Therapeutic Use of Exercising in Hypoxia: Promises and Limitations

Gregoire P Millet, Tadej Debevec, Franck Brocherie, Davide Malatesta, Olivier Girard, Gregoire P Millet, Tadej Debevec, Franck Brocherie, Davide Malatesta, Olivier Girard

No abstract available

Keywords: alpha subunit; brain; elderly; hypertension; hypoxia; hypoxia-inducible factor 1; obesity.

References

    1. Bailey D. M., Davies B., Young I. S. (2001). Intermittent hypoxic training: implications for lipid peroxidation induced by acute normoxic exercise in active men. Clin. Sci. (Lond). 101, 465–475.
    1. Baillot A., Audet M., Baillargeon J. P., Dionne I. J., Valiquette L., Rosa-Fortin M. M., et al. . (2014). Impact of physical activity and fitness in class II and III obese individuals: a systematic review. Obes Rev. 15, 721–739. 10.1111/obr.12171
    1. Bärtsch P., Dehnert C., Friedmann-Bette B., Tadibi V. (2008). Intermittent hypoxia at rest for improvement of athletic performance. Scand. J. Med. Sci. Sports 18(Suppl. 1), 50–56. 10.1111/j.1600-0838.2008.00832.x
    1. Bernardi L., Passino C., Serebrovskaya Z., Serebrovskaya T., Appenzeller O. (2001). Respiratory and cardiovascular adaptations to progressive hypoxia; effect of interval hypoxic training. Eur. Heart J. 22, 879–886. 10.1053/euhj.2000.2466
    1. Blitzer M. L., Loh E., Roddy M. A., Stamler J. S., Creager M. A. (1996). Endothelium-derived nitric oxide regulates systemic and pulmonary vascular resistance during acute hypoxia in humans. J. Am. Coll. Cardiol. 28, 591–596.
    1. Börjesson M., Onerup A., Lundqvist S., Dahlöf B. (2016). Physical activity and exercise lower blood pressure in individuals with hypertension: narrative review of 27 RCTs. Br. J. Sports Med. 50, 356–361. 10.1136/bjsports-2015-095786
    1. Burtscher M., Pachinger O., Ehrenbourg I., Mitterbauer G., Faulhaber M., Pühringer R., et al. . (2004). Intermittent hypoxia increases exercise tolerance in elderly men with and without coronary artery disease. Int. J. Cardiol. 96, 247–254. 10.1016/j.ijcard.2003.07.021
    1. Casey D. P., Joyner M. J. (2011). Local control of skeletal muscle blood flow during exercise: influence of available oxygen. J. Appl. Physiol. 111, 1527–1538. 10.1152/japplphysiol.00895.2011
    1. Cherubini A., Donahue J. L., Lowenthal D. T., Mecocci P., Meuleman J. R., Maggio D., et al. . (1998). The effects of aging and endurance exercise on cardiovascular performance in healthy elderly: a review of the literature. Am. J. Geriatr. Cardiol. 7, 25–32.
    1. Coté T. R., Stroup D. F., Dwyer D. M., Horan J. M., Peterson D. E. (1993). Chronic obstructive pulmonary disease mortality. A role for altitude. Chest 103, 1194–1197.
    1. Degache F., Larghi G., Faiss R., Deriaz O., Millet G. (2012). Hypobaric versus normobaric hypoxia: same effects on postural stability? High Alt. Med. Biol. 13, 40–45. 10.1089/ham.2011.1042
    1. Faeh D., Gutzwiller F., Bopp M., Swiss National Cohort Study Group (2009). Lower mortality from coronary heart disease and stroke at higher altitudes in Switzerland. Circulation 120, 495–501. 10.1161/CIRCULATIONAHA.108.819250
    1. Faeh D., Moser A., Panczak R., Bopp M., Röösli M., Spoerri A., et al. . (2016). Independent at heart: persistent association of altitude with ischaemic heart disease mortality after consideration of climate, topography and built environment. J. Epidemiol. Community Health. [Epub ahead of print]. 10.1136/jech-2015-206210.
    1. Faiss R., Girard O., Millet G. P. (2013). Advancing hypoxic training in team sports: from intermittent hypoxic training to repeated sprint training in hypoxia. Br. J. Sports Med. 47(Suppl. 1), i45–i50. 10.1136/bjsports-2013-092741
    1. Gallagher D., Ruts E., Visser M., Heshka S., Baumgartner R. N., Wang J., et al. . (2000). Weight stability masks sarcopenia in elderly men and women. Am. J. Physiol. Endocrinol. Metab. 279, E366–E375.
    1. Haider T., Casucci G., Linser T., Faulhaber M., Gatterer H., Ott G., et al. . (2009). Interval hypoxic training improves autonomic cardiovascular and respiratory control in patients with mild chronic obstructive pulmonary disease. J. Hypertens. 27, 1648–1654. 10.1097/HJH.0b013e32832c0018
    1. Haufe S., Wiesner S., Engeli S., Luft F. C., Jordan J. (2008). Influences of normobaric hypoxia training on metabolic risk markers in human subjects. Med. Sci. Sports Exerc. 40, 1939–1944. 10.1249/MSS.0b013e31817f1988
    1. Hoppeler H., Klossner S., Vogt M. (2008). Training in hypoxia and its effects on skeletal muscle tissue. Scand. J. Med. Sci. Sports 18(Suppl. 1), 38–49. 10.1111/j.1600-0838.2008.00831.x
    1. Janssen I., Heymsfield S. B., Ross R. (2002). Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability. J. Am. Geriatr. Soc. 50, 889–896.
    1. Kayser B., Verges S. (2013). Hypoxia, energy balance and obesity: from pathophysiological mechanisms to new treatment strategies. Obes. Rev. 14, 579–592. 10.1111/obr.12034
    1. Kon M., Ohiwa N., Honda A., Matsubayashi T., Ikeda T., Akimoto T., et al. . (2015). Effects of systemic hypoxia on human muscular adaptations to resistance exercise training. Physiol. Rep. 3:e12267. 10.14814/phy2.12033
    1. Kujaník S., Snincák M., Vokál J., Podracký J., Koval J. (2000). Periodicity of arrhythmias in healthy elderly men at the moderate altitude. Physiol. Res. 49, 285–287.
    1. Lenaz G., Bovina C., D'Aurelio M., Fato R., Formiggini G., Genova M. L., et al. . (2002). Role of mitochondria in oxidative stress and aging. Ann. N. Y. Acad. Sci. 959, 199–213.
    1. Leuenberger U. A., Gray K., Herr M. D. (1999). Adenosine contributes to hypoxia-induced forearm vasodilation in humans. J. Appl. Physiol. 87, 2218–2224.
    1. Leuenberger U. A., Johnson D., Loomis J., Gray K. S., MacLean D. A. (2008). Venous but not skeletal muscle interstitial nitric oxide is increased during hypobaric hypoxia. Eur. J. Appl. Physiol. 102, 457–461. 10.1007/s00421-007-0601-x
    1. Levine B. D., Zuckerman J. H., deFilippi C. R. (1997). Effect of high-altitude exposure in the elderly: the Tenth Mountain Division study. Circulation 96, 1224–1232.
    1. Levy D., Larson M. G., Vasan R. S., Kannel W. B., Ho K. K. (1996). The progression from hypertension to congestive heart failure. JAMA 275, 1557–1562.
    1. Lundby C., Calbet J. A., Robach P. (2009). The response of human skeletal muscle tissue to hypoxia. Cell Mol. Life Sci. 66, 3615–3623. 10.1007/s00018-009-0146-8
    1. Messina E. J., Sun D., Koller A., Wolin M. S., Kaley G. (1992). Role of endothelium-derived prostaglandins in hypoxia-elicited arteriolar dilation in rat skeletal muscle. Circ. Res. 71, 790–796.
    1. Millet G. P., Roels B., Schmitt L., Woorons X., Richalet J. P. (2010). Combining hypoxic methods for peak performance. Sports Med. 40, 1–25. 10.2165/11317920-000000000-00000
    1. Morishima T., Kurihara T., Hamaoka T., Goto K. (2014). Whole body, regional fat accumulation, and appetite-related hormonal response after hypoxic training. Clin. Physiol. Funct. Imaging 34, 90–97. 10.1111/cpf.12069
    1. Mortimer E. A., Jr., Monson R. R., MacMahon B. (1977). Reduction in mortality from coronary heart disease in men residing at high altitude. N. Engl. J. Med. 296, 581–585.
    1. Nespoulet H., Wuyam B., Tamisier R., Saunier C., Monneret D., Remy J., et al. . (2012). Altitude illness is related to low hypoxic chemoresponse and low oxygenation during sleep. Eur. Respir. J. 40, 673–680. 10.1183/09031936.00073111
    1. Nishiwaki M., Kawakami R., Saito K., Tamaki H., Takekura H., Ogita F. (2011). Vascular adaptations to hypobaric hypoxic training in postmenopausal women. J. Physiol. Sci. 61, 83–91. 10.1007/s12576-010-0126-7
    1. Perez-Padilla R., Franco-Marina F. (2004). The impact of altitude on mortality from tuberculosis and pneumonia. Int. J. Tuberc Lung Dis. 8, 1315–1320.
    1. Sasaki H., Fukuda S., Otani H., Zhu L., Yamaura G., Engelman R. M., et al. . (2002). Hypoxic preconditioning triggers myocardial angiogenesis: a novel approach to enhance contractile functional reserve in rat with myocardial infarction. J. Mol. Cell Cardiol. 34, 335–348. 10.1006/jmcc.2001.1516
    1. Serebrovskaya T. V., Manukhina E. B., Smith M. L., Downey H. F., Mallet R. T. (2008). Intermittent hypoxia: cause of or therapy for systemic hypertension? Exp. Biol. Med. (Maywood) 233, 627–650. 10.3181/0710-MR-267
    1. Shapiro B. B., Streja E., Rhee C. M., Molnar M. Z., Kheifets L., Kovesdy C. P., et al. . (2014). Revisiting the association between altitude and mortality in dialysis patients. Hemodial. Int. 18, 374–383. 10.1111/hdi.12129
    1. Sharma G., Goodwin J. (2006). Effect of aging on respiratory system physiology and immunology. Clin. Interv. Aging 1, 253–260. 10.2147/ciia.2006.1.3.253
    1. Shatilo V. B., Korkushko O. V., Ischuk V. A., Downey H. F., Serebrovskaya T. V. (2008). Effects of intermittent hypoxia training on exercise performance, hemodynamics, and ventilation in healthy senior men. High Alt. Med. Biol. 9, 43–52. 10.1089/ham.2008.1053.
    1. Shi B., Watanabe T., Shin S., Yabumoto T., Takemura M., Matsuoka T. (2014). Effect of hypoxic training on inflammatory and metabolic risk factors: a crossover study in healthy subjects. Physiol. Rep. 2:e00198. 10.1002/phy2.198
    1. Urdampilleta A., González-Muniesa P., Portillo M. P., Martínez J. A. (2012). Usefulness of combining intermittent hypoxia and physical exercise in the treatment of obesity. J. Physiol. Biochem. 68, 289–304. 10.1007/s13105-011-0115-1
    1. Valencia-Flores M., Rebollar V., Santiago V., Orea A., Rodríguez C., Resendiz M., et al. . (2004). Prevalence of pulmonary hypertension and its association with respiratory disturbances in obese patients living at moderately high altitude. Int. J. Obes. Relat. Metab. Disord. 28, 1174–1180. 10.1038/sj.ijo.0802726
    1. Vedam H., Phillips C. L., Wang D., Barnes D. J., Hedner J. A., Unger G., et al. . (2009). Short-term hypoxia reduces arterial stiffness in healthy men. Eur. J. Appl. Physiol. 105, 19–25. 10.1007/s00421-008-0868-6
    1. Verdijk L. B., Koopman R., Schaart G., Meijer K., Savelberg H. H., van Loon L. J. (2007). Satellite cell content is specifically reduced in type II skeletal muscle fibers in the elderly. Am. J. Physiol. Endocrinol. Metab. 292, E151–E157. 10.1152/ajpendo.00278.2006
    1. Voss J. D., Allison D. B., Webber B. J., Otto J. L., Clark L. L. (2014). Lower obesity rate during residence at high altitude among a military population with frequent migration: a quasi experimental model for investigating spatial causation. PLoS ONE 9:e93493. 10.1371/journal.pone.0093493
    1. Wang J. S., Chen L. Y., Fu L. L., Chen M. L., Wong M. K. (2007). Effects of moderate and severe intermittent hypoxia on vascular endothelial function and haemodynamic control in sedentary men. Eur. J. Appl. Physiol. 100, 127–135. 10.1007/s00421-007-0409-8
    1. Wang J. S., Wu M. H., Mao T. Y., Fu T. C., Hsu C. C. (2010). Effects of normoxic and hypoxic exercise regimens on cardiac, muscular, and cerebral hemodynamics suppressed by severe hypoxia in humans. J. Appl. Physiol. 109, 219–229. 10.1152/japplphysiol.00138.2010
    1. Weil B. R., Stauffer B. L., Mestek M. L., DeSouza C. A. (2011). Influence of abdominal obesity on vascular endothelial function in overweight/obese adult men. Obesity (Silver Spring) 19, 1742–1746. 10.1038/oby.2011.189
    1. Wiesner S., Haufe S., Engeli S., Mutschler H., Haas U., Luft F. C., et al. . (2010). Influences of normobaric hypoxia training on physical fitness and metabolic risk markers in overweight to obese subjects. Obesity (Silver Spring) 18, 116–120. 10.1038/oby.2009.193
    1. Williams M. A., Fleg J. L., Ades P. A., Chaitman B. R., Miller N. H., Mohiuddin S. M., et al. . (2002). Secondary prevention of coronary heart disease in the elderly (with emphasis on patients > or = 75 years of age): an American Heart Association scientific statement from the Council on Clinical Cardiology Subcommittee on Exercise, Cardiac Rehabilitation, and Prevention. Circulation 105, 1735–1743.
    1. Winkelmayer W. C., Liu J., Brookhart M. A. (2009). Altitude and all-cause mortality in incident dialysis patients. JAMA 301, 508–512. 10.1001/jama.2009.84
    1. Yingzhong Y., Droma Y., Rili G., Kubo K. (2006). Regulation of body weight by leptin, with special reference to hypoxia-induced regulation. Intern. Med. 45, 941–946. 10.2169/internalmedicine.45.1733

Source: PubMed

3
订阅