Is transcranial alternating current stimulation effective in modulating brain oscillations?

Debora Brignani, Manuela Ruzzoli, Piercarlo Mauri, Carlo Miniussi, Debora Brignani, Manuela Ruzzoli, Piercarlo Mauri, Carlo Miniussi

Abstract

Transcranial alternating current stimulation (tACS) is a promising tool for modulating brain oscillations, as well as a possible therapeutic intervention. However, the lack of conclusive evidence on whether tACS is able to effectively affect cortical activity continues to limit its application. The present study aims to address this issue by exploiting the well-known inhibitory alpha rhythm in the posterior parietal cortex during visual perception and attention orientation. Four groups of healthy volunteers were tested with a Gabor patch detection and discrimination task. All participants were tested at the baseline and selective frequencies of tACS, including Sham, 6 Hz, 10 Hz, and 25 Hz. Stimulation at 6 Hz and 10 Hz over the occipito-parietal area impaired performance in the detection task compared to the baseline. The lack of a retinotopically organised effect and marginal frequency-specificity modulation in the detection task force us to be cautious about the effectiveness of tACS in modulating brain oscillations. Therefore, the present study does not provide significant evidence for tACS reliably inducing direct modulations of brain oscillations that can influence performance in a visual task.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1. Schematic illustration of the temporal…
Figure 1. Schematic illustration of the temporal structure of a trial.
A Gabor patch at different contrast levels appeared for 30 ms inside one of two lateral placeholders after a variable interval (450–750 ms) from a warning signal (the fixation cross became larger for 50 ms). Participants had to provide two consecutive responses: first, to report whether they believed the Gabor patch was present or not (detection) and then to select its orientation (discrimination). For every response, a fixed interval of 1500 ms was available.
Figure 2. Results relative to the detection…
Figure 2. Results relative to the detection response (R1) in terms of accuracy.
(A) Accuracy (proportion of correct responses) of every tACS frequency (Sham, 6 Hz, 10 Hz and 25 Hz) is shown during the baseline session (in black) and tACS session (in grey). (B) Normalised accuracy of every tACS frequency is shown as the difference between the % of correct responses during the tACS session and % of correct responses during the baseline session. Vertical bars correspond to the standard error of the mean. * indicates p

Figure 3. Results relative to the discrimination…

Figure 3. Results relative to the discrimination response (R2) in terms of accuracy.

(A) Accuracy…

Figure 3. Results relative to the discrimination response (R2) in terms of accuracy.
(A) Accuracy (proportion of correct responses) of every tACS frequency (Sham, 6 Hz, 10 Hz and 25 Hz) is shown during the baseline session (in black) and tACS session (in grey). (B) Normalised accuracy of every tACS frequency is shown as the difference between the % of correct responses during the tACS session and % of correct responses during the baseline session. Vertical bars correspond to the standard error of the mean. * indicates p
Similar articles
Cited by
References
    1. Buzsàki G (2006) Rhythms of the Brain. Oxford: Oxford University Press.
    1. Ward LM (2003) Synchronous neural oscillations and cognitive processes. Trends Cogn Sci 7: 553–559. - PubMed
    1. Varela F, Lachaux JP, Rodriguez E, Martinerie J (2001) The brainweb: phase synchronization and large-scale integration. Nat Rev Neurosci 2: 229–239. - PubMed
    1. Buzsaki G, Draguhn A (2004) Neuronal oscillations in cortical networks. Science 304: 1926–1929. - PubMed
    1. Von Stein A, Sarnthein J (2000) Different frequencies for different scales of cortical integration: from local gamma to long range alpha/theta synchronization. Int J Psychophysiol 38: 301–313. - PubMed
Show all 112 references
Publication types
Grant support
The research was supported by a Project grant from Associazione Fatebenefratelli per la Ricerca (AFaR). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
[x]
Cite
Copy Download .nbib
Format: AMA APA MLA NLM
Figure 3. Results relative to the discrimination…
Figure 3. Results relative to the discrimination response (R2) in terms of accuracy.
(A) Accuracy (proportion of correct responses) of every tACS frequency (Sham, 6 Hz, 10 Hz and 25 Hz) is shown during the baseline session (in black) and tACS session (in grey). (B) Normalised accuracy of every tACS frequency is shown as the difference between the % of correct responses during the tACS session and % of correct responses during the baseline session. Vertical bars correspond to the standard error of the mean. * indicates p

References

    1. Buzsàki G (2006) Rhythms of the Brain. Oxford: Oxford University Press.
    1. Ward LM (2003) Synchronous neural oscillations and cognitive processes. Trends Cogn Sci 7: 553–559.
    1. Varela F, Lachaux JP, Rodriguez E, Martinerie J (2001) The brainweb: phase synchronization and large-scale integration. Nat Rev Neurosci 2: 229–239.
    1. Buzsaki G, Draguhn A (2004) Neuronal oscillations in cortical networks. Science 304: 1926–1929.
    1. Von Stein A, Sarnthein J (2000) Different frequencies for different scales of cortical integration: from local gamma to long range alpha/theta synchronization. Int J Psychophysiol 38: 301–313.
    1. Fries P (2005) A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn Sci 9: 474–480.
    1. Thut G, Miniussi C (2009) New insights into rhythmic brain activity from TMS-EEG studies. Trends Cogn Sci
    1. Thut G, Schyns PG, Gross J (2011) Entrainment of perceptually relevant brain oscillations by non-invasive rhythmic stimulation of the human brain. Front Psychol 2: 170.
    1. Thut G, Miniussi C, Gross J (2012) The functional importance of rhythmic activity in the brain. Curr Biol 22: R658–663.
    1. Uhlhaas PJ, Singer W (2006) Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology. Neuron 52: 155–168.
    1. Basar E, Guntekin B (2008) A review of brain oscillations in cognitive disorders and the role of neurotransmitters. Brain Res 1235: 172–193.
    1. Thut G, Veniero D, Romei V, Miniussi C, Schyns P, et al. (2011) Rhythmic TMS causes local entrainment of natural oscillatory signatures. Curr Biol 21: 1176–1185.
    1. Klimesch W, Sauseng P, Gerloff C (2003) Enhancing cognitive performance with repetitive transcranial magnetic stimulation at human individual alpha frequency. Eur J Neurosci 17: 1129–1133.
    1. Sauseng P, Klimesch W, Heise KF, Gruber WR, Holz E, et al. (2009) Brain oscillatory substrates of visual short-term memory capacity. Curr Biol 19: 1846–1852.
    1. Romei V, Gross J, Thut G (2010) On the role of prestimulus alpha rhythms over occipito-parietal areas in visual input regulation: correlation or causation? J Neurosci 30: 8692–8697.
    1. Romei V, Driver J, Schyns PG, Thut G (2011) Rhythmic TMS over parietal cortex links distinct brain frequencies to global versus local visual processing. Curr Biol 21: 334–337.
    1. Kanai R, Chaieb L, Antal A, Walsh V, Paulus W (2008) Frequency-dependent electrical stimulation of the visual cortex. Curr Biol 18: 1839–1843.
    1. Pogosyan A, Gaynor LD, Eusebio A, Brown P (2009) Boosting cortical activity at Beta-band frequencies slows movement in humans. Curr Biol 19: 1637–1641.
    1. Zaehle T, Rach S, Herrmann CS (2010) Transcranial alternating current stimulation enhances individual alpha activity in human EEG. PLoS One 5: e13766.
    1. Feurra M, Bianco G, Santarnecchi E, Del Testa M, Rossi A, et al. (2011) Frequency-dependent tuning of the human motor system induced by transcranial oscillatory potentials. J Neurosci 31: 12165–12170.
    1. Joundi RA, Jenkinson N, Brittain JS, Aziz TZ, Brown P (2012) Driving oscillatory activity in the human cortex enhances motor performance. Curr Biol 22: 403–407.
    1. Polania R, Nitsche MA, Korman C, Batsikadze G, Paulus W (2012) The importance of timing in segregated theta phase-coupling for cognitive performance. Curr Biol 22: 1314–1318.
    1. Schwiedrzik CM (2009) Retina or visual cortex? The site of phosphene induction by transcranial alternating current stimulation. Front Integr Neurosci 3: 6.
    1. Schutter DJ, Hortensius R (2010) Retinal origin of phosphenes to transcranial alternating current stimulation. Clin Neurophysiol 121: 1080–1084.
    1. Brindley GS (1955) The site of electrical excitation of the human eye. J Physiol 127: 189–200.
    1. Kanai R, Paulus W, Walsh V (2010) Transcranial alternating current stimulation (tACS) modulates cortical excitability as assessed by TMS-induced phosphene thresholds. Clin Neurophysiol 121: 1551–1554.
    1. Lippold OC, Redfearn JW (1964) Mental Changes Resulting from the Passage of Small Direct Currents through the Human Brain. Br J Psychiatry 110: 768–772.
    1. Smitt JW, Wegener CF (1944) On Electric Convulsive Therapy, with Particular Regard to a Parietal Application of Electrodes, Controlled by Intracerebral Voltage Measurements. Acta psychiat. et neurol 19: 529–549.
    1. Hayes KJ (1950) The current path in electric convulsion shock. Arch Neurol Psychiatry 63: 102–109.
    1. Keeser D, Padberg F, Reisinger E, Pogarell O, Kirsch V, et al. (2011) Prefrontal direct current stimulation modulates resting EEG and event-related potentials in healthy subjects: a standardized low resolution tomography (sLORETA) study. Neuroimage 55: 644–657.
    1. Lang N, Siebner HR, Ward NS, Lee L, Nitsche MA, et al. (2005) How does transcranial DC stimulation of the primary motor cortex alter regional neuronal activity in the human brain? Eur J Neurosci 22: 495–504.
    1. Miniussi C, Cappa SF, Cohen LG, Floel A, Fregni F, et al. (2008) Efficacy of repetitive transcranial magnetic stimulation/transcranial direct current stimulation in cognitive neurorehabilitation. Brain Stimul 1: 326–336.
    1. Priori A, Hallett M, Rothwell JC (2009) Repetitive transcranial magnetic stimulation or transcranial direct current stimulation? Brain Stimul 2: 241–245.
    1. Worden MS, Foxe JJ, Wang N, Simpson GV (2000) Anticipatory biasing of visuospatial attention indexed by retinotopically specific alpha-band electroencephalography increases over occipital cortex. J Neurosci 20: RC63.
    1. Kelly SP, Lalor EC, Reilly RB, Foxe JJ (2006) Increases in alpha oscillatory power reflect an active retinotopic mechanism for distracter suppression during sustained visuospatial attention. J Neurophysiol 95: 3844–3851.
    1. Lorincz ML, Kekesi KA, Juhasz G, Crunelli V, Hughes SW (2009) Temporal framing of thalamic relay-mode firing by phasic inhibition during the alpha rhythm. Neuron 63: 683–696.
    1. Gould IC, Rushworth MF, Nobre AC (2011) Indexing the graded allocation of visuospatial attention using anticipatory alpha oscillations. J Neurophysiol 105: 1318–1326.
    1. Klimesch W, Sauseng P, Hanslmayr S (2007) EEG alpha oscillations: the inhibition-timing hypothesis. Brain Res Rev 53: 63–88.
    1. Jensen O, Mazaheri A (2010) Shaping functional architecture by oscillatory alpha activity: gating by inhibition. Front Hum Neurosci 4: 186.
    1. Foxe JJ, Snyder AC (2011) The Role of Alpha-Band Brain Oscillations as a Sensory Suppression Mechanism during Selective Attention. Front Psychol 2: 154.
    1. Ergenoglu T, Demiralp T, Bayraktaroglu Z, Ergen M, Beydagi H, et al. (2004) Alpha rhythm of the EEG modulates visual detection performance in humans. Brain Res Cogn Brain Res 20: 376–383.
    1. Hanslmayr S, Aslan A, Staudigl T, Klimesch W, Herrmann CS, et al. (2007) Prestimulus oscillations predict visual perception performance between and within subjects. Neuroimage 37: 1465–1473.
    1. Van Dijk H, Schoffelen JM, Oostenveld R, Jensen O (2008) Prestimulus oscillatory activity in the alpha band predicts visual discrimination ability. J Neurosci 28: 1816–1823.
    1. Yamagishi N, Callan DE, Anderson SJ, Kawato M (2008) Attentional changes in pre-stimulus oscillatory activity within early visual cortex are predictive of human visual performance. Brain Res 1197: 115–122.
    1. Sauseng P, Klimesch W, Stadler W, Schabus M, Doppelmayr M, et al. (2005) A shift of visual spatial attention is selectively associated with human EEG alpha activity. Eur J Neurosci 22: 2917–2926.
    1. Thut G, Nietzel A, Brandt SA, Pascual-Leone A (2006) Alpha-band electroencephalographic activity over occipital cortex indexes visuospatial attention bias and predicts visual target detection. J Neurosci 26: 9494–9502.
    1. Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9: 97–113.
    1. Brainard DH (1997) The Psychophysics Toolbox. Spatial Vision 10: 433–436.
    1. Pelli DG (1997) The VideoToolbox software for visual psychophysics: transforming numbers into movies. Spatial Vision 10: 437–442.
    1. Nitsche MA, Doemkes S, Karakose T, Antal A, Liebetanz D, et al. (2007) Shaping the effects of transcranial direct current stimulation of the human motor cortex. J Neurophysiol 97: 3109–3117.
    1. Antal A, Kincses TZ, Nitsche MA, Bartfai O, Paulus W (2004) Excitability changes induced in the human primary visual cortex by transcranial direct current stimulation: direct electrophysiological evidence. Invest Ophthalmol Vis Sci 45: 702–707.
    1. Bolognini N, Fregni F, Casati C, Olgiati E, Vallar G (2010) Brain polarization of parietal cortex augments training-induced improvement of visual exploratory and attentional skills. Brain Res 1349: 76–89.
    1. Bolognini N, Olgiati E, Rossetti A, Maravita A (2010) Enhancing multisensory spatial orienting by brain polarization of the parietal cortex. Eur J Neurosci 31: 1800–1806.
    1. Nitsche MA, Nitsche MS, Klein CC, Tergau F, Rothwell JC, et al. (2003) Level of action of cathodal DC polarisation induced inhibition of the human motor cortex. Clin Neurophysiol 114: 600–604.
    1. Fertonani A, Rosini S, Cotelli M, Rossini PM, Miniussi C (2010) Naming facilitation induced by transcranial direct current stimulation. Behav Brain Res 208: 311–318.
    1. Snedecor GW, Cochran WG (1967) Statistical Methods. Ames, Iowa:.
    1. Perneger TV (1998) What's wrong with Bonferroni adjustments. British Medical Journal 316: 1236–1238.
    1. Datta A, Elwassif M, Battaglia F, Bikson M (2008) Transcranial current stimulation focality using disc and ring electrode configurations: FEM analysis. J Neural Eng 5: 163–174.
    1. Datta A, Bansal V, Diaz J, Patel J, Reato D, et al. (2009) Gyri -precise head model of transcranial DC stimulation: Improved spatial focality using a ring electrode versus conventional rectangular pad. Brain Stimul 2: 201–207.
    1. Nathan SS, Sinha SR, Gordon B, Lesser RP, Thakor NV (1993) Determination of current density distributions generated by electrical stimulation of the human cerebral cortex. Electroencephalogr Clin Neurophysiol 86: 183–192.
    1. Miranda PC, Faria P, Hallett M (2009) What does the ratio of injected current to electrode area tell us about current density in the brain during tDCS? Clin Neurophysiol 120: 1183–1187.
    1. Moliadze V, Antal A, Paulus W (2010) Electrode-distance dependent after-effects of transcranial direct and random noise stimulation with extracephalic reference electrodes. Clin Neurophysiol 121: 2165–2171.
    1. Vines BW, Nair DG, Schlaug G (2006) Contralateral and ipsilateral motor effects after transcranial direct current stimulation. Neuroreport 17: 671–674.
    1. Hilgetag CC, Theoret H, Pascual-Leone A (2001) Enhanced visual spatial attention ipsilateral to rTMS-induced ‘virtual lesions’ of human parietal cortex. Nat Neurosci 4: 953–957.
    1. Klimesch W, Doppelmayr M, Russegger H, Pachinger T (1996) Theta band power in the human scalp EEG and the encoding of new information. Neuroreport 7: 1235–1240.
    1. Gevins A, Smith ME, McEvoy L, Yu D (1997) High-resolution EEG mapping of cortical activation related to working memory: effects of task difficulty, type of processing, and practice. Cereb Cortex 7: 374–385.
    1. Tesche CD, Karhu J (2000) Theta oscillations index human hippocampal activation during a working memory task. Proc Natl Acad Sci U S A 97: 919–924.
    1. Basar E (2004) Memory and Brain Dynamics: Oscillations Integrating Attention, Perception, Learning, and Memory. Boca Raton: CRC press.
    1. Bastiaansen MC, Oostenveld R, Jensen O, Hagoort P (2008) I see what you mean: theta power increases are involved in the retrieval of lexical semantic information. Brain Lang 106: 15–28.
    1. Rutishauser U, Ross IB, Mamelak AN, Schuman EM (2010) Human memory strength is predicted by theta-frequency phase-locking of single neurons. Nature 464: 903–907.
    1. Buzsaki G (2002) Theta oscillations in the hippocampus. Neuron 33: 325–340.
    1. Basar-Eroglu C, Basar E, Demiralp T, Schurmann M (1992) P300-response: possible psychophysiological correlates in delta and theta frequency channels. A review. Int J Psychophysiol 13: 161–179.
    1. Green JJ, McDonald JJ (2008) Electrical Neuroimaging Reveals Timing of Attentional Control Activity in Human Brain. PLoS Biol 6: e81.
    1. Darriba A, Pazo-Alvarez P, Capilla A, Amenedo E (2011) Oscillatory brain activity in the time frequency domain associated to change blindness and change detection awareness. J Cogn Neurosci 24: 337–350.
    1. Bland BH (1986) The physiology and pharmacology of hippocampal formation theta rhythms. Prog Neurobiol 26: 1–54.
    1. Bland BH, Oddie SD (2001) Theta band oscillation and synchrony in the hippocampal formation and associated structures: the case for its role in sensorimotor integration. Behav Brain Res 127: 119–136.
    1. Caplan JB, Madsen JR, Schulze-Bonhage A, Aschenbrenner-Scheibe R, Newman EL, et al. (2003) Human theta oscillations related to sensorimotor integration and spatial learning. J Neurosci 23: 4726–4736.
    1. Klimesch W, Doppelmayr M, Schimke H, Ripper B (1997) Theta synchronization and alpha desynchronization in a memory task. Psychophysiology 34: 169–176.
    1. Jensen O, Tesche CD (2002) Frontal theta activity in humans increases with memory load in a working memory task. Eur J Neurosci 15: 1395–1399.
    1. Hari R, Salmelin R (1997) Human cortical oscillations: a neuromagnetic view through the skull. Trends Neurosci 20: 44–49.
    1. Merigan WH, Maunsell JH (1993) How parallel are the primate visual pathways? Annu Rev Neurosci 16: 369–402.
    1. Kaplan E, Shapley RM (1986) The primate retina contains two types of ganglion cells, with high and low contrast sensitivity. Proc Natl Acad Sci U S A 83: 2755–2757.
    1. Shapley R, Perry VH (1986) Cat and monkey retinal ganglion cells and their visual functional roles. Trends Neurosci 9: 229–235.
    1. Kaplan E, Lee BB, Shapley RM (1990) New views of primate retinal function. In: Osborne NN and Chader GJ. Progress in Retinal Research. New York: Pergamon Press. 273–336.
    1. Fries P, Nikolic D, Singer W (2007) The gamma cycle. Trends Neurosci 30: 309–316.
    1. Sirota A, Montgomery S, Fujisawa S, Isomura Y, Zugaro M, et al. (2008) Entrainment of neocortical neurons and gamma oscillations by the hippocampal theta rhythm. Neuron 60: 683–697.
    1. Lakatos P, Karmos G, Mehta AD, Ulbert I, Schroeder CE (2008) Entrainment of neuronal oscillations as a mechanism of attentional selection. Science 320: 110–113.
    1. Schroeder CE, Lakatos P (2009) Low-frequency neuronal oscillations as instruments of sensory selection. Trends Neurosci 32: 9–18.
    1. Schyns PG, Thut G, Gross J (2011) Cracking the code of oscillatory activity. PLoS Biol 9: e1001064.
    1. Montemurro MA, Rasch MJ, Murayama Y, Logothetis NK, Panzeri S (2008) Phase-of-firing coding of natural visual stimuli in primary visual cortex. Curr Biol 18: 375–380.
    1. Busch NA, Dubois J, VanRullen R (2009) The phase of ongoing EEG oscillations predicts visual perception. J Neurosci 29: 7869–7876.
    1. Mathewson KE, Gratton G, Fabiani M, Beck DM, Ro T (2009) To see or not to see: prestimulus alpha phase predicts visual awareness. J Neurosci 29: 2725–2732.
    1. Vanrullen R, Busch NA, Drewes J, Dubois J (2011) Ongoing EEG Phase as a Trial-by-Trial Predictor of Perceptual and Attentional Variability. Front Psychol 2: 60.
    1. Neuling T, Rach S, Wagner S, Wolters CH, Herrmann CS (2012) Good vibrations: Oscillatory phase shapes perception. Neuroimage
    1. Klimesch W (1999) EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res Brain Res Rev 29: 169–195.
    1. Livingstone MS, Hubel DH (1988) Segregation of form, color, movement, and depth: anatomy, physiology, and perception. Science 240: 740–749.
    1. Zeki S, Shipp S (1988) The functional logic of cortical connections. Nature 335: 311–317.
    1. Benardete EA, Kaplan E, Knight BW (1992) Contrast gain control in the primate retina: P cells are not X-like, some M cells are. Vis Neurosci 8: 483–486.
    1. Lee BB, Pokorny J, Smith VC, Kremers J (1994) Responses to pulses and sinusoids in macaque ganglion cells. Vision Res 34: 3081–3096.
    1. Benardete EA, Kaplan E (1999) The dynamics of primate M retinal ganglion cells. Vis Neurosci 16: 355–368.
    1. Purpura DP, McMurtry JG (1965) Intracellular Activities and Evoked Potential Changes During Polarization of Motor Cortex. J Neurophysiol 28: 166–185.
    1. Bindman LJ, Lippold OC, Redfearn JW (1964) The Action of Brief Polarizing Currents on the Cerebral Cortex of the Rat (1) During Current Flow and (2) in the Production of Long-Lasting after-Effects. J Physiol 172: 369–382.
    1. Gartside IB (1968) Mechanisms of sustained increases of firing rate of neurones in the rat cerebral cortex after polarization: role of protein synthesis. Nature 220: 383–384.
    1. Bikson M, Inoue M, Akiyama H, Deans JK, Fox JE, et al. (2004) Effects of uniform extracellular DC electric fields on excitability in rat hippocampal slices in vitro. J Physiol 557: 175–190.
    1. Radman T, Su Y, An JH, Parra LC, Bikson M (2007) Spike timing amplifies the effect of electric fields on neurons: implications for endogenous field effects. J Neurosci 27: 3030–3036.
    1. Ozen S, Sirota A, Belluscio MA, Anastassiou CA, Stark E, et al. (2010) Transcranial electric stimulation entrains cortical neuronal populations in rats. J Neurosci 30: 11476–11485.
    1. Reato D, Rahman A, Bikson M, Parra LC (2010) Low-intensity electrical stimulation affects network dynamics by modulating population rate and spike timing. J Neurosci 30: 15067–15079.
    1. Bikson M, Datta A, Rahman A, Scaturro J (2010) Electrode montages for tDCS and weak transcranial electrical stimulation: role of “return” electrode's position and size. Clin Neurophysiol 121: 1976–1978.
    1. Sadleir RJ, Vannorsdall TD, Schretlen DJ, Gordon B (2010) Transcranial direct current stimulation (tDCS) in a realistic head model. Neuroimage 51: 1310–1318.
    1. Fenton BW, Palmieri PA, Boggio P, Fanning J, Fregni F (2009) A preliminary study of transcranial direct current stimulation for the treatment of refractory chronic pelvic pain. Brain Stimul 2: 103–107.
    1. Antal A, Terney D, Kuhnl S, Paulus W (2010) Anodal transcranial direct current stimulation of the motor cortex ameliorates chronic pain and reduces short intracortical inhibition. J Pain Symptom Manage 39: 890–903.
    1. Benninger DH, Lomarev M, Lopez G, Wassermann EM, Li X, et al. (2010) Transcranial direct current stimulation for the treatment of Parkinson's disease. J Neurol Neurosurg Psychiatry 81: 1105–1111.

Source: PubMed

3
订阅