Effects of Transcranial Direct Current Stimulation on Sleep in Athletes: A Protocol of a Randomized Controlled Trial

Mohammad Etoom, Mohammad Alwardat, Alia Alghwiri, Francesco Lena, Andrea Romigi, Mohammad Etoom, Mohammad Alwardat, Alia Alghwiri, Francesco Lena, Andrea Romigi

Abstract

Background: Sleep disturbances are common among athletes. There is recently a growing interest in improving sleep quality by using noninvasive brain stimulation techniques such as transcranial direct current stimulation (tDCS). We hypothesized that bilateral dorsolateral prefrontal cortex anodal tDCS could improve sleep in different sports athletes. A randomized controlled trial is to be conducted to test this hypothesis.

Methods: Eighty-four athletes are selected based on specific eligibility criteria and randomly allocated to the intervention or control group. Each participant will receive a 20-min session of bilateral anodal tDCS with an intensity of 1.5 mA (0.057 mA/cm2) in density 3 times a week for 2 weeks. The tDCS current will be delivered only for 30 seconds in the control group. This study's outcome is a set of subjective and objective sleep parameters.

Conclusion: This study assessed the effect of a novel tDCS protocol represented by bilateral anodal stimulation and may result in important advances in sleep management among athletes. Because of the high incidence and impact of athletes' poor sleep quality, it is particularly important to explore effective interventions.

Trial registration: ClinicalTrials.gov: NCT05318352.

Keywords: athletes; randomized controlled trial; sleep wake disorders; transcranial direct current stimulation.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
The CONSORT flow diagram of the study procedures. CONSORT = Consolidated Standards of Reporting Trials, tDCS = transcranial direct current stimulation.
Figure 2
Figure 2
The tDCS electrode placement. (A) Anodal and cathodal stimulation according to the 10−10 system. (B) Brain schematic view showing the targeted cortices through the anodal and cathodal brain stimulation.

References

    1. Walsh N.P., Halson S.L., Sargent C., Roach G.D., Nédélec M., Gupta L., Leeder J., Fullagar H.H., Coutts A.J., Edwards B.J., et al. Sleep and the Athlete: Narrative Review and 2021 Expert Consensus Recommendations. Br. J. Sports Med. 2021;55:356–368. doi: 10.1136/bjsports-2020-102025.
    1. Swinbourne R., Gill N., Vaile J., Smart D. Prevalence of Poor Sleep Quality, Sleepiness and Obstructive Sleep Apnoea Risk Factors in Athletes. Eur. J. Sport Sci. 2016;16:850–858. doi: 10.1080/17461391.2015.1120781.
    1. Bender A., Van Dongen H., Samuels C. Sleep Quality and Chronotype Differences between Elite Athletes and Non-Athlete Controls. Clocks Sleep. 2018;1:3–12. doi: 10.3390/clockssleep1010002.
    1. Rodrigues D.F., Silva A., Rosa J.P.P., Ruiz F.S., Veríssimo A.W., Winckler C., Da Rocha E.A., Parsons A., Tufik S., De Mello M.T. Sleep Quality and Psychobiological Aspects of Brazilian Paralympic Athletes in the London 2012 Pre-Paralympics Period. Motriz. Rev. Educ. Fis. 2015;21:168–176. doi: 10.1590/S1980-65742015000200007.
    1. Roberts S.S.H., Teo W.P., Warmington S.A. Effects of Training and Competition on the Sleep of Elite Athletes: A Systematic Review and Meta-Analysis. Br. J. Sports Med. 2019;53:513–522. doi: 10.1136/bjsports-2018-099322.
    1. Gupta L., Morgan K., Gilchrist S. Does Elite Sport Degrade Sleep Quality? A Systematic Review. Sport. Med. 2017;47:1317–1333. doi: 10.1007/s40279-016-0650-6.
    1. Fowler P., Duffield R., Howle K., Waterson A., Vaile J. Effects of Northbound Long-Haul International Air Travel on Sleep Quantity and Subjective Jet Lag and Wellness in Professional Australian Soccer Players. Int. J. Sports Physiol. Perform. 2015;10:648–654. doi: 10.1123/ijspp.2014-0490.
    1. Kölling S., Steinacker J.M., Endler S., Ferrauti A., Meyer T., Kellmann M. The Longer the Better: Sleep-Wake Patterns during Preparation of the World Rowing Junior Championships. Chronobiol. Int. 2016;33:73–84. doi: 10.3109/07420528.2015.1118384.
    1. Nedelec M., Dawson B., Dupont G. Influence of Night Soccer Matches on Sleep in Elite Players. J. Strength Cond. Res. 2019;33:174–179. doi: 10.1519/JSC.0000000000002906.
    1. de Blasiis K., Joncheray H., Elefteriou J., Lesenne C., Nedelec M. Sleep-Wake Behavior in Elite Athletes: A Mixed-Method Approach. Front. Psychol. 2021;12:3337. doi: 10.3389/fpsyg.2021.658427.
    1. Erlacher D., Ehrlenspiel F., Adegbesan O.A., El-Din H.G. Sleep Habits in German Athletes before Important Competitions or Games. J. Sports Sci. 2011;29:859–866. doi: 10.1080/02640414.2011.565782.
    1. Desseilles M., Dang-Vu T., Schabus M., Sterpenich V., Maquet P., Schwartz S. Neuroimaging Insights into the Pathophysiology of Sleep Disorders. Sleep. 2008;31:777–794. doi: 10.1093/sleep/31.6.777.
    1. Drummond S.P.A., Brown G.G. The Effects of Total Sleep Deprivation on Cerebral Responses to Cognitive Performance. Neuropsychopharmacology. 2001;25:S68–S73. doi: 10.1016/S0893-133X(01)00325-6.
    1. Durmer J.S., Dinges D.F. Neurocognitive Consequences of Sleep Deprivation. Semin. Neurol. 2005;25:117–129. doi: 10.1055/s-2005-867080.
    1. Thomas M., Sing H., Belenky G., Holcomb H., Mayberg H., Dannals R., Wagner H., Thorne D., Popp K., Rowland L., et al. Neural Basis of Alertness and Cognitive Performance Impairments during Sleepiness. I. Effects of 24 h of Sleep Deprivation on Waking Human Regional Brain Activity. J. Sleep Res. 2000;9:335–352. doi: 10.1046/j.1365-2869.2000.00225.x.
    1. Dondé C., Brunelin J., Micoulaud-Franchi J.A., Maruani J., Lejoyeux M., Polosan M., Geoffroy P.A. The Effects of Transcranial Electrical Stimulation of the Brain on Sleep: A Systematic Review. Front. Psychiatry. 2021;12:710. doi: 10.3389/fpsyt.2021.646569.
    1. Paßmann S., Külzow N., Ladenbauer J., Antonenko D., Grittner U., Tamm S., Flöel A. Boosting Slow Oscillatory Activity Using TDCS during Early Nocturnal Slow Wave Sleep Does Not Improve Memory Consolidation in Healthy Older Adults. Brain Stimul. 2016;9:730–739. doi: 10.1016/j.brs.2016.04.016.
    1. Marshall L., Helgadóttir H., Mölle M., Born J. Boosting Slow Oscillations during Sleep Potentiates Memory. Nature. 2006;444:610–613. doi: 10.1038/nature05278.
    1. Tononi G., Cirelli C. Sleep and the Price of Plasticity: From Synaptic and Cellular Homeostasis to Memory Consolidation and Integration. Neuron. 2014;81:12–34. doi: 10.1016/j.neuron.2013.12.025.
    1. Halson S.L. Sleep in Elite Athletes and Nutritional Interventions to Enhance Sleep. Sport. Med. 2014;44:13. doi: 10.1007/s40279-014-0147-0.
    1. Halson S.L., Burke L.M., Pearce J. Nutrition for Travel: From Jet Lag to Catering. Int. J. Sport Nutr. Exerc. Metab. 2019;29:228–235. doi: 10.1123/ijsnem.2018-0278.
    1. Blanchfield A.W., Lewis-Jones T.M., Wignall J.R., Roberts J.B., Oliver S.J. The Influence of an Afternoon Nap on the Endurance Performance of Trained Runners. Eur. J. Sport Sci. 2018;18:1177–1184. doi: 10.1080/17461391.2018.1477180.
    1. Charest J., Marois A., Bastien C.H. Can a TDCS Treatment Enhance Subjective and Objective Sleep among Student-Athletes? J. Am. Coll. Health. 2021;69:378–389. doi: 10.1080/07448481.2019.1679152.
    1. Boutron I., Moher D., Altman D.G., Schulz K.F., Ravaud P. Extending the CONSORT Statement to Randomized Trials of Nonpharmacologic Treatment: Explanation and Elaboration. Ann. Intern. Med. 2008;148:295–309. doi: 10.7326/0003-4819-148-4-200802190-00008.
    1. Cabré-Riera A., Torrent M., Donaire-Gonzalez D., Vrijheid M., Cardis E., Guxens M. Telecommunication Devices Use, Screen Time and Sleep in Adolescents. Environ. Res. 2019;171:341–347. doi: 10.1016/j.envres.2018.10.036.
    1. Aili K., Åström-Paulsson S., Stoetzer U., Svartengren M., Hillert L. Reliability of Actigraphy and Subjective Sleep Measurements in Adults: The Design of Sleep Assessments. J. Clin. Sleep Med. 2017;13:39–47. doi: 10.5664/jcsm.6384.
    1. Suleiman K.H., Yates B.C. Translating the Insomnia Severity Index into Arabic. J. Nurs. Scholarsh. 2011;43:49–53. doi: 10.1111/j.1547-5069.2010.01374.x.
    1. Ahmed A.E., Fatani A., Al-Harbi A., Al-Shimemeri A., Ali Y.Z., Baharoon S., Al-Jahdali H. Validation of the Arabic Version of the Epworth Sleepiness Scale. J. Epidemiol. Glob. Health. 2014;4:297–302. doi: 10.1016/j.jegh.2014.04.004.
    1. Suleiman K.H., Yates B.C., Berger A.M., Pozehl B., Meza J. Translating the Pittsburgh Sleep Quality Index into Arabic. West. J. Nurs. Res. 2010;32:250–268. doi: 10.1177/0193945909348230.
    1. Claudino J.G., Gabbet T.J., De Sá Souza H., Simim M., Fowler P., De Alcantara Borba D., Melo M., Bottino A., Loturco I., D’Almeida V., et al. Which Parameters to Use for Sleep Quality Monitoring in Team Sport Athletes? A Systematic Review and Meta-Analysis. BMJ Open Sport Exerc. Med. 2019;5 doi: 10.1136/bmjsem-2018-000475.
    1. Moussa M.T., Lovibond P., Laube R., Megahead H.A. Psychometric Properties of an Arabic Version of the Depression Anxiety Stress Scales (DASS) Res. Soc. Work Pract. 2017;27:375–386. doi: 10.1177/1049731516662916.
    1. Vaughan R.S., Edwards E.J., MacIntyre T.E. Mental Health Measurement in a Post Covid-19 World: Psychometric Properties and Invariance of the DASS-21 in Athletes and Non-Athletes. Front. Psychol. 2020;11:590559. doi: 10.3389/fpsyg.2020.590559.
    1. Haddad C., Sacre H., Obeid S., Salameh P., Hallit S. Validation of the Arabic Version of the “12-Item Short-Form Health Survey” (SF-12) in a Sample of Lebanese Adults. Arch. Public Health. 2021;79:1–8. doi: 10.1186/s13690-021-00579-3.
    1. Jurcak V., Tsuzuki D., Dan I. 10/20, 10/10, and 10/5 Systems Revisited: Their Validity as Relative Head-Surface-Based Positioning Systems. Neuroimage. 2007;34:1600–1611. doi: 10.1016/j.neuroimage.2006.09.024.
    1. Taylor L., Chrismas B.C.R., Dascombe B., Chamari K., Fowler P.M. Sleep Medication and Athletic Performance-The Evidence for Practitioners and Future Research Directions. Front. Physiol. 2016;7:83. doi: 10.3389/fphys.2016.00083.
    1. Perrier J., Clochon P., Bertran F., Couque C., Bulla J., Denise P., Bocca M.L. Specific EEG Sleep Pattern in the Prefrontal Cortex in Primary Insomnia. PLoS ONE. 2015;10:e0116864. doi: 10.1371/journal.pone.0116864.
    1. Frase L., Piosczyk H., Zittel S., Jahn F., Selhausen P., Krone L., Feige B., Mainberger F., Maier J.G., Kuhn M., et al. Modulation of Total Sleep Time by Transcranial Direct Current Stimulation (TDCS) Neuropsychopharmacology. 2016;41:2577–2586. doi: 10.1038/npp.2016.65.
    1. Steriade M., Timofeev I. Neuronal Plasticity in Thalamocortical Networks during Sleep and Waking Oscillations. Neuron. 2003;37:563–576. doi: 10.1016/S0896-6273(03)00065-5.
    1. Bolling A.J., King V.L., Enam T., McDonough I.M. Using Transcranial Direct Current Stimulation (TDCS) on the Dorsolateral Prefrontal Cortex to Promote Long-Term Foreign Language Vocabulary Learning. Brain Cogn. 2021;154:105789. doi: 10.1016/j.bandc.2021.105789.
    1. Bikson M., Grossman P., Thomas C., Zannou A.L., Jiang J., Adnan T., Mourdoukoutas A.P., Kronberg G., Truong D., Boggio P., et al. Safety of Transcranial Direct Current Stimulation: Evidence Based Update 2016. Brain Stimul. 2016;9:641–661. doi: 10.1016/j.brs.2016.06.004.

Source: PubMed

3
订阅