Digital Versus Conventional Rehabilitation After Total Hip Arthroplasty: A Single-Center, Parallel-Group Pilot Study

Fernando Dias Correia, André Nogueira, Ivo Magalhães, Joana Guimarães, Maria Moreira, Isabel Barradas, Maria Molinos, Laetitia Teixeira, Joaquim Pires, Rosmaninho Seabra, Jorge Lains, Virgílio Bento, Fernando Dias Correia, André Nogueira, Ivo Magalhães, Joana Guimarães, Maria Moreira, Isabel Barradas, Maria Molinos, Laetitia Teixeira, Joaquim Pires, Rosmaninho Seabra, Jorge Lains, Virgílio Bento

Abstract

Background: The demand for total hip arthroplasty (THA) is rising. In the face of rapidly increasing health care costs, ensuring widespread, cost-effective rehabilitation is a priority. Technologies allowing independent home-based rehabilitation may be the key to facilitate access, improve effectiveness, and lower costs of care.

Objective: The aim of this study was to assess the feasibility of a novel artificial intelligence-powered digital biofeedback system following THA and compare the clinical outcomes against supervised conventional rehabilitation.

Methods: This was a single-center, parallel-group pilot study, with an 8-week intervention program. Patients were assessed at baseline, during the program (at 4 and 8 weeks), and 3 and 6 months after surgery. The primary outcome was the Timed Up and Go (TUG) score and secondary outcomes were the Hip dysfunction and Osteoarthritis Outcome Scale (HOOS; a patient-reported outcome) and hip range of motion (ROM).

Results: A total of 66 patients were included: 35 digital physiotherapy (PT) versus 31 conventional. There were no differences at baseline between groups except for lower HOOS quality of life (QoL) subscale scores in the digital PT group. Clinically relevant improvements were noted in both groups at all time points. The digital PT group showed a retention rate of 86% (30/35). Per-protocol analysis revealed a superiority of the digital PT group for all outcome measures. Intention-to-treat analysis revealed the superiority of the digital PT group at all time points for TUG (change between baseline and 4 and 8 weeks: P<.001; change between baseline and 3 and 6 months: P=.001 and P=.005, respectively), with a difference between median changes of -4.79 seconds (95% CI -7.24 to -1.71) at 6 months post-THA. Between baseline and month 6, results were also superior in the digital PT group for the HOOS sports and QoL subscales and all ROM except for standing flexion.

Conclusions: This study demonstrates this novel solution holds promise in rehabilitation after THA, ensuring better clinical outcomes than conventional rehabilitation while reducing dependence on human resources.

Trial registration: ClinicalTrials.gov NCT03045549; https://ichgcp.net/clinical-trials-registry/NCT03045549.

Keywords: AI-powered rehabilitation; THA; THR; biofeedback; digital physiotherapy; motion trackers; telerehabilitation.

Conflict of interest statement

Conflicts of Interest: FDC and VB have a shareholder position at SWORD Health, a company that develops and commercializes SWORD-related products. AN, IM, JG, MM, and IB are employees of SWORD Health but do not have shareholder positions. LT and JL receive honoraria from SWORD Health. JP and RS have no conflicts of interest to report.

©Fernando Dias Correia, André Nogueira, Ivo Magalhães, Joana Guimarães, Maria Moreira, Isabel Barradas, Maria Molinos, Laetitia Teixeira, Joaquim Pires, Rosmaninho Seabra, Jorge Lains, Virgílio Bento. Originally published in JMIR Rehabilitation and Assistive Technology (http://rehab.jmir.org), 21.06.2019.

Figures

Figure 1
Figure 1
System components. (A) Mobile app. Preparation screen (top left): this screen displays video and audio instructions for each exercise. Execution screen (bottom left). (B) Web portal. Prescription screen (top right) displaying the exercise list and session layout. Results screen (bottom right) presenting (1) date, time, and session duration; (2) pain and fatigue scores; and (3) information on each repetition-range of motion and movement errors.
Figure 2
Figure 2
CONSORT (Consolidated Standards of Reporting Trials) diagram. PT: physiotherapy; THA: total hip arthroplasty.
Figure 3
Figure 3
Evolution of the outcomes over time in both groups based on the repeated measures analysis (estimated marginal means are presented). (A) Timed Up and Go (TUG) score, (B) lying hip flexion, (C) lying hip abduction, (D) standing hip flexion, (E) standing hip hyperextension, (F) standing hip abduction. PT: physiotherapy.

References

    1. Singh JA. Epidemiology of knee and hip arthroplasty: a systematic review. Open Orthop J. 2011 Mar 16;5:80–85. doi: 10.2174/1874325001105010080.
    1. Kurtz S, Ong K, Lau E, Mowat F, Halpern M. Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J Bone Joint Surg Am. 2007 Apr;89(4):780–785. doi: 10.2106/JBJS.F.00222.
    1. Ethgen O, Bruyère O, Richy F, Dardennes C, Reginster J. Health-related quality of life in total hip and total knee arthroplasty. A qualitative and systematic review of the literature. J Bone Joint Surg Am. 2004 May;86(5):963–974. doi: 10.2106/00004623-200405000-00012.
    1. Kennedy DM, Hanna SE, Stratford PW, Wessel J, Gollish JD. Preoperative function and gender predict pattern of functional recovery after hip and knee arthroplasty. J Arthroplasty. 2006 Jun;21(4):559–566. doi: 10.1016/j.arth.2005.07.010.
    1. Vissers MM, Bussmann JB, Verhaar JA, Arends LR, Furlan AD, Reijman M. Recovery of physical functioning after total hip arthroplasty: systematic review and meta-analysis of the literature. Phys Ther. 2011 May;91(5):615–629. doi: 10.2522/ptj.20100201.
    1. Coulter CL, Scarvell JM, Neeman TM, Smith PN. Physiotherapist-directed rehabilitation exercises in the outpatient or home setting improve strength, gait speed and cadence after elective total hip replacement: a systematic review. J Physiother. 2013 Dec;59(4):219–226. doi: 10.1016/S1836-9553(13)70198-X.
    1. Okoro T, Lemmey AB, Maddison P, Andrew JG. An appraisal of rehabilitation regimes used for improving functional outcome after total hip replacement surgery. Sports Med Arthrosc Rehabil Ther Technol. 2012 Feb 07;4(1):5. doi: 10.1186/1758-2555-4-5.
    1. Mikkelsen LR, Mechlenburg I, Søballe K, Jørgensen LB, Mikkelsen S, Bandholm T, Petersen AK. Effect of early supervised progressive resistance training compared to unsupervised home-based exercise after fast-track total hip replacement applied to patients with preoperative functional limitations. A single-blinded randomised controlled trial. Osteoarthritis Cartilage. 2014 Dec;22(12):2051–2058. doi: 10.1016/j.joca.2014.09.025.
    1. Trudelle-Jackson E, Smith SS. Effects of a late-phase exercise program after total hip arthroplasty: a randomized controlled trial. Arch Phys Med Rehabil. 2004 Jul;85(7):1056–1062.
    1. Mikkelsen LR, Mikkelsen SS, Christensen FB. Early, intensified home-based exercise after total hip replacement-a pilot study. Physiother Res Int. 2012 Dec;17(4):214–226. doi: 10.1002/pri.1523.
    1. Haas R, Sarkies M, Bowles K, O'Brien L, Haines T. Early commencement of physical therapy in the acute phase following elective lower limb arthroplasty produces favorable outcomes: a systematic review and meta-analysis examining allied health service models. Osteoarthritis Cartilage. 2016 Dec;24(10):1667–1681. doi: 10.1016/j.joca.2016.05.005.
    1. Chiung-Jui Su D, Yuan K, Weng S, Hong R, Wu M, Wu H, Chou W. Can early rehabilitation after total hip arthroplasty reduce its major complications and medical expenses? Report from a nationally representative cohort. Biomed Res Int. 2015;2015:641958. doi: 10.1155/2015/641958. doi: 10.1155/2015/641958.
    1. Westby MD, Brittain A, Backman CL. Expert consensus on best practices for post-acute rehabilitation after total hip and knee arthroplasty: a Canada and United States Delphi study. Arthritis Care Res (Hoboken) 2014 Mar;66(3):411–423. doi: 10.1002/acr.22164. doi: 10.1002/acr.22164.
    1. Bashshur R, Shannon G, Krupinski E, Grigsby J. The taxonomy of telemedicine. Telemed J E Health. 2011;17(6):484–494. doi: 10.1089/tmj.2011.0103.
    1. Dinesen B, Nonnecke B, Lindeman D, Toft E, Kidholm K, Jethwani K, Young HM, Spindler H, Oestergaard CU, Southard JA, Gutierrez M, Anderson N, Albert NM, Han JJ, Nesbitt T. Personalized telehealth in the future: a global research agenda. J Med Internet Res. 2016 Mar 01;18(3):e53. doi: 10.2196/jmir.5257.
    1. Dahlberg LE, Grahn D, Dahlberg JE, Thorstensson CA. A web-based platform for patients with osteoarthritis of the hip and knee: a pilot study. JMIR Res Protoc. 2016 Jun 03;5(2):e115. doi: 10.2196/resprot.5665.
    1. Antón D, Nelson M, Russell T, Goñi A, Illarramendi A. Validation of a Kinect-based telerehabilitation system with total hip replacement patients. J Telemed Telecare. 2016 Apr;22(3):192–197. doi: 10.1177/1357633X15590019.
    1. Tousignant M, Boissy P, Corriveau H, Moffet H. In home telerehabilitation for older adults after discharge from an acute hospital or rehabilitation unit: A proof-of-concept study and costs estimation. Disabil Rehabil Assist Technol. 2006 Sep;1(4):209–216.
    1. McCue M, Fairman A, Pramuka M. Enhancing quality of life through telerehabilitation. Phys Med Rehabil Clin N Am. 2010 Feb;21(1):195–205. doi: 10.1016/j.pmr.2009.07.005.
    1. Granja C, Janssen W, Johansen MA. Factors determining the success and failure of eHealth interventions: systematic review of the literature. J Med Internet Res. 2018 Dec 01;20(5):e10235. doi: 10.2196/10235.
    1. Mahomed NN, Davis AM, Hawker G, Badley E, Davey JR, Syed KA, Coyte PC, Gandhi R, Wright JG. Inpatient compared with home-based rehabilitation following primary unilateral total hip or knee replacement: a randomized controlled trial. J Bone Joint Surg Am. 2008 Aug;90(8):1673–1680. doi: 10.2106/JBJS.G.01108.
    1. Cottrell MA, Galea OA, O'Leary SP, Hill AJ, Russell TG. Real-time telerehabilitation for the treatment of musculoskeletal conditions is effective and comparable to standard practice: a systematic review and meta-analysis. Clin Rehabil. 2017 May;31(5):625–638. doi: 10.1177/0269215516645148.
    1. Pastora-Bernal JM, Martín-Valero R, Barón-López FJ, Estebanez-Pérez MJ. Evidence of benefit of telerehabitation after orthopedic surgery: a systematic review. J Med Internet Res. 2017 Dec 28;19(4):e142. doi: 10.2196/jmir.6836.
    1. Galea MP, Levinger P, Lythgo N, Cimoli C, Weller R, Tully E, McMeeken J, Westh R. A targeted home- and center-based exercise program for people after total hip replacement: a randomized clinical trial. Arch Phys Med Rehabil. 2008 Aug;89(8):1442–1447. doi: 10.1016/j.apmr.2007.11.058.
    1. Coulter C, Perriman DM, Neeman TM, Smith PN, Scarvell JM. Supervised or unsupervised rehabilitation after total hip replacement provides similar improvements for patients: a randomized controlled trial. Arch Phys Med Rehabil. 2017 Dec;98(11):2253–2264. doi: 10.1016/j.apmr.2017.03.032.
    1. Unlu E, Eksioglu E, Aydog E, Aydog ST, Atay G. The effect of exercise on hip muscle strength, gait speed and cadence in patients with total hip arthroplasty: a randomized controlled study. Clin Rehabil. 2007 Aug;21(8):706–711. doi: 10.1177/0269215507077302.
    1. Jan M, Hung J, Lin JC, Wang S, Liu T, Tang P. Effects of a home program on strength, walking speed, and function after total hip replacement. Arch Phys Med Rehabil. 2004 Dec;85(12):1943–1951.
    1. Picha KJ, Howell DM. A model to increase rehabilitation adherence to home exercise programmes in patients with varying levels of self-efficacy. Musculoskeletal Care. 2018 Dec;16(1):233–237. doi: 10.1002/msc.1194.
    1. Pisters MF, Veenhof C, Schellevis FG, Twisk JW, Dekker J, De Bakker DH. Exercise adherence improving long-term patient outcome in patients with osteoarthritis of the hip and/or knee. Arthritis Care Res (Hoboken) 2010 Aug;62(8):1087–1094. doi: 10.1002/acr.20182. doi: 10.1002/acr.20182.
    1. Okoro T, Whitaker R, Gardner A, Maddison P, Andrew JG, Lemmey A. Does an early home-based progressive resistance training program improve function following total hip replacement? Results of a randomized controlled study. BMC Musculoskelet Disord. 2016 Apr 21;17:173. doi: 10.1186/s12891-016-1023-x.
    1. Sashika H, Matsuba Y, Watanabe Y. Home program of physical therapy: effect on disabilities of patients with total hip arthroplasty. Arch Phys Med Rehabil. 1996 Mar;77(3):273–277.
    1. Pataky Z, De León Rodriguez D, Golay A, Assal M, Assal J, Hauert C. Biofeedback training for partial weight bearing in patients after total hip arthroplasty. Arch Phys Med Rehabil. 2009 Aug;90(8):1435–1438. doi: 10.1016/j.apmr.2009.02.011.
    1. Raaben M, Vogely HC, Blokhuis TJ. Real-time visual biofeedback to improve therapy compliance after total hip arthroplasty: a pilot randomized controlled trial. Gait Posture. 2018 Mar;61:306–310. doi: 10.1016/j.gaitpost.2018.01.038.
    1. Correia FD, Nogueira A, Magalhães I, Guimarães J, Moreira M, Barradas I, Teixeira L, Tulha J, Seabra R, Lains J, Bento V. Home-based rehabilitation with a novel digital biofeedback system versus conventional in-person rehabilitation after total knee replacement: a feasibility study. Sci Rep. 2018 Jul 26;8(1):11299. doi: 10.1038/s41598-018-29668-0. doi: 10.1038/s41598-018-29668-0.
    1. Ribinik P, Le Moine F, de Korvin G, Coudeyre E, Genty M, Rannou F, Yelnik A, Calmels P. Physical and rehabilitation medicine (PRM) care pathways: "patients after total knee arthroplasty". Ann Phys Rehabil Med. 2012 Nov;55(8):533–539. doi: 10.1016/j.rehab.2012.02.001.
    1. Podsiadlo D, Richardson S. The timed "Up & Go": a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc. 1991 Feb;39(2):142–148.
    1. Poitras S, Wood KS, Savard J, Dervin GF, Beaule PE. Predicting early clinical function after hip or knee arthroplasty. Bone Joint Res. 2015 Sep;4(9):145–151. doi: 10.1302/2046-3758.49.2000417.
    1. Nankaku M, Tsuboyama T, Akiyama H, Kakinoki R, Fujita Y, Nishimura J, Yoshioka Y, Kawai H, Matsuda S. Preoperative prediction of ambulatory status at 6 months after total hip arthroplasty. Phys Ther. 2013 Jan;93(1):88–93. doi: 10.2522/ptj.20120016.
    1. Doll H, Gentile B, Bush EN, Ballinger R. Evaluation of the measurement properties of four performance outcome measures in patients with elective hip replacements, elective knee replacements, or hip fractures. Value Health. 2018 Dec;21(9):1104–1114. doi: 10.1016/j.jval.2018.02.006.
    1. Stratford PW, Kennedy DM, Riddle DL. New study design evaluated the validity of measures to assess change after hip or knee arthroplasty. J Clin Epidemiol. 2009 Mar;62(3):347–352. doi: 10.1016/j.jclinepi.2008.06.008.
    1. Klässbo M, Larsson E, Mannevik E. Hip disability and osteoarthritis outcome score. An extension of the Western Ontario and McMaster Universities Osteoarthritis Index. Scand J Rheumatol. 2003;32(1):46–51.
    1. Nilsdotter AK, Lohmander LS, Klässbo M, Roos EM. Hip disability and osteoarthritis outcome score (HOOS)--validity and responsiveness in total hip replacement. BMC Musculoskelet Disord. 2003 May 30;4:10. doi: 10.1186/1471-2474-4-10.
    1. Kennedy DM, Stratford PW, Wessel J, Gollish JD, Penney D. Assessing stability and change of four performance measures: a longitudinal study evaluating outcome following total hip and knee arthroplasty. BMC Musculoskelet Disord. 2005 Jan 28;6:3. doi: 10.1186/1471-2474-6-3.
    1. Piqueras M, Marco E, Coll M, Escalada F, Ballester A, Cinca C, Belmonte R, Muniesa JM. Effectiveness of an interactive virtual telerehabilitation system in patients after total knee arthoplasty: a randomized controlled trial. J Rehabil Med. 2013 Apr;45(4):392–396. doi: 10.2340/16501977-1119.
    1. Ornetti P, Parratte S, Gossec L, Tavernier C, Argenson J, Roos EM, Guillemin F, Maillefert JF. Cross-cultural adaptation and validation of the French version of the Hip disability and Osteoarthritis Outcome Score (HOOS) in hip osteoarthritis patients. Osteoarthritis Cartilage. 2010 Apr;18(4):522–529. doi: 10.1016/j.joca.2009.12.007.
    1. Foucher KC. Identifying clinically meaningful benchmarks for gait improvement after total hip arthroplasty. J Orthop Res. 2016 Jan;34(1):88–96. doi: 10.1002/jor.22996. doi: 10.1002/jor.22996.
    1. Hesse S, Werner C, Seibel H, von FS, Kappel E, Kirker S, Käding M. Treadmill training with partial body-weight support after total hip arthroplasty: a randomized controlled trial. Arch Phys Med Rehabil. 2003 Dec;84(12):1767–1773.
    1. Suetta C, Magnusson SP, Rosted A, Aagaard P, Jakobsen AK, Larsen LH, Duus B, Kjaer M. Resistance training in the early postoperative phase reduces hospitalization and leads to muscle hypertrophy in elderly hip surgery patients--a controlled, randomized study. J Am Geriatr Soc. 2004 Dec;52(12):2016–2022. doi: 10.1111/j.1532-5415.2004.52557.x.
    1. Rahmann AE, Brauer SG, Nitz JC. A specific inpatient aquatic physiotherapy program improves strength after total hip or knee replacement surgery: a randomized controlled trial. Arch Phys Med Rehabil. 2009 May;90(5):745–755. doi: 10.1016/j.apmr.2008.12.011.
    1. Di Monaco M, Vallero F, Tappero R, Cavanna A. Rehabilitation after total hip arthroplasty: a systematic review of controlled trials on physical exercise programs. Eur J Phys Rehabil Med. 2009 Sep;45(3):303–317.
    1. Wijnen A, Bouma SE, Seeber GH, van der Woude LH, Bulstra SK, Lazovic D, Stevens M, van den Akker-Scheek I. The therapeutic validity and effectiveness of physiotherapeutic exercise following total hip arthroplasty for osteoarthritis: A systematic review. PLoS One. 2018;13(3):e0194517. doi: 10.1371/journal.pone.0194517.
    1. Artz N, Elvers KT, Lowe CM, Sackley C, Jepson P, Beswick AD. Effectiveness of physiotherapy exercise following total knee replacement: systematic review and meta-analysis. BMC Musculoskelet Disord. 2015 Feb 07;16:15. doi: 10.1186/s12891-015-0469-6.
    1. Jeldi AJ, Grant M, Allen DJ, Deakin AH, McDonald DA, Stansfield BW. Upright time and sit-to-stand transition progression after total hip arthroplasty: an inhospital longitudinal study. J Arthroplasty. 2016 Mar;31(3):735–739. doi: 10.1016/j.arth.2015.09.024.
    1. Lin JF, Kulić D. Human pose recovery using wireless inertial measurement units. Physiol Meas. 2012 Dec;33(12):2099–2115. doi: 10.1088/0967-3334/33/12/2099.
    1. Lowe CJ, Davies L, Sackley CM, Barker KL. Effectiveness of land-based physiotherapy exercise following hospital discharge following hip arthroplasty for osteoarthritis: an updated systematic review. Physiotherapy. 2015 Sep;101(3):252–265. doi: 10.1016/j.physio.2014.12.003.
    1. Nankaku M, Ikeguchi R, Goto K, So K, Kuroda Y, Matsuda S. Hip external rotator exercise contributes to improving physical functions in the early stage after total hip arthroplasty using an anterolateral approach: a randomized controlled trial. Disabil Rehabil. 2016 Dec;38(22):2178–2183. doi: 10.3109/09638288.2015.1129453.
    1. Steffen TM, Hacker TA, Mollinger L. Age- and gender-related test performance in community-dwelling elderly people: Six-Minute Walk Test, Berg Balance Scale, Timed Up & Go Test, and gait speeds. Phys Ther. 2002 Feb;82(2):128–137.
    1. Lusardi Mm, Pellecchia Gl, Schulman M. Functional performance in community living older adults. J Geriatr Phys Ther. 2003 Dec 01;26(3):e1.
    1. Naylor JM, Harmer AR, Heard RC, Harris IA. Patterns of recovery following knee and hip replacement in an Australian cohort. Aust Health Review. 2009;33(1):124. doi: 10.1071/AH090124.
    1. Kennedy DM, Stratford PW, Hanna SE, Wessel J, Gollish JD. Modeling early recovery of physical function following hip and knee arthroplasty. BMC Musculoskelet Disord. 2006 Dec 11;7:100. doi: 10.1186/1471-2474-7-100.
    1. Heiberg KE, Bruun-Olsen V, Ekeland A, Mengshoel AM. Effect of a walking skill training program in patients who have undergone total hip arthroplasty: Followup one year after surgery. Arthritis Care Res (Hoboken) 2012 Mar;64(3):415–423. doi: 10.1002/acr.20681. doi: 10.1002/acr.20681.
    1. Bahadori S, Immins T, Wainwright TW. A review of wearable motion tracking systems used in rehabilitation following hip and knee replacement. J Rehabil Assist Techn Eng. 2018 Jun 18;5 doi: 10.1177/2055668318771816.
    1. Charbonnier C, Chagué S, Schmid J, Kolo FC, Bernardoni M, Christofilopoulos P. Analysis of hip range of motion in everyday life: a pilot study. Hip Int. 2015;25(1):82–90. doi: 10.5301/hipint.5000192.
    1. Davis KE, Ritter MA, Berend ME, Meding JB. The importance of range of motion after total hip arthroplasty. Clin Orthop Relat Res. 2007 Dec;465:180–184. doi: 10.1097/BLO.0b013e31815c5a64.
    1. Umpierres CS, Ribeiro TA, Marchisio ÂE, Galvão L, Borges ÍNK, Macedo CADS, Galia CR. Rehabilitation following total hip arthroplasty evaluation over short follow-up time: randomized clinical trial. J Rehabil Res Dev. 2014;51(10):1567–1578. doi: 10.1682/JRRD.2014.05.0132.
    1. Trudelle-Jackson E, Emerson R, Smith S. Outcomes of total hip arthroplasty: a study of patients one year postsurgery. J Orthop Sports Phys Ther. 2002 Jun;32(6):260–267. doi: 10.2519/jospt.2002.32.6.260.
    1. Tannast M, Kubiak-Langer M, Langlotz F, Puls M, Murphy SB, Siebenrock KA. Noninvasive three-dimensional assessment of femoroacetabular impingement. J Orthop Res. 2007 Jan;25(1):122–131. doi: 10.1002/jor.20309. doi: 10.1002/jor.20309.

Source: PubMed

3
订阅