Different Fecal Microbiota in Hirschsprung's Patients With and Without Associated Enterocolitis

Alexis P Arnaud, Ianis Cousin, Françoise Schmitt, Thierry Petit, Benoit Parmentier, Guillaume Levard, Guillaume Podevin, Audrey Guinot, Stéphan DeNapoli, Erik Hervieux, Valérie Flaum, Philine De Vries, Gwénaëlle Randuineau, Sandrine David-Le Gall, Sylvie Buffet-Bataillon, Gaëlle Boudry, Alexis P Arnaud, Ianis Cousin, Françoise Schmitt, Thierry Petit, Benoit Parmentier, Guillaume Levard, Guillaume Podevin, Audrey Guinot, Stéphan DeNapoli, Erik Hervieux, Valérie Flaum, Philine De Vries, Gwénaëlle Randuineau, Sandrine David-Le Gall, Sylvie Buffet-Bataillon, Gaëlle Boudry

Abstract

Background and objectives: Patients with Hirschsprung's disease are at risk of developing Hirschsprung-associated enterocolitis, especially in the first 2 years of life. The pathophysiology of this inflammatory disease remains unclear, and intestinal dysbiosis has been proposed in the last decade. The primary objective of this study was to evaluate in a large cohort if Hirschsprung-associated enterocolitis was associated with alterations of fecal bacterial composition compared with HD without enterocolitis in different age groups.

Methods: We analyzed the fecal microbiota structure of 103 Hirschsprung patients from 3 months to 16 years of age, all of whom had completed definitive surgery for rectosigmoid Hirschsprung. 16S rRNA gene sequencing allowed us to compare the microbiota composition between Hirschsprung's disease patients with (HAEC group) or without enterocolitis (HD group) in different age groups (0-2, 2-6, 6-12, and 12-16 years).

Results: Richness and diversity increased with age group but did not differ between HD and HAEC patients, irrespective of the age group. Relative abundance of Actinobacteria was lower in HAEC than in HD patients under 2 years of age (-66%, P = 0.045). Multivariate analysis by linear models (MaAsLin) considering sex, medications, birth mode, breast-feeding, and the Bristol stool scale, as well as surgery parameters, highlighted Flavonifractor plautii and Eggerthella lenta, as well as Ruminococcus gnavus group, as positively associated with Hirschsprung-associated enterocolitis in the 0-2 years age group.

Conclusion: Hirschsprung-associated enterocolitis was associated with features of intestinal dysbiosis in infants (0-2 years) but not in older patients. This could explain the highest rate of enterocolitis in this age group.

Clinical trial registration: https://ichgcp.net/clinical-trials-registry/NCT02857205, MICROPRUNG, NCT02857205, 02/08/2016.

Keywords: Hirschsprung disease; Hirschsprung's associated enterocolitis (HAEC); children; fecal microbiota; proinflammatory bacteria.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2022 Arnaud, Cousin, Schmitt, Petit, Parmentier, Levard, Podevin, Guinot, DeNapoli, Hervieux, Flaum, De Vries, Randuineau, David-Le Gall, Buffet-Bataillon and Boudry.

Figures

Figure 1
Figure 1
MICROPRUNG cohort characteristics. Flowchart of the cohort (A), Hirschsprung-associated enterocolitis incidence as a function of age (B), age at surgery (C), existence of colostomy before surgery (D), length of the resected segment (E), and occurrence of complications more than 1 month after surgery (F). *P < 0.05 for HAEC incidence.
Figure 2
Figure 2
Hirschsprung-associated enterocolitis incidence and factors known to modulate gut microbiota. Hirschsprung-associated enterocolitis incidence as a function of stool consistency (A), delivery mode (B), breast-feeding (C), treatment for transit (D), antibiotic within the last 6 months (E), probiotic treatment (F) or non-steroidal anti-inflammatory drug (NSAID) (G) in the different age groups. *P < 0.05 for Hirschsprung-associated enterocolitis incidence.
Figure 3
Figure 3
Characteristics of fecal microbiota of the MICROPRUNG cohort. Principal coordinates analysis representation of Jaccard distance between fecal microbiota highlighting age group (A) or Hirschsprung-associated enterocolitis status (B). Number of observed species (C) and Shannon index (D) of the microbiota in function of age group and Hirschsprung-associated enterocolitis status. ****P < 0.0001.
Figure 4
Figure 4
Main phyla relative abundances of fecal microbiota in the MICROPRUNG cohort. Relative abundance of Actinobacteria (A), Proteobacteria (B), Bacteroidetes (C), and Firmicutes (D) in function of age group and Hirschsprung-associated enterocolitis status. *P < 0.05.

References

    1. Ai D., Pan H., Han R., Li X., Liu G., Xia L. C. (2019). Using decision tree aggregation with random forest model to identify gut microbes associated with colorectal cancer. Genes 10, 112. 10.3390/genes10020112
    1. Alexander M., Ang Q. Y., Nayak R. R., Bustion A. E., Upadhyay V., Pollard K. S., et al. . (2019). A diet-dependent enzyme from the human gut microbiome promotes Th17 cell accumulation and colitis [Internet]. Immunology 9, 7. 10.1101/766899
    1. Arbizu R. A., Collins D., Wilson R. C., Alekseyenko A. V. (2021). Evidence for differentiation of colon tissue microbiota in patients with and without postoperative hirschsprung's associated enterocolitis: a pilot study. Pediatr. Gastroenterol. Hepatol. Nutr. 24, 30. 10.5223/pghn.2021.24.1.30
    1. Arnaud A. P., Rome V., Richard M., Formal M., David-Le Gall S., Boudry G. (2020). Post-natal co-development of the microbiota and gut barrier function follows different paths in the small and large intestine in piglets. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 34, 1430–1446. 10.1096/fj.201902514R
    1. Austin K. M. (2012). The pathogenesis of Hirschsprung's disease-associated enterocolitis. Semin. Pediatr. Surg. 21, 319–327. 10.1053/j.sempedsurg.2012.07.006
    1. Bachetti T., Rosamilia F., Bartolucci M., Santamaria G., Mosconi M., Sartori S., et al. . (2021). The OSMR gene is involved in hirschsprung associated enterocolitis susceptibility through an altered downstream signaling. Int. J. Mol. Sci. 22, 3831. 10.3390/ijms22083831
    1. De Filippo C., Pini-Prato A., Mattioli G., Avanzini S., Rapuzzi G., Cavalieri D., et al. . (2010). Genomics approach to the analysis of bacterial communities dynamics in Hirschsprung's disease-associated enterocolitis: a pilot study. Pediatr. Surg. Int. 26, 465–471. 10.1007/s00383-010-2586-5
    1. Debelius J., Song S. J., Vazquez-Baeza Y., Xu Z. Z., Gonzalez A., Knight R. (2016). Tiny microbes, enormous impacts: what matters in gut microbiome studies? Genome Biol. 17, 217. 10.1186/s13059-016-1086-x
    1. Demehri F. R., Frykman P. K., Cheng Z., Ruan C., Wester T., Nordenskjöld A., et al. . (2016). Altered fecal short chain fatty acid composition in children with a history of Hirschsprung-associated enterocolitis. J. Pediatr. Surg. 51, 81–86. 10.1016/j.jpedsurg.2015.10.012
    1. Dore J., Ehrlich S. D., Levenez F., Pelletier E., Alberti A., Bertand L., et al. . (2015). IHMS_SOP 05 V1: Standard operating procedure for fecal samples preserved in stabilizing solution self-collection, laboratory analysis handled within 24 hours to 7 days (24 hours < x ≤ 7 days). Int. Hum. Microbiome Stand. [Internet].
    1. Dore M., Vilanova Sanchez A., Triana Junco P., Barrena S., De Ceano-Vivas M., Jimenez Gomez J., et al. . (2019). Reliability of the hirschsprung-associated enterocolitis score in clinical practice. Eur J Pediatr Surg Off J Austrian Assoc Pediatr Surg Al Z Kinderchir. 29, 132–137. 10.1055/s-0038-1677046
    1. Elhalaby E. A., Teitelbaum D. H., Coran A. G., Heidelberger K. P. (1995). Enterocolitis associated with Hirschsprung's disease: a clinical histopathological correlative study. J. Pediatr. Surg. 30, 1026–1027. 10.1016/0022-3468(95)90334-8
    1. El-Sawaf M. I., Drongowski R. A., Chamberlain J. N., Coran A. G., Teitelbaum D. H. (2007). Are the long-term results of the transanal pull-through equal to those of the transabdominal pull-through? a comparison of the 2 approaches for Hirschsprung disease. J. Pediatr. Surg. 42, 41–47. 10.1016/j.jpedsurg.2006.09.007
    1. Escudié F, Auer L., Bernard M., Mariadassou M., Cauquil L., Vidal K., et al. . (2018). FROGS: find, rapidly, OTUs with galaxy solution. Bioinforma. Oxf. Engl. 34, 1287–1294. 10.1093/bioinformatics/btx791
    1. Flint H. J. (2020). “Variability and stability of the human gut microbiome [Internet],” in Why Gut Microbes Matter. Cham: Springer International Publishing. Available online at: (accessed June 7, 2020).
    1. Frykman P. K., Kim S., Wester T., Nordenskjöld A., Kawaguchi A., Hui T. T., et al. . (2017). Critical evaluation of the Hirschsprung-associated enterocolitis (HAEC) score: A multicenter study of 116 children with Hirschsprung disease. J. Pediatr. Surg. 53, 708–717. 10.1016/j.jpedsurg.2017.07.009
    1. Frykman P. K., Nordenskjöld A., Kawaguchi A., Hui T. T., Granström A. L., Cheng Z., et al. . (2015). Characterization of bacterial and fungal microbiome in children with hirschsprung disease with and without a history of enterocolitis: a multicenter study. PLOS ONE. 10, e0124172. 10.1371/journal.pone.0124172
    1. Gosain A. (2016). Established and emerging concepts in Hirschsprung's-associated enterocolitis. Pediatr. Surg. Int. 32, 313–320. 10.1007/s00383-016-3862-9
    1. Gunadi R., Sukarelawanto A. V. R., Ritana A., Balela N., Putri W. J. K., Sirait D. N., et al. . (2020). Postoperative enterocolitis assessment using two different cut-off values in the HAEC score in Hirschsprung patients undergoing Duhamel and Soave pull-through. BMC Pediatr. 20, 457. 10.1186/s12887-020-02360-x
    1. Gupta A., Dhakan D. B., Maji A., Saxena R. P. K. V. P, Mahajan S., et al. . (2019). Association of flavonifractor plautii, a flavonoid-degrading bacterium, with the gut microbiome of colorectal cancer patients in India. mSystems 7, 4. 10.1128/mSystems.00438-19
    1. Gupta V. K., Kim M., Bakshi U., Cunningham K. Y., Davis J. M., Lazaridis K. N., et al. . (2020). A predictive index for health status using species-level gut microbiome profiling. Nat. Commun. 11, 4635. 10.1038/s41467-020-18476-8
    1. Hall A. B., Yassour M., Sauk J., Garner A., Jiang X., Arthur T., et al. . (2017). A novel Ruminococcus gnavus clade enriched in inflammatory bowel disease patients. Genome Med. 9, 103. 10.1186/s13073-017-0490-5
    1. Hardy S. P., Bayston R., Spitz L. (1993). Prolonged carriage of Clostridium difficile in Hirschsprung's disease. Arch. Dis. Child. 69, 221–224. 10.1136/adc.69.2.221
    1. Holschneider A., Hutson J., Peña A., Beket E., Chatterjee S., Coran A., et al. . (2005). Preliminary report on the international conference for the development of standards for the treatment of anorectal malformations. J. Pediatr. Surg. 40, 1521–1526. 10.1016/j.jpedsurg.2005.08.002
    1. Li H., Zhou L., Zhi Z., Lv X., Wei Z., Zhang X., et al. . (2020). Lipopolysaccharide upregulates miR-132/212 in Hirschsprung-associated enterocolitis, facilitating pyroptosis by activating NLRP3 inflammasome via targeting Sirtuin 1 (SIRT1). Aging. 12, 18588–18602. 10.18632/aging.103852
    1. Li W., Sun Y., Dai L., Chen H., Yi B., Niu J., et al. . (2021). Ecological and network analyses identify four microbial species with potential significance for the diagnosis/treatment of ulcerative colitis (UC). BMC Microbiol. 21, 138. 10.1186/s12866-021-02201-6
    1. Li Y., Poroyko V., Yan Z., Pan L., Feng Y., Zhao P., et al. . (2016). Characterization of intestinal microbiomes of hirschsprung's disease patients with or without enterocolitis using illumina-miseq high-throughput sequencing. PLOS ONE. 11, e0162079. 10.1371/journal.pone.0162079
    1. Luzman R. A., Kencana S. M. S., Arthana B. D., Ahmad F., Sulaksmono G., Rastaputra A. S., et al. . (2021). Comparison of two different cut-off values of scoring system for diagnosis of hirschsprung-associated enterocolitis after transanal endorectal pull-through. Front. Pediatr. 9, 705663. 10.3389/fped.2021.705663
    1. Mallick H., Rahnavard A., McIver L. J., Ma S., Zhang Y., Nguyen L. H., et al. . (2021). Multivariable association discovery in population-scale meta-omics studies. PLoS Comput. Biol. 17, e1009442. 10.1371/journal.pcbi.1009442
    1. Menezes M., Corbally M., Puri P. (2006). Long-term results of bowel function after treatment for Hirschsprung's disease: a 29-year review. Pediatr. Surg. Int. 22, 987–990. 10.1007/s00383-006-1783-8
    1. Mikami A., Ogita T., Namai F., Shigemori S., Sato T., Shimosato T. (2021). Oral Administration of flavonifractor plautii, a bacteria increased with green tea consumption, promotes recovery from acute colitis in mice via suppression of IL-17. Front. Nutr. 7, 610946. 10.3389/fnut.2020.610946
    1. Nakamura H., Tomuschat C., Coyle D., O'Donnel A.-M., Lim T., Puri P. (2018). Altered goblet cell function in Hirschsprung's disease. Pediatr. Surg. Int. 34, 121–128. 10.1007/s00383-017-4178-0
    1. Neuvonen M. I., Korpela K., Kyrklund K., Salonen A., de Vos W., Rintala R. J., et al. . (2018). Intestinal microbiota in hirschsprung disease. J. Pediatr. Gastroenterol. Nutr. 67, 594–600. 10.1097/MPG.0000000000001999
    1. Pastor A. C., Osman F., Teitelbaum D. H., Caty M. G., Langer J. C. (2009). Development of a standardized definition for Hirschsprung's-associated enterocolitis: a Delphi analysis. J. Pediatr. Surg. 44, 251–256. 10.1016/j.jpedsurg.2008.10.052
    1. Petersen C., Round J. L. (2014). Defining dysbiosis and its influence on host immunity and disease. Cell Microbiol. 16, 1024–1033. 10.1111/cmi.12308
    1. Pini Prato A., Bartow-McKenney C., Hudspeth K., Mosconi M., Rossi V., Avanzini S., et al. . (2019). A metagenomics study on hirschsprung's disease associated enterocolitis: biodiversity and gut microbial homeostasis depend on resection length and patient's clinical history. Front. Pediatr. 7, 326. 10.3389/fped.2019.00326
    1. Rodríguez J. M., Murphy K., Stanton C., Ross R. P., Kober O. I., Juge N., et al. . (2015). The composition of the gut microbiota throughout life, with an emphasis on early life. Microb. Ecol. Health Dis. [Internet] 7, 26. 10.3402/mehd.v26.26050
    1. Ruttenstock E., Puri P. (2010). Systematic review and meta-analysis of enterocolitis after one-stage transanal pull-through procedure for Hirschsprung's disease. Pediatr. Surg. Int. 26, 1101–1105. 10.1007/s00383-010-2695-1
    1. Tang W., Su Y., Yuan C., Zhang Y., Zhou L., Peng L., et al. . (2020). Prospective study reveals a microbiome signature that predicts the occurrence of post-operative enterocolitis in Hirschsprung disease (HSCR) patients. Gut Microbes. 11, 842–854. 10.1080/19490976.2020.1711685
    1. Wilson-Storey D., Scobie W. G., McGenity K. G. (1990). Microbiological studies of the enterocolitis of Hirschsprung's disease. Arch. Dis. Child. 65, 1338–1339. 10.1136/adc.65.12.1338
    1. Yan Z., Poroyko V., Gu S., Zhang Z., Pan L., Wang J., et al. . (2014). Characterization of the intestinal microbiome of Hirschsprung's disease with and without enterocolitis. Biochem. Biophys. Res. Commun. 445, 269–274. 10.1016/j.bbrc.2014.01.104
    1. Yatsunenko T., Rey F. E., Manary M. J., Trehan I., Dominguez-Bello M. G., Contreras M., et al. . (2012). Human gut microbiome viewed across age and geography. Nature 486, 222–227. 10.1038/nature11053

Source: PubMed

3
订阅