L. Age-Related 1H NMR Characterization of Cerebrospinal Fluid in Newborn and Young Healthy Piglets. PLoS ONE. 2016;11:e0157623. doi: 10.1371/journal.pone.0157623.
    1. Simmler C., Napolitano J.G., McAlpine J.B., Chen S.-N., Pauli G.F. Universal quantitative NMR analysis of complex natural samples. Curr. Opin. Biotechnol. 2014;25:51–59. doi: 10.1016/j.copbio.2013.08.004.
    1. Kneen M.A., Annegarn H.J. Algorithm for fitting xRF, SeM and PIxe x-ray spectra backgrounds. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 1996;109:209–213. doi: 10.1016/0168-583X(95)00908-6.
    1. Liland K.H., Almøy T., Mevik B.-H. Optimal choice of baseline correction for multivariate calibration of spectra. Appl. Spectrosc. 2010;64:1007–1016. doi: 10.1366/000370210792434350.
    1. Barbara G., Scaioli E., Barbaro M.R., Biagi E., Laghi L., Cremon C., Marasco G., Colecchia A., Picone G., Salfi N., et al. Gut microbiota, metabolome and immune signatures in patients with uncomplicated diverticular disease. Gut. 2017;66:1252–1261. doi: 10.1136/gutjnl-2016-312377.
    1. Dieterle F., Ross A., Schlotterbeck G., Senn H. Probabilistic quotient normalization as robust method to account for dilution of complex biological mixtures. Application in 1H NMR metabonomics. Anal. Chem. 2006;78:4281–4290. doi: 10.1021/ac051632c.
    1. Wishart D.S., Tzur D., Knox C., Eisner R., Guo A.C., Young N., Cheng D., Jewell K., Arndt D., Sawhney S., et al. HMDB: The Human Metabolome Database. Nucleic Acids Res. 2007;35:D521–D526. doi: 10.1093/nar/gkl923.
    1. Hubert M., Rousseeuw P.J., Branden K.V. ROBPCA: A new approach to robust principal components analysis. Technometrics. 2005;47:64–79. doi: 10.1198/004017004000000563.
    1. Ndagijimana M., Laghi L., Vitali B., Placucci G., Brigidi P., Guerzoni M.E. Effect of a synbiotic food consumption on human gut metabolic profiles evaluated by (1)H Nuclear Magnetic Resonance spectroscopy. Int. J. Food Microbiol. 2009;134:147–153. doi: 10.1016/j.ijfoodmicro.2009.04.016.
    1. Di Mauro A., Neu J., Riezzo G., Raimondi F., Martinelli D., Francavilla R., Indrio F. Gastrointestinal function development and microbiota. Ital. J. Pediatr. 2013;39:15. doi: 10.1186/1824-7288-39-15.
    1. Shamir R., St James-Roberts I., Di Lorenzo C., Burns A.J., Thapar N., Indrio F., Riezzo G., Raimondi F., Di Mauro A., Francavilla R., et al. Infant crying, colic, and gastrointestinal discomfort in early childhood: A review of the evidence and most plausible mechanisms. J. Pediatr. Gastroenterol. Nutr. 2013;57(Suppl. 1):S1–S45. doi: 10.1097/MPG.0b013e3182a154ff.
    1. Roos S., Dicksved J., Tarasco V., Locatelli E., Ricceri F., Grandin U., Savino F. 454 pyrosequencing analysis on faecal samples from a randomized DBPC trial of colicky infants treated with Lactobacillus reuteri DSM 17938. PLoS ONE. 2013;8:e56710. doi: 10.1371/journal.pone.0056710.
    1. Kianifar H., Ahanchian H., Grover Z., Jafari S., Noorbakhsh Z., Khakshour A., Sedaghat M., Kiani M. Synbiotic in the management of infantile colic: A randomised controlled trial: Synbiotic in infantile colic. J. Paediatr. Child Health. 2014;50:801–805. doi: 10.1111/jpc.12640.
    1. Chapman C.M.C., Gibson G.R., Rowland I. In vitro evaluation of single- and multi-strain probiotics: Inter-species inhibition between probiotic strains, and inhibition of pathogens. Anaerobe. 2012;18:405–413. doi: 10.1016/j.anaerobe.2012.05.004.
    1. Indrio F., Di Mauro A., Riezzo G., Cavallo L., Francavilla R. Infantile colic, regurgitation, and constipation: An early traumatic insult in the development of functional gastrointestinal disorders in children? Eur. J. Pediatr. 2015;174:841–842. doi: 10.1007/s00431-014-2467-3.
    1. Partty A., Kalliomaki M., Salminen S., Isolauri E. Infant Distress and Development of Functional Gastrointestinal Disorders in Childhood: Is There a Connection? JAMA Pediatr. 2013;167:977. doi: 10.1001/jamapediatrics.2013.99.
    1. Ponnusamy K., Choi J.N., Kim J., Lee S.-Y., Lee C.H. Microbial community and metabolomic comparison of irritable bowel syndrome faeces. J. Med. Microbiol. 2011;60:817–827. doi: 10.1099/jmm.0.028126-0.
    1. Kawase T., Nagasawa M., Ikeda H., Yasuo S., Koga Y., Furuse M. Gut microbiota of mice putatively modifies amino acid metabolism in the host brain. Br. J. Nutr. 2017;117:775–783. doi: 10.1017/S0007114517000678.
    1. Cummings J.H., Pomare E.W., Branch W.J., Naylor C.P., Macfarlane G.T. Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut. 1987;28:1221–1227. doi: 10.1136/gut.28.10.1221.
    1. Tana C., Umesaki Y., Imaoka A., Handa T., Kanazawa M., Fukudo S. Altered profiles of intestinal microbiota and organic acids may be the origin of symptoms in irritable bowel syndrome. Neurogastroenterol. Motil. Off. J. Eur. Gastrointest. Motil. Soc. 2010;22:512–519. doi: 10.1111/j.1365-2982.2009.01427.x.
    1. Chow J., Panasevich M.R., Alexander D., Vester Boler B.M., Rossoni Serao M.C., Faber T.A., Bauer L.L., Fahey G.C. Fecal metabolomics of healthy breast-fed versus formula-fed infants before and during in vitro batch culture fermentation. J. Proteome Res. 2014;13:2534–2542. doi: 10.1021/pr500011w.
    1. González R., Klaassens E.S., Malinen E., de Vos W.M., Vaughan E.E. Differential transcriptional response of Bifidobacterium longum to human milk, formula milk, and galactooligosaccharide. Appl. Environ. Microbiol. 2008;74:4686–4694. doi: 10.1128/AEM.00122-08.
    1. Morshed K.M., Desjeux J.F., Nagpaul J.P., Majumdar S., Amma M.K. The effect of propane-diols on the intestinal uptake of nutrients and brush border membrane enzymes in the rat. Biochem. Med. Metab. Biol. 1991;45:161–170. doi: 10.1016/0885-4505(91)90017-F.

Source: PubMed

3
订阅