Vitamin D receptor stimulation to reduce acute respiratory distress syndrome (ARDS) in patients with coronavirus SARS-CoV-2 infections: Revised Ms SBMB 2020_166

Jose Manuel Quesada-Gomez, Marta Entrenas-Castillo, Roger Bouillon, Jose Manuel Quesada-Gomez, Marta Entrenas-Castillo, Roger Bouillon

Abstract

Coronavirus infection is a serious health problem awaiting an effective vaccine and/or antiviral treatment. The major complication of coronavirus disease 2019 (COVID-19), the Acute Respiratory Distress syndrome (ARDS), is due to a variety of mechanisms including cytokine storm, dysregulation of the renin-angiotensin system, neutrophil activation and increased (micro)coagulation. Based on many preclinical studies and observational data in humans, ARDS may be aggravated by vitamin D deficiency and tapered down by activation of the vitamin D receptor. Several randomized clinical trials using either oral vitamin D or oral Calcifediol (25OHD) are ongoing. Based on a pilot study, oral calcifediol may be the most promising approach. These studies are expected to provide guidelines within a few months.

Keywords: 1α, 25(OH)2D or 1α, 25-dihydroxyvitamin D or calcitriol; Acute respiratory distress syndrome (ARDS); Calcifediol or 25-hydroxyvitamin D3; Corona virus; Cytokine storm; Hypercoagulability; Lung diseases; Renin-angiotensin system; SARS-CoV-2; Vitamin D, vitamin D3 or cholecalciferol.

Copyright © 2020 Elsevier Ltd. All rights reserved.

Figures

Fig. 1
Fig. 1
The mechanisms involved in the pathogenesis of Acute Respiratory Distress Syndrome (ARDS) including cytokine and chemokine storm (release of large amounts by immune effector cells), Excessive activation and recruitment of neutrophils into inflamed interstitium and alveolar space with disruption of the endothelial-epithelial barrier and alveolar damage, and dysregulation of the coagulation cascade generating intra-alveolar or systemic fibrin clots and thrombotic complications. The vitamin D endocrine system minimizes ARDS. The vitamin D receptor (VDR) and enzymes of the vitamin D endocrine system are expressed in the cuboidal alveolar type II cells (ACII) and monocyte/macrophages and activated lymphocytes. The availability of calcifediol is critical for synthesizing calcitriol, which through endocrine, auto/paracrine action on VDR: 1) decreases the intensity of Cytokine and Chemokine storm, 2)modulating neutrophil activity, 3)maintaining the integrity of the pulmonary epithelial barrier, 4)stimulating epithelial repair and 5)decreasing directly and indirectly the risk of hypercoagulability and pulmonary or systemic thrombosis SARS-CoV-2: severe acute respiratory syndrome coronavirus 2. IFN-α, IFN-γ: Interferon gamma α and γ; IL-1β, IL-6, IL-12, IL-18, IL-33 (Interleukin -1β, 6, 12, 18, 33) TNF-α (Tumor Necrosis Factor-α). TGFβ (Transforming growth factor α and β). CCL2, CCL3, CCL5 Chemokine (C-C motif) ligand 2,3.5) CXCL8, CXCL9, CXCL10: C-X-C (motif chemokine ligand 8,910).
Fig. 2
Fig. 2
The Renin Angiotensin System (RAS) and Acute Respiratory Distress Syndrome (ARDS). Local or systemic inflammatory reactions may activate RAS and ACE thereby generating angiotensin II, which via its receptor (ATR) is able to induce lung damage. During SARS-CoV-2 invasion ACE2 is downregulated in Type II alveolar epithelial cells thereby decreasing the conversion of Ang II to Ang-(1–7). This prevents the protective action of the Ang (1–7), acting on its receptor (Mas R), and all aspects of ARDS. 1α,25(OH)2D/VDR is a powerful negative regulator of the renin-angiotensin system (RAS) inhibiting renin and the ACE/Ang II/AT1R cascade and inducing ACE2/Ang-(1–7) axis activity. ACII: cuboidal alveolar type II cells. SARS-CoV-2: severe acute respiratory syndrome coronavirus 2 Ang I angiotensin I. Ang II: angiotensin II. Ang-(1–7) angiotensin1–7. MasR: G protein-coupled Mas receptor. AT1R y AT2R: angiotensin II receptor 1 and 2.

References

    1. Bloch E.M., Shoham S., Casadevall A., Sachais B.S., Shaz B., Winters J.L., van Buskirk C., Grossman B.J., Joyner M., Henderson J.P., Pekosz A., Lau B., Wesolowski A., Katz L., Shan H., Auwaerter P.G., Thomas D., Sullivan D.J., Paneth N., Gehrie E., Spitalnik S., Hod E., Pollack L., Nicholson W.T., Pirofski L., Bailey J.A., Tobian A.A.R. Deployment of convalescent plasma for the prevention and treatment of COVID-19. J. Clin. Invest. 2020 doi: 10.1172/jci138745.
    1. Beigel J.H., Tomashek K.M., Dodd L.E., Mehta A.K., Zingman B.S., Kalil A.C., Hohmann E., Chu H.Y., Luetkemeyer A., Kline S., Lopez de Castilla D., Finberg R.W., Dierberg K., Tapson V., Hsieh L., Patterson T.F., Paredes R., Sweeney D.A., Short W.R., Touloumi G., Lye D.C., Ohmagari N., Oh M., Ruiz-Palacios G.M., Benfield T., Fätkenheuer G., Kortepeter M.G., Atmar R.L., Creech C.B., Lundgren J., Babiker A.G., Pett S., Neaton J.D., Burgess T.H., Bonnett T., Green M., Makowski M., Osinusi A., Nayak S., Lane H.C. Remdesivir for the treatment of Covid-19 — preliminary report. N. Engl. J. Med. 2020 doi: 10.1056/NEJMoa2007764. NEJMoa2007764.
    1. Bouillon R., Marcocci C., Carmeliet G., Bikle D., White J.H., Dawson-Hughes B., Lips P., Munns C.F., Lazaretti-Castro M., Giustina A., Bilezikian J. Skeletal and extraskeletal actions of vitamin d: current evidence and outstanding questions. Endocr. Rev. 2019;40:1109–1151. doi: 10.1210/er.2018-00126.
    1. Martens P.-J., Gysemans C., Verstuyf A., Mathieu C. Vitamin d’s effect on immune function. Nutrients. 2020;12:1248. doi: 10.3390/nu12051248.
    1. Bikle D.D., Patzek S., Wang Y. Physiologic and pathophysiologic roles of extra renal CYP27b1: case report and review. Bone Rep. 2018;8:255–267. doi: 10.1016/j.bonr.2018.02.004.
    1. Martineau A.R., Jolliffe D.A., Hooper R.L., Greenberg L., Aloia J.F., Bergman P., Dubnov-Raz G., Esposito S., Ganmaa D., Ginde A.A., Goodall E.C., Grant C.C., Griffiths C.J., Janssens W., Laaksi I., Manaseki-Holland S., Mauger D., Murdoch D.R., Neale R., Rees J.R., Simpson S., Stelmach I., Kumar G.T., Urashima M., Camargo C.A. Vitamin D supplementation to prevent acute respiratory tract infections: Systematic review and meta-analysis of individual participant data. BMJ. 2017;356 doi: 10.1136/bmj.i6583.
    1. Hansdottir S., Monick M.M., Hinde S.L., Lovan N., Look D.C., Hunninghake G.W. Respiratory epithelial cells convert inactive vitamin d to its active form: potential effects on host defense. J. Immunol. 2008;181:7090–7099. doi: 10.4049/jimmunol.181.10.7090.
    1. Xu Z., Shi L., Wang Y., Zhang J., Huang L., Zhang C., Liu S., Zhao P., Liu H., Zhu L., Tai Y., Bai C., Gao T., Song J., Xia P., Dong J., Zhao J., Wang F.S. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med. 2020;8:420–422. doi: 10.1016/S2213-2600(20)30076-X.
    1. Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y., Zhang L., Fan G., Xu J., Gu X., Cheng Z., Yu T., Xia J., Wei Y., Wu W., Xie X., Yin W., Li H., Liu M., Xiao Y., Gao H., Guo L., Xie J., Wang G., Jiang R., Gao Z., Jin Q., Wang J., Cao B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497–506. doi: 10.1016/S0140-6736(20)30183-5.
    1. Chen N., Zhou M., Dong X., Qu J., Gong F., Han Y., Qiu Y., Wang J., Liu Y., Wei Y., Xia J., Yu T., Zhang X., Zhang L. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395:507–513. doi: 10.1016/S0140-6736(20)30211-7.
    1. Bellani G., Laffey J.G., Pham T., Fan E., Brochard L., Esteban A., Gattinoni L., Van Haren F.M.P., Larsson A., McAuley D.F., Ranieri M., Rubenfeld G., Thompson B.T., Wrigge H., Slutsky A.S., Pesenti A. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA J. Am. Med. Assoc. 2016;315:788–800. doi: 10.1001/jama.2016.0291.
    1. Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y., Zhang L., Fan G., Xu J., Gu X., Cheng Z., Yu T., Xia J., Wei Y., Wu W., Xie X., Yin W., Li H., Liu M., Xiao Y., Gao H., Guo L., Xie J., Wang G., Jiang R., Gao Z., Jin Q., Wang J., Cao B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497–506. doi: 10.1016/S0140-6736(20)30183-5.
    1. Zhu N., Zhang D., Wang W., Li X., Yang B., Song J., Zhao X., Huang B., Shi W., Lu R., Niu P., Zhan F., Ma X., Wang D., Xu W., Wu G., Gao G.F., Tan W. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 2020;382:727–733. doi: 10.1056/NEJMoa2001017.
    1. Fan E., Brodie D., Slutsky A.S. Acute respiratory distress syndrome. JAMA. 2018;319:698. doi: 10.1001/jama.2017.21907.
    1. Standiford T.J., Ward P.A. Therapeutic targeting of acute lung injury and acute respiratory distress syndrome. Transl. Res. 2016;167:183–191. doi: 10.1016/j.trsl.2015.04.015.
    1. Channappanavar R., Perlman S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin. Immunopathol. 2017;39:529–539. doi: 10.1007/s00281-017-0629-x.
    1. Cameron M.J., Bermejo-Martin J.F., Danesh A., Muller M.P., Kelvin D.J. Human immunopathogenesis of severe acute respiratory syndrome (SARS) Virus Res. 2008;133:13–19. doi: 10.1016/j.virusres.2007.02.014.
    1. Min C.-K., Cheon S., Ha N.-Y., Sohn K.M., Kim Y., Aigerim A., Shin H.M., Choi J.-Y., Inn K.-S., Kim J.-H., Moon J.Y., Choi M.-S., Cho N.-H., Kim Y.-S. Comparative and kinetic analysis of viral shedding and immunological responses in MERS patients representing a broad spectrum of disease severity. Sci. Rep. 2016;6:25359. doi: 10.1038/srep25359.
    1. Williams A.E., Chambers R.C. The mercurial nature of neutrophils: still an enigma in ARDS? Am. J. Physiol. Lung Cell Mol. Physiol. 2014;306:L217–L230. doi: 10.1152/ajplung.00311.2013.
    1. Williams A.E., José R.J., Mercer P.F., Brealey D., Parekh D., Thickett D.R., O’Kane C., McAuley D.F., Chambers R.C. Evidence for chemokine synergy during neutrophil migration in ARDS. Thorax. 2017;72:66–73. doi: 10.1136/thoraxjnl-2016-208597.
    1. Ichikawa A., Kuba K., Morita M., Chida S., Tezuka H., Hara H., Sasaki T., Ohteki T., Ranieri V.M., Dos Santos C.C., Kawaoka Y., Akira S., Luster A.D., Lu B., Penninger J.M., Uhlig S., Slutsky A.S., Imai Y. CXCL10-CXCR3 enhances the development of neutrophil-mediated fulminant lung injury of viral and nonviral origin. Am. J. Respir. Crit. Care Med. 2013;187:65–77. doi: 10.1164/rccm.201203-0508OC.
    1. Imai Y., Kuba K., Rao S., Huan Y., Guo F., Guan B., Yang P., Sarao R., Wada T., Leong-Poi H., Crackower M.A., Fukamizu A., Hui C.C., Hein L., Uhlig S., Slutsky A.S., Jiang C., Penninger J.M. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature. 2005;436:112–116. doi: 10.1038/nature03712.
    1. Treml B., Neu N., Kleinsasser A., Gritsch C., Finsterwalder T., Geiger R., Schuster M., Janzek E., Loibner H., Penninger J., Loeckinger A. Recombinant angiotensin-converting enzyme 2 improves pulmonary blood flow and oxygenation in lipopolysaccharide-induced lung injury in piglets. Crit. Care Med. 2010;38:596–601. doi: 10.1097/CCM.0b013e3181c03009.
    1. Wenz M., Hoffmann B., Bohlender J., Kaczmarczyk G. Angiotensin II formation and endothelin clearance in ARDS patients in supine and prone positions. Intensive Care Med. 2000;26:292–298. doi: 10.1007/s001340051152.
    1. Kim J., Choi S.M., Lee J., Park Y.S., Lee C.H., Yim J.-J., Yoo C.-G., Kim Y.W., Han S.K., Lee S.-M. Effect of Renin-Angiotensin System Blockage in Patients with Acute Respiratory Distress Syndrome: A Retrospective Case Control Study. Korean J. Crit. Care Med. 2017;32:154–163. doi: 10.4266/kjccm.2016.00976.
    1. Kuba K., Imai Y., Rao S., Jiang C., Penninger J.M. Lessons from SARS: control of acute lung failure by the SARS receptor ACE2. J. Mol. Med. 2006;84:814–820. doi: 10.1007/s00109-006-0094-9.
    1. Zhou P., Lou Yang X., Wang X.G., Hu B., Zhang L., Zhang W., Si H.R., Zhu Y., Li B., Huang C.L., Chen H.D., Chen J., Luo Y., Guo H., Di Jiang R., Liu M.Q., Chen Y., Shen X.R., Wang X., Zheng X.S., Zhao K., Chen Q.J., Deng F., Liu L.L., Yan B., Zhan F.X., Wang Y.Y., Xiao G.F., Shi Z.L. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579:270–273. doi: 10.1038/s41586-020-2012-7.
    1. Zhao Y., Zhao Z., Wang Y., Zhou Y., Ma Y., Zuo W. Single-cell RNA expression profiling of ACE2, the putative receptor of Wuhan 2019-nCov. BioRxiv. 2020 doi: 10.1101/2020.01.26.919985. 2020.01.26.919985.
    1. Dagenais N.J., Jamali F. Protective effects of angiotensin II interruption: evidence for antiinflammatory actions. Pharmacotherapy. 2005;25:1213–1229. doi: 10.1592/phco.2005.25.9.1213.
    1. Patel V.B., Basu R., Oudit G.Y. ACE2/Ang 1-7 axis: a critical regulator of epicardial adipose tissue inflammation and cardiac dysfunction in obesity. Adipocyte. 2016;5:306–311. doi: 10.1080/21623945.2015.1131881.
    1. Gouda M.M., Shaikh S.B., Bhandary Y.P. Inflammatory and fibrinolytic system in acute respiratory distress syndrome. Lung. 2018;196:609–616. doi: 10.1007/s00408-018-0150-6.
    1. Varga Z., Flammer A.J., Steiger P., Haberecker M., Andermatt R., Zinkernagel A.S., Mehra M.R., Schuepbach R.A., Ruschitzka F., Moch H. Correspondence Endothelial cell infection and endotheliitis in. Lancet. 2020;6736:19–20. doi: 10.1016/S0140-6736(20)30937-5.
    1. Giannis D., Ziogas I.A., Gianni P. Coagulation disorders in coronavirus infected patients: COVID-19, SARS-CoV-1, MERS-CoV and lessons from the past. J. Clin. Virol. 2020;127 doi: 10.1016/j.jcv.2020.104362.
    1. Bikdeli B., Madhavan M.V., Jimenez D., Chuich T., Dreyfus I., Driggin E., Der Nigoghossian C., Ageno W., Madjid M., Guo Y., Tang L.V., Hu Y., Giri J., Cushman M., Quéré I., Dimakakos E.P., Gibson C.M., Lippi G., Favaloro E.J., Fareed J., Caprini J.A., Tafur A.J., Burton J.R., Francese D.P., Wang E.Y., Falanga A., McLintock C., Hunt B.J., Spyropoulos A.C., Barnes G.D., Eikelboom J.W., Weinberg I., Schulman S., Carrier M., Piazza G., Beckman J.A., Steg P.G., Stone G.W., Rosenkranz S., Goldhaber S.Z., Parikh S.A., Monreal M., Krumholz H.M., Konstantinides S.V., Weitz J.I., Lip G.Y.H. COVID-19 and thrombotic or thromboembolic disease: implications for prevention, antithrombotic therapy, and follow-up. J. Am. Coll. Cardiol. 2020 doi: 10.1016/j.jacc.2020.04.031.
    1. Wang J., Chen L., Chen B., Meliton A., Liu S.Q., Shi Y., Liu T., Deb D.K., Solway J., Chun Li Y. Chronic Activation of the renin-angiotensin system induces lung fibrosis. Sci. Rep. 2015;5 doi: 10.1038/srep15561.
    1. Ye Z., Zhang Y., Wang Y., Huang Z., Song B. Chest CT manifestations of new coronavirus disease 2019 (COVID-19): a pictorial review. Eur. Radiol. 2020:1–9. doi: 10.1007/s00330-020-06801-0.
    1. Xu J., Yang J., Chen J., Luo Q., Zhang Q., Zhang H. Vitamin D alleviates lipopolysaccharide-induced acute lung injury via regulation of the renin-angiotensin system. Mol. Med. Rep. 2017;16:7432–7438. doi: 10.3892/mmr.2017.7546.
    1. Shi Y.Y., Liu T.J., Fu J.H., Xu W., Wu L.L., Hou A.N., Xue X.D. Vitamin D/VDR signaling attenuates lipopolysaccharide-induced acute lung injury by maintaining the integrity of the pulmonary epithelial barrier. Mol. Med. Rep. 2016;13:1186–1194. doi: 10.3892/mmr.2015.4685.
    1. Kong J., Zhu X., Shi Y., Liu T., Chen Y., Bhan I., Zhao Q., Thadhani R., Chun Li Y. VDR attenuates acute lung injury by blocking Ang-2-Tie-2 pathway and renin-angiotensin system. Mol. Endocrinol. 2013;27:2116–2125. doi: 10.1210/me.2013-1146.
    1. Zheng S., Yang J., Hu X., Li M., Wang Q., Dancer R.C.A., Parekh D., Gao-Smith F., Thickett D.R., Jin S. Vitamin D attenuates lung injury via stimulating epithelial repair, reducing epithelial cell apoptosis and inhibits TGF-β induced epithelial to mesenchymal transition. Biochem. Pharmacol. 2020:113955. doi: 10.1016/j.bcp.2020.113955.
    1. Ishii M., Yamaguchi Y., Isumi K., Ogawa S., Akishita M. Transgenic Mice Overexpressing Vitamin D Receptor (VDR) Show Anti-Inflammatory Effects in Lung Tissues. Inflammation. 2017;40:2012–2019. doi: 10.1007/s10753-017-0641-2.
    1. Rafique A., Rejnmark L., Heickendorff L., Møller H.J. 25(OH)D 3 and 1.25(OH) 2 D 3 inhibits TNF-α expression in human monocyte derived macrophages. PLoS One. 2019;14 doi: 10.1371/journal.pone.0215383.
    1. Andrukhov O., Andrukhova O., Hulan U., Tang Y., Bantleon H.P., Rausch-Fan X. Both 25-hydroxyvitamin-D3 and 1,25-dihydroxyvitamin- D3 reduces inflammatory response in human periodontal ligament cells. PLoS One. 2014;9:e90301. doi: 10.1371/journal.pone.0090301.
    1. Bischoff-Ferrari H.A. Optimal serum 25-hydroxyvitamin D levels for multiple health outcomes. Adv. Exp. Med. Biol. 2014;810:500–525. doi: 10.1007/978-1-4939-0437-2_28.
    1. Selvaraj P., Harishankar M., Singh B., Banurekha V.V., Jawahar M.S. Effect of vitamin D 3 on chemokine expression in pulmonary tuberculosis. Cytokine. 2012;60:212–219. doi: 10.1016/j.cyto.2012.06.238.
    1. Scolletta S., Colletti M., Di Luigi L., Crescioli C. Vitamin D receptor agonists target CXCL10: new therapeutic tools for resolution of inflammation. Mediators Inflamm. 2013;2013 doi: 10.1155/2013/876319.
    1. Kong J., Zhang Z., Musch M.W., Ning G., Sun J., Hart J., Bissonnette M., Yan C.L. Novel role of the vitamin D receptor in maintaining the integrity of the intestinal mucosal barrier. Am. J. Physiol. Gastrointest. Liver Physiol. 2007;294 doi: 10.1152/ajpgi.00398.2007.
    1. Takano Y., Mitsuhashi H., Ueno K. 1α,25-Dihydroxyvitamin D 3 inhibits neutrophil recruitment in hamster model of acute lung injury. Steroids. 2011;76:1305–1309. doi: 10.1016/j.steroids.2011.06.009.
    1. Li Y.C., Qiao G., Uskokovic M., Xiang W., Zheng W., Kong J. Vitamin D: a negative endocrine regulator of the renin-angiotensin system and blood pressure. J. Steroid Biochem. Mol. Biol. 2004:387–392. doi: 10.1016/j.jsbmb.2004.03.004.
    1. Zhou C., Lu F., Cao K., Xu D., Goltzman D., Miao D. Calcium-independent and 1,25(OH)2D3-dependent regulation of the renin-angiotensin system in 1α-hydroxylase knockout mice. Kidney Int. 2008;74:170–179. doi: 10.1038/ki.2008.101.
    1. Chen L.N., Yang X.H., Nissen D.H., Chen Y.Y., Wang L.J., Wang J.H., Gao J.L., Zhang L.Y. Dysregulated renin-Angiotensin system contributes to acute lung injury caused by hind-limb ischemia-reperfusion in mice. Shock. 2013;40:420–429. doi: 10.1097/SHK.0b013e3182a6953e.
    1. Liu D., Fang Y.X., Wu X., Tan W., Zhou W., Zhang Y., Liu Y.Q., Li G.Q. 1,25-(OH)2D3/Vitamin D receptor alleviates systemic lupus erythematosus by downregulating Skp2 and upregulating p27, Cell Commun. Signal. 2019;17 doi: 10.1186/s12964-019-0488-2.
    1. Yang E.S., Burnstein K.L. Vitamin d inhibits G1 to S progression in LNCaP prostate Cancer cells through p27Kip1 stabilization and Cdk2 mislocalization to the cytoplasm. J. Biol. Chem. 2003;278:46862–46868. doi: 10.1074/jbc.M306340200.
    1. Gassen N.C., Niemeyer D., Muth D., Corman V.M., Martinelli S., Gassen A., Hafner K., Papies J., Mösbauer K., Zellner A., Zannas A.S., Herrmann A., Holsboer F., Brack-Werner R., Boshart M., Müller-Myhsok B., Drosten C., Müller M.A., Rein T. SKP2 attenuates autophagy through Beclin1-ubiquitination and its inhibition reduces MERS-Coronavirus infection. Nat. Commun. 2019;10 doi: 10.1038/s41467-019-13659-4.
    1. Fernández Á.F., Sebti S., Wei Y., Zou Z., Shi M., McMillan K.L., He C., Ting T., Liu Y., Chiang W.C., Marciano D.K., Schiattarella G.G., Bhagat G., Moe O.W., Hu M.C., Levine B. Disruption of the beclin 1-BCL2 autophagy regulatory complex promotes longevity in mice. Nature. 2018;558:136–140. doi: 10.1038/s41586-018-0162-7.
    1. Andersen K.G., Rambaut A., Lipkin W.I., Holmes E.C., Garry R.F. The proximal origin of SARS-CoV-2. Nat. Med. 2020;26:450–452. doi: 10.1038/s41591-020-0820-9.
    1. Talreja H., Tan J., Dawes M., Supershad S., Rabindranath K., Fisher J., Valappil S., van der Merwe V., Wong L., van der Merwe W., Paton J. A consensus statement on the use of angiotensin receptor blockers and angiotensin converting enzyme inhibitors in relation to COVID-19 (corona virus disease 2019) N. Z. Med. J. 2020;133:85–87. (accessed May 2, 2020)
    1. Guo J., Huang Z., Lin L., Lv J. Coronavirus disease 2019 (COVID-19) and cardiovascular disease: a viewpoint on the potential influence of angiotensin-converting enzyme Inhibitors/Angiotensin receptor blockers on onset and severity of severe acute respiratory syndrome coronavirus 2 infection. J. Am. Heart Assoc. 2020;9 doi: 10.1161/JAHA.120.016219.
    1. Vaduganathan M., Vardeny O., Michel T., McMurray J.J.V., Pfeffer M.A., Solomon S.D. Renin–Angiotensin–Aldosterone system inhibitors in patients with Covid-19. N. Engl. J. Med. 2020 doi: 10.1056/nejmsr2005760.
    1. Lubel J., Garg M. Renin–Angiotensin–Aldosterone system inhibitors in Covid-19. N. Engl. J. Med. 2020;382 doi: 10.1056/NEJMc2013707. NEJMc2013707.
    1. Brinkmann V., Reichard U., Goosmann C., Fauler B., Uhlemann Y., Weiss D.S., Weinrauch Y., Zychlinsky A. Neutrophil extracellular traps kill Bacteria. Science (80-.) 2004;303:1532–1535. doi: 10.1126/science.1092385.
    1. Barnes B.J., Adrover J.M., Baxter-Stoltzfus A., Borczuk A., Cools-Lartigue J., Crawford J.M., Daßler-Plenker J., Guerci P., Huynh C., Knight J.S., Loda M., Looney M.R., McAllister F., Rayes R., Renaud S., Rousseau S., Salvatore S., Schwartz R.E., Spicer J.D., Yost C.C., Weber A., Zuo Y., Egeblad M. Targeting potential drivers of COVID-19: neutrophil extracellular traps. J. Exp. Med. 2020;217 doi: 10.1084/jem.20200652.
    1. Agraz-Cibrian J.M., Giraldo D.M., Urcuqui-Inchima S. 1,25-Dihydroxyvitamin D3 induces formation of neutrophil extracellular trap-like structures and modulates the transcription of genes whose products are neutrophil extracellular trap-associated proteins: a pilot study. Steroids. 2019;141:14–22. doi: 10.1016/j.steroids.2018.11.001.
    1. Hansdottir S., Monick M.M., Lovan N., Powers L., Gerke A., Hunninghake G.W. Vitamin d decreases respiratory syncytial virus induction of NF-κB–Linked chemokines and cytokines in airway epithelium while maintaining the antiviral state. J. Immunol. 2010;184:965–974. doi: 10.4049/jimmunol.0902840.
    1. Chen H., Lu R., guo Zhang Y., Sun J. Vitamin d receptor deletion leads to the destruction of tight and adherens junctions in lungs. Tissue Barriers. 2018;6:1–13. doi: 10.1080/21688370.2018.1540904.
    1. Kose M., Bastug O., Sonmez M.F., Per S., Ozdemir A., Kaymak E., Yahşi H., Ozturk M.A. Protective effect of vitamin D against hyperoxia-induced lung injury in newborn rats. Pediatr. Pulmonol. 2017;52:69–76. doi: 10.1002/ppul.23500.
    1. Margetic S. Inflammation and hemostasis. Biochem. Medica. 2012:49–62. doi: 10.11613/bm.2012.006.
    1. Ohsawa M., Koyama T., Yamamoto K., Hirosawa S., Kamei S., Kamiyama R. 1α,25-Dihydroxyvitamin D3 and its potent synthetic analogs downregulate tissue factor and upregulate thrombomodulin expression in monocytic cells, counteracting the effects of tumor necrosis factor and oxidized LDL. Circulation. 2000;102:2867–2872. doi: 10.1161/01.CIR.102.23.2867.
    1. Aihara K.I., Azuma H., Akaike M., Ikeda Y., Yamashita M., Sudo T., Hayashi H., Yamada Y., Endoh F., Fujimura M., Yoshida T., Yamaguchi H., Hashizume S., Kato M., Yoshimura K., Yamamoto Y., Kato S., Matsumoto T. Disruption of nuclear vitamin D receptor gene causes enhanced thrombogenicity in mice. J. Biol. Chem. 2004;279:35798–35802. doi: 10.1074/jbc.M404865200.
    1. Martinez-Moreno J.M., Herencia C., De Oca A.M., Muñoz-Castañeda J.R., Rodríguez-Ortiz M.E., Diáz-Tocados J.M., Peralbo-Santaella E., Camargo A., Canalejo A., Rodriguez M., Velasco-Gimena F., Almaden Y. Vitamin D modulates tissue factor and protease-activated receptor 2 expression in vascular smooth muscle cells. FASEB J. 2016;30:1367–1376. doi: 10.1096/fj.15-272872.
    1. Wu W.X., He D.R. Low vitamin d levels are associated with the development of deep venous thromboembolic events in patients with ischemic stroke. Clin. Appl. Thromb. Hemost. 2018;24:69S–75S. doi: 10.1177/1076029618786574.
    1. Topaloglu O., Arslan M.S., Karakose M., Ucan B., Ginis Z., Cakir E., Akkaymak E.T., Sahin M., Ozbek M., Cakal E., Delibasi T. Is There Any Association Between Thrombosis and Tissue Factor Pathway Inhibitor Levels in Patients With Vitamin D Deficiency? Clin. Appl. Thromb. Hemost. 2015;21:428–433. doi: 10.1177/1076029613509477.
    1. Holick M.F. Medical progress: vitamin d deficiency. N. Engl. J. Med. 2007;357:266–281. doi: 10.1056/NEJMra070553.
    1. Sluyter J.D., Camargo C.A., Waayer D., Lawes C.M.M., Toop L., Khaw K.T., Scragg R. Effect of monthly, high-dose, long-term vitamin D on lung function: a randomized controlled trial. Nutrients. 2017;9 doi: 10.3390/nu9121353.
    1. Bouillon R. Vitamin D status in Africa is worse than in other continents. Lancet Glob. Heal. 2020;8:e20–e21. doi: 10.1016/S2214-109X(19)30492-9.
    1. Dancer R.C.A., Parekh D., Lax S., D’Souza V., Zheng S., Bassford C.R., Park D., Bartis D.G., Mahida R., Turner A.M., Sapey E., Wei W., Naidu B., Stewart P.M., Fraser W.D., Christopher K.B., Cooper M.S., Gao F., Sansom D.M., Martineau A.R., Perkins G.D., Thickett D.R. Vitamin D deficiency contributes directly to the acute respiratory distress syndrome (ARDS) Thorax. 2015;70:617–624. doi: 10.1136/thoraxjnl-2014-206680.
    1. Thickett D.R., Moromizato T., Litonjua A.A., Amrein K., Quraishi S.A., Lee-Sarwar K.A., Mogensen K.M., Purtle S.W., Gibbons F.K., Camargo C.A., Giovannucci E., Christopher K.B. Association between prehospital vitamin D status and incident acute respiratory failure in critically ill patients: a retrospective cohort study. BMJ Open Respir. Res. 2015;2:1–8. doi: 10.1136/bmjresp-2014-000074.
    1. Park S., Lee M.G., Hong S.B., Lim C.M., Koh Y., Huh J.W. Effect of vitamin D deficiency in korean patients with acute respiratory distress syndrome. Korean J. Intern. Med. 2018;33:1129–1136. doi: 10.3904/kjim.2017.380.
    1. , Impact of vitamin D deficiency on prognosis of patients with novel coronavirus pneumonia (COVID-19), (2018) 3–4. (accessed May 2, 2020).
    1. , The relationship between Vitamin D andnovel coronavirus pneumonia (COVID-19), (2018) 3–4. (accessed May 2, 2020).
    1. Martucci G., McNally D., Parekh D., Zajic P., Tuzzolino F., Arcadipane A., Christopher K.B., Dobnig H., Amrein K. Trying to identify who may benefit most from future vitamin D intervention trials: a post hoc analysis from the VITDAL-ICU study excluding the early deaths. Crit. Care. 2019;23:200. doi: 10.1186/s13054-019-2472-z.
    1. Bouillon R., Bikle D. Vitamin d metabolism revised: fall of dogmas. J. Bone Miner. Res. 2019;34:1985–1992. doi: 10.1002/jbmr.3884.
    1. Jolliffe D.A., Stefanidis C., Wang Z., Kermani N.Z., Dimitrov V., White J.H., McDonough J.E., Janssens W., Pfeffer P., Griffiths C.J., Bush A., Guo Y., Christenson S., Adcock I.M., Chung K.F., Thummel K.E., Martineau A.R. Vitamin d metabolism is dysregulated in asthma and chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2020 doi: 10.1164/rccm.201909-1867oc.
    1. Quesada-Gomez J.M., Bouillon R. Is calcifediol better than cholecalciferol for vitamin D supplementation? Osteoporos. Int. 2018;29:1697–1711. doi: 10.1007/s00198-018-4520-y.
    1. Grein J., Ohmagari N., Shin D., Diaz G., Asperges E., Castagna A., Feldt T., Green G., Green M.L., Lescure F.-X., Nicastri E., Oda R., Yo K., Quiros-Roldan E., Studemeister A., Redinski J., Ahmed S., Bernett J., Chelliah D., Chen D., Chihara S., Cohen S.H., Cunningham J., D’Arminio Monforte A., Ismail S., Kato H., Lapadula G., L’Her E., Maeno T., Majumder S., Massari M., Mora-Rillo M., Mutoh Y., Nguyen D., Verweij E., Zoufaly A., Osinusi A.O., DeZure A., Zhao Y., Zhong L., Chokkalingam A., Elboudwarej E., Telep L., Timbs L., Henne I., Sellers S., Cao H., Tan S.K., Winterbourne L., Desai P., Mera R., Gaggar A., Myers R.P., Brainard D.M., Childs R., Flanigan T. Compassionate use of remdesivir for patients with severe Covid-19. N. Engl. J. Med. 2020 doi: 10.1056/nejmoa2007016.

Source: PubMed

3
订阅