Effects of treatment with SGLT-2 inhibitors on arginine-related cardiovascular and renal biomarkers

Arne Gessner, Anna Gemeinhardt, Agnes Bosch, Dennis Kannenkeril, Christian Staerk, Andreas Mayr, Martin F Fromm, Roland E Schmieder, Renke Maas, Arne Gessner, Anna Gemeinhardt, Agnes Bosch, Dennis Kannenkeril, Christian Staerk, Andreas Mayr, Martin F Fromm, Roland E Schmieder, Renke Maas

Abstract

Background: In patients with type 2 diabetes (T2D) sodium-glucose cotransporter 2 (SGLT-2) inhibitors improve glycaemic control as well as cardiovascular and renal outcomes. Their effects on L-arginine (Arg) related risk markers asymmetric and symmetric dimethylarginine (ADMA and SDMA) and the protective biomarker L-homoarginine (hArg) linking T2D to cardiovascular and renal disease have not yet been reported.

Methods: Plasma and 24-h urine samples taken before and after 6 weeks of treatment were available from two prospective, randomized, double-blind, placebo-controlled, cross-over trials with empagliflozin (71 patients analyzed, NCT02471963) and dapagliflozin (59 patients analyzed, NCT02383238). In these samples, concentrations of hArg, Arg, ADMA, SDMA, and creatinine were determined by liquid-chromatography coupled to tandem mass-spectrometry. Additionally, intraindividual changes of the biomarkers in plasma were correlated with intraindividual changes of clinical parameters.

Results: Treatment with empagliflozin and dapagliflozin was associated with a reduction of plasma hArg by 17.5% and 13.7% (both p < 0.001), respectively, and increase in plasma SDMA concentration of 6.7% and 3.6%, respectively (p < 0.001 and p < 0.05), while plasma Arg and ADMA concentrations were not significantly altered. 24-h urinary excretion of ADMA was reduced by 15.2% after treatment with empagliflozin (p < 0.001) but not after dapagliflozin treatment, while excretion of the other markers was not significantly altered. Renal clearance of SDMA was reduced by 9.1% and 3.9% for both drugs (both p < 0.05). A reduction in ADMA clearance was observable after empagliflozin treatment only (- 15.5%, p < 0.001), but not after dapagliflozin. Renal clearance of hArg and Arg was not significantly altered. Treatment effects on L-arginine related biomarkers were not constantly correlated with effects on glycated hemoglobin, fasting plasma glucose, body mass index, and systolic blood pressure.

Conclusions: Treatment with SGLT-2 inhibitors has divergent effects on Arg-related biomarkers and could affect risk estimates associated with these markers. The observed effects are unlikely to explain the known cardiovascular and renal benefits of treatment with empagliflozin or dapagliflozin but still may indicate new therapeutic approaches in patients treated with SGLT-2 inhibitors. Trial registration http://www.clinicaltrials.gov : NCT02471963 (registered 15th June 2015, retrospectively registered) and NCT02383238.

Keywords: ADMA; Cardiovascular disease; Dapagliflozin; Empagliflozin; Homoarginine; SDMA; SGLT-2 inhibitor; Type 2 diabetes mellitus.

Conflict of interest statement

A. Gessner was involved in research projects at his institution by Boehringer Ingelheim. M.F. Fromm has received consultancy fees from Boehringer Ingelheim and lecture fees from Janssen-Cilag. He has received third-party funds for research projects at his institution by Boehringer Ingelheim, Dr. R. Pfleger GmbH, and Heidelberg Pharma Research GmbH.

R.E. Schmieder has received speaker fees and advisory board fees from Boehringer Ingelheim and AstraZeneca. The other authors declare that they have no competing interests.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
Intraindividual percentage ratios after treatment with empagliflozin or dapagliflozin in comparison to baseline values (Verum) and after placebo treatment in comparison to baseline values (Placebo) for plasma concentration of hArg, Arg, ADMA, SDMA, and creatinine. P-values calculated by two-sided paired t-tests; p-values refer to the percentage changes of biomarkers; adj. p-values computed based on the procedure of Benjamini and Hochberg

References

    1. Afkarian M, Sachs MC, Kestenbaum B, Hirsch IB, Tuttle KR, Himmelfarb J, de Boer IH. Kidney disease and increased mortality risk in type 2 diabetes. J Am Soc Nephrol. 2013;24(2):302–308.
    1. Shah AD, Langenberg C, Rapsomaniki E, Denaxas S, Pujades-Rodriguez M, Gale CP, Deanfield J, Smeeth L, Timmis A, Hemingway H. Type 2 diabetes and incidence of cardiovascular diseases: a cohort study in 1.9 million people. Lancet Diabetes Endocrinol. 2015;3(2):105–13.
    1. Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, Mattheus M, Devins T, Johansen OE, Woerle HJ, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373(22):2117–2128.
    1. Zelniker TA, Wiviott SD, Raz I, Im K, Goodrich EL, Bonaca MP, Mosenzon O, Kato ET, Cahn A, Furtado RHM, et al. SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet. 2019;393(10166):31–39.
    1. Packer M, Anker SD, Butler J, Filippatos G, Pocock SJ, Carson P, Januzzi J, Verma S, Tsutsui H, Brueckmann M, et al. Cardiovascular and renal outcomes with empagliflozin in heart failure. N Engl J Med. 2020;383(15):1413–1424.
    1. McMurray JJV, Solomon SD, Inzucchi SE, Kober L, Kosiborod MN, Martinez FA, Ponikowski P, Sabatine MS, Anand IS, Belohlavek J, et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med. 2019;381(21):1995–2008.
    1. Bhattarai M, Salih M, Regmi M, Al-akchar M, Koester C, Ibrahim A, Parajuli P, Garcia OL, Bhandari B, Rehman A, et al. Comprehensive evaluation of cardiovascular efficacy and safety outcomes of SGLT2 inhibitors in high risk patients of cardiovascular disease: systematic review and meta-analysis. Cardiovasc Endocrinol Metab. 2021;10(2):89–98.
    1. Wiviott SD, Raz I, Bonaca MP, Mosenzon O, Kato ET, Cahn A, Silverman MG, Zelniker TA, Kuder JF, Murphy SA, et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2019;380(4):347–357.
    1. Mosenzon O, Wiviott SD, Cahn A, Rozenberg A, Yanuv I, Goodrich EL, Murphy SA, Heerspink HJL, Zelniker TA, Dwyer JP, et al. Effects of dapagliflozin on development and progression of kidney disease in patients with type 2 diabetes: an analysis from the DECLARE-TIMI 58 randomised trial. Lancet Diabetes Endocrinol. 2019;7(8):606–617.
    1. Gambardella J, Khondkar W, Morelli MB, Wang X, Santulli G, Trimarco V. Arginine and endothelial function. Biomedicines. 2020;8(8):277–302.
    1. Mokhaneli MC, Botha-Le Roux S, Fourie CMT, Böger R, Schwedhelm E, Mels CMC. L-homoarginine is associated with decreased cardiovascular- and all-cause mortality. Eur J Clin Invest. 2021;51(5):e13472.
    1. Schwedhelm E, Song RJ, Vasan RS, van den Heuvel ER, Hannemann J, Xanthakis V, Böger R. Association of lower plasma homoarginine concentrations with greater risk of all-cause mortality in the community: the Framingham Offspring study. J Clin Med. 2020;9(6):2016–2026.
    1. Martens-Lobenhoffer J, Emrich IE, Zawada AM, Fliser D, Wagenpfeil S, Heine GH, Bode-Böger SM. L-Homoarginine and its AGXT2-metabolite GOCA in chronic kidney disease as markers for clinical status and prognosis. Amino Acids. 2018;50(10):1347–1356.
    1. Rodionov RN, Begmatov H, Jarzebska N, Patel K, Mills MT, Ghani Z, Khakshour D, Tamboli P, Patel MN, Abdalla M, et al. Homoarginine supplementation prevents left ventricular dilatation and preserves systolic function in a model of coronary artery disease. J Am Heart Assoc. 2019;8(14):e012486.
    1. März W, Meinitzer A, Drechsler C, Pilz S, Krane V, Kleber ME, Fischer J, Winkelmann BR, Böhm BO, Ritz E, et al. Homoarginine, cardiovascular risk, and mortality. Circulation. 2010;122(10):967–975.
    1. Jarzebska N, Mangoni AA, Martens-Lobenhoffer J, Bode-Böger SM, Rodionov RN. The second life of methylarginines as cardiovascular targets. Int J Mol Sci. 2019;20(18):4592–5008.
    1. Oliva-Damaso E, Oliva-Damaso N, Rodriguez-Esparragon F, Payan J, Baamonde-Laborda E, Gonzalez-Cabrera F, Santana-Estupinan R, Rodriguez-Perez JC. Asymmetric (ADMA) and symmetric (SDMA) dimethylarginines in chronic kidney disease: a clinical approach. Int J Mol Sci. 2019;20(15):3668–3683.
    1. Zobel EH, von Scholten BJ, Reinhard H, Persson F, Teerlink T, Hansen TW, Parving HH, Jacobsen PK, Rossing P. Symmetric and asymmetric dimethylarginine as risk markers of cardiovascular disease, all-cause mortality and deterioration in kidney function in persons with type 2 diabetes and microalbuminuria. Cardiovasc Diabetol. 2017;16(1):88–97.
    1. Emrich IE, Zawada AM, Martens-Lobenhoffer J, Fliser D, Wagenpfeil S, Heine GH, Bode-Böger SM. Symmetric dimethylarginine (SDMA) outperforms asymmetric dimethylarginine (ADMA) and other methylarginines as predictor of renal and cardiovascular outcome in non-dialysis chronic kidney disease. Clin Res Cardiol. 2018;107(3):201–213.
    1. Schlesinger S, Sonntag SR, Lieb W, Maas R. Asymmetric and symmetric dimethylarginine as risk markers for total mortality and cardiovascular outcomes: a systematic review and meta-analysis of prospective studies. PLoS ONE. 2016;11(11):e0165811.
    1. Ott C, Jumar A, Striepe K, Friedrich S, Karg MV, Bramlage P, Schmieder RE. A randomised study of the impact of the SGLT2 inhibitor dapagliflozin on microvascular and macrovascular circulation. Cardiovasc Diabetol. 2017;16(1):26–35.
    1. Bosch A, Ott C, Jung S, Striepe K, Karg MV, Kannenkeril D, Dienemann T, Schmieder RE. How does empagliflozin improve arterial stiffness in patients with type 2 diabetes mellitus? Sub analysis of a clinical trial. Cardiovasc Diabetol. 2019;18(1):44–56.
    1. Striepe K, Jumar A, Ott C, Karg MV, Schneider MP, Kannenkeril D, Schmieder RE. Effects of the selective sodium-glucose cotransporter 2 inhibitor empagliflozin on vascular function and central hemodynamics in patients with type 2 diabetes mellitus. Circulation. 2017;136(12):1167–1169.
    1. Gessner A, Mieth M, Auge D, Chafai A, Müller F, Fromm MF, Maas R. Establishment of reference values for the lysine acetylation marker Nɛ-acetyllysine in small volume human plasma samples by a multi-target LC-MS/MS method. Amino Acids. 2019;51(9):1259–1271.
    1. Benjamini Y, Hochberg Y. Controlling the false discovery rate - a practical and powerful approach to multiple testing. J R Stat Soc B. 1995;57(1):289–300.
    1. Marton A, Kaneko T, Kovalik JP, Yasui A, Nishiyama A, Kitada K, Titze J. Organ protection by SGLT2 inhibitors: role of metabolic energy and water conservation. Nat Rev Nephrol. 2021;17(1):65–77.
    1. Jabbour S, Seufert J, Scheen A, Bailey CJ, Karup C, Langkilde AM. Dapagliflozin in patients with type 2 diabetes mellitus: A pooled analysis of safety data from phase IIb/III clinical trials. Diabetes Obes Metab. 2018;20(3):620–628.
    1. Kluger AY, Tecson KM, Barbin CM, Lee AY, Lerma EV, Rosol ZP, Rangaswami J, Lepor NE, Cobble ME, McCullough PA. Cardiorenal outcomes in the CANVAS, DECLARE-TIMI 58, and EMPA-REG OUTCOME trials: a systematic review. Rev Cardiovasc Med. 2018;19(2):41–49.
    1. Zhao Y, Vanhoutte PM, Leung SW. Vascular nitric oxide: Beyond eNOS. J Pharmacol Sci. 2015;129(2):83–94.
    1. Hu S, Han M, Rezaei A, Li D, Wu G, Ma X. L-Arginine modulates glucose and lipid metabolism in obesity and diabetes. Curr Protein Pept Sci. 2017;18(6):599–608.
    1. Lucotti P, Monti L, Setola E, La Canna G, Castiglioni A, Rossodivita A, Pala MG, Formica F, Paolini G, Catapano AL, et al. Oral L-arginine supplementation improves endothelial function and ameliorates insulin sensitivity and inflammation in cardiopathic nondiabetic patients after an aortocoronary bypass. Metabolism. 2009;58(9):1270–1276.
    1. Banjarnahor S, Rodionov RN, König J, Maas R. Transport of L-arginine related cardiovascular risk markers. J Clin Med. 2020;9(12):3975–4016.
    1. Bode-Böger SM, Scalera F, Kielstein JT, Martens-Lobenhoffer J, Breithardt G, Fobker M, Reinecke H. Symmetrical dimethylarginine: a new combined parameter for renal function and extent of coronary artery disease. J Am Soc Nephrol. 2006;17(4):1128–1134.
    1. Kielstein JT, Salpeter SR, Bode-Boeger SM, Cooke JP, Fliser D. Symmetric dimethylarginine (SDMA) as endogenous marker of renal function - a meta-analysis. Nephrol Dial Transplant. 2006;21(9):2446–2451.
    1. Achan V, Broadhead M, Malaki M, Whitley G, Leiper J, MacAllister R, Vallance P. Asymmetric dimethylarginine causes hypertension and cardiac dysfunction in humans and is actively metabolized by dimethylarginine dimethylaminohydrolase. Arterioscler Thromb Vasc Biol. 2003;23(8):1455–1459.
    1. Rodionov RN, Murry DJ, Vaulman SF, Stevens JW, Lentz SR. Human alanine-glyoxylate aminotransferase 2 lowers asymmetric dimethylarginine and protects from inhibition of nitric oxide production. J Biol Chem. 2010;285(8):5385–5391.
    1. Tsikas D, Wu G. Homoarginine, arginine, and relatives: analysis, metabolism, transport, physiology, and pathology. Amino Acids. 2015;47(9):1697–1702.
    1. Kappel BA, Lehrke M, Schütt K, Artati A, Adamski J, Lebherz C, Marx N. Effect of empagliflozin on the metabolic signature of patients with type 2 diabetes mellitus and cardiovascular disease. Circulation. 2017;136(10):969–972.
    1. Rudolph TK, Ruempler K, Schwedhelm E, Tan-Andresen J, Riederer U, Boger RH, Maas R. Acute effects of various fast-food meals on vascular function and cardiovascular disease risk markers: the Hamburg Burger Trial. Am J Clin Nutr. 2007;86(2):334–340.
    1. Adams S, Che D, Qin G, Farouk MH, Hailong J, Rui H. Novel biosynthesis, metabolism and physiological functions of L-homoarginine. Curr Protein Pept Sci. 2019;20(2):184–193.
    1. Davids M, Ndika JD, Salomons GS, Blom HJ, Teerlink T. Promiscuous activity of arginine:glycine amidinotransferase is responsible for the synthesis of the novel cardiovascular risk factor homoarginine. FEBS Lett. 2012;586(20):3653–3657.

Source: PubMed

3
订阅