Contemporary strategies to improve clinical trial design for critical care research: insights from the First Critical Care Clinical Trialists Workshop

Michael O Harhay, Jonathan D Casey, Marina Clement, Sean P Collins, Étienne Gayat, Michelle Ng Gong, Samir Jaber, Pierre-François Laterre, John C Marshall, Michael A Matthay, Rhonda E Monroe, Todd W Rice, Eileen Rubin, Wesley H Self, Alexandre Mebazaa, Michael O Harhay, Jonathan D Casey, Marina Clement, Sean P Collins, Étienne Gayat, Michelle Ng Gong, Samir Jaber, Pierre-François Laterre, John C Marshall, Michael A Matthay, Rhonda E Monroe, Todd W Rice, Eileen Rubin, Wesley H Self, Alexandre Mebazaa

Abstract

Background: Conducting research in critically-ill patient populations is challenging, and most randomized trials of critically-ill patients have not achieved pre-specified statistical thresholds to conclude that the intervention being investigated was beneficial.

Methods: In 2019, a diverse group of patient representatives, regulators from the USA and European Union, federal grant managers, industry representatives, clinical trialists, epidemiologists, and clinicians convened the First Critical Care Clinical Trialists (3CT) Workshop to discuss challenges and opportunities in conducting and assessing critical care trials. Herein, we present the advantages and disadvantages of available methodologies for clinical trial design, conduct, and analysis, and a series of recommendations to potentially improve future trials in critical care.

Conclusion: The 3CT Workshop participants identified opportunities to improve critical care trials using strategies to optimize sample size calculations, account for patient and disease heterogeneity, increase the efficiency of trial conduct, maximize the use of trial data, and to refine and standardize the collection of patient-centered and patient-informed outcome measures beyond mortality.

Keywords: Acute respiratory distress syndrome; Clinical trials; Critical care; Sepsis.

Conflict of interest statement

Dr. Jaber reports receiving consulting fees from Drager, Fisher & Paykel, Medtronic, Baxter, and Fresenius-Xenios. Dr. Laterre reports personal fees from Adrenomed, Ferring, and Inotrem. Dr. Mebazaa reports personal fees from Novartis, Orion, Roche, Servier, Sanofi, Otsuka, Philips, grants and personal fees from Adrenomed, Abbott, and grants from 4TEEN4. On behalf of all authors, the corresponding author states that there are no additional potential conflicts of interest.

Figures

Fig. 1
Fig. 1
Visual depiction of key design elements and differences in randomized trial design
Fig. 2
Fig. 2
Depiction of a hypothetical Bayesian trial analysis using four different prior probability distributions. To conduct a Bayesian trial analysis, researchers must first select (ideally a priori) “priors,” (shown in red in the figure). Priors are meant to reflect the range of potential effect distributions that are expected before starting a trial. These priors are combined with the observed treatment effect in the trial (referred to as the likelihood function; indicated by the light brown shading). A Bayesian trial analysis typically uses a range of prior distributions, but the likelihood function is constant as it reflects the actual data observed in the trial. Each prior distribution is statistically combined with the likelihood function to create the Bayesian treatment effect estimate (i.e., posterior probability) distribution (outlined in black). As shown, the Bayesian treatment effect estimates may vary considerably based on the selected prior. There are several possible methods for choosing priors including (i) using results of observational studies, trials, or meta-analyses, (ii) eliciting expert opinion, or (iii) using a range of hypothetical distributions that assume very skeptical to enthusiastic effect distributions. The selection of priors is a critically important step in Bayesian trial analysis, and interested readers are directed to a recent technical tutorial [64], and the Bayesian re-analyses of the EOLIA [67] and ANDROMEDA-SHOCK trials [68] for guidance on prior selection and execution of a Bayesian analysis

References

    1. Santacruz CA, Pereira AJ, Celis E, Vincent JL. Which multicenter randomized controlled trials in critical care medicine have shown reduced mortality? A systematic review. Crit Care Med. 2019;47(12):1680–1691. doi: 10.1097/CCM.0000000000004000.
    1. Tonelli AR, Zein J, Adams J, Ioannidis JP. Effects of interventions on survival in acute respiratory distress syndrome: an umbrella review of 159 published randomized trials and 29 meta-analyses. Intensive Care Med. 2014;40(6):769–787. doi: 10.1007/s00134-014-3272-1.
    1. Opal SM, Dellinger RP, Vincent JL, Masur H, Angus DC. The next generation of sepsis clinical trial designs: what is next after the demise of recombinant human activated protein C? Crit Care Med. 2014;42(7):1714–1721. doi: 10.1097/CCM.0000000000000325.
    1. Shankar-Hari M, Harrison DA, Rowan KM, Rubenfeld GD. Estimating attributable fraction of mortality from sepsis to inform clinical trials. J Crit Care. 2018;45:33–39. doi: 10.1016/j.jcrc.2018.01.018.
    1. Iwashyna TJ, Burke JF, Sussman JB, Prescott HC, Hayward RA, Angus DC. Implications of heterogeneity of treatment effect for reporting and analysis of randomized trials in critical care. Am J Respir Crit Care Med. 2015;192(9):1045–1051. doi: 10.1164/rccm.201411-2125CP.
    1. Harhay MO, Wagner J, Ratcliffe SJ, Bronheim RS, Gopal A, Green S, Cooney E, Mikkelsen ME, Kerlin MP, Small DS, Halpern SD. Outcomes and statistical power in adult critical care randomized trials. Am J Respir Crit Care Med. 2014;189(12):1469–1478. doi: 10.1164/rccm.201401-0056CP.
    1. Aberegg SK, Richards DR, O'Brien JM. Delta inflation: a bias in the design of randomized controlled trials in critical care medicine. Crit Care. 2010;14(2):R77. doi: 10.1186/cc8990.
    1. Rubenfeld GD. Confronting the frustrations of negative clinical trials in acute respiratory distress syndrome. Ann Am Thorac Soc. 2015;12(Suppl 1):S58–63. doi: 10.1513/AnnalsATS.201409-414MG.
    1. Anthon CT, Granholm A, Perner A, Laake JH, Moller MH. Overall bias and sample sizes were unchanged in ICU trials over time: a meta-epidemiological study. J Clin Epidemiol. 2019;113:189–199. doi: 10.1016/j.jclinepi.2019.05.021.
    1. Albers C, Lakens D. When power analyses based on pilot data are biased: Inaccurate effect size estimators and follow-up bias. J Exp Soc Psychol. 2018;74:187–195. doi: 10.1016/j.jesp.2017.09.004.
    1. Admon AJ, Donnelly JP, Casey JD, Janz DR, Russell DW, Joffe AM, Vonderhaar DJ, Dischert KM, Stempek SB, Dargin JM, Rice TW, Iwashyna TJ, Semler MW. Emulating a Novel Clinical Trial Using Existing Observational Data. Predicting Results of the PreVent Study. Ann Am Thorac Soc. 2019;16(8):998–1007. doi: 10.1513/AnnalsATS.201903-241OC.
    1. Ranieri VM, Thompson BT, Barie PS, Dhainaut JF, Douglas IS, Finfer S, Gardlund B, Marshall JC, Rhodes A, Artigas A, Payen D, Tenhunen J, Al-Khalidi HR, Thompson V, Janes J, Macias WL, Vangerow B, Williams MD, Prowess-Shock Study Group Drotrecogin alfa (activated) in adults with septic shock. N Engl J Med. 2012;366(22):2055–2064. doi: 10.1056/NEJMoa1202290.
    1. Semler MW, Self WH, Wanderer JP, Ehrenfeld JM, Wang L, Byrne DW, Stollings JL, Kumar AB, Hughes CG, Hernandez A, Guillamondegui OD, May AK, Weavind L, Casey JD, Siew ED, Shaw AD, Bernard GR, Rice TW, SMART Investigators, Pragmatic Critical Care Research Group Balanced crystalloids versus saline in critically Ill adults. N Engl J Med. 2018;378(9):829–839. doi: 10.1056/NEJMoa1711584.
    1. Wong HR. Intensive care medicine in 2050: precision medicine. Intensive Care Med. 2017;43(10):1507–1509. doi: 10.1007/s00134-017-4727-y.
    1. Villar J, Ambros A, Mosteiro F, Martinez D, Fernandez L, Ferrando C, Carriedo D, Soler JA, Parrilla D, Hernandez M, Andaluz-Ojeda D, Anon JM, Vidal A, Gonzalez-Higueras E, Martin-Rodriguez C, Diaz-Lamas AM, Blanco J, Belda J, Diaz-Dominguez FJ, Rico-Feijoo J, Martin-Delgado C, Romera MA, Gonzalez-Martin JM, Fernandez RL, Kacmarek RM, Spanish Initiative for Epidemiology, Stratification and Therapies of ARDS (SIESTA) Network A prognostic enrichment strategy for selection of patients with acute respiratory distress syndrome in clinical trials. Crit Care Med. 2019;47(3):377–385. doi: 10.1097/CCM.0000000000003624.
    1. Langley RJ, Tsalik EL, van Velkinburgh JC, Glickman SW, Rice BJ, Wang C, Chen B, Carin L, Suarez A, Mohney RP, Freeman DH, Wang M, You J, Wulff J, Thompson JW, Moseley MA, Reisinger S, Edmonds BT, Grinnell B, Nelson DR, Dinwiddie DL, Miller NA, Saunders CJ, Soden SS, Rogers AJ, Gazourian L, Fredenburgh LE, Massaro AF, Baron RM, Choi AM, Corey GR, Ginsburg GS, Cairns CB, Otero RM, Fowler VG, Jr, Rivers EP, Woods CW, Kingsmore SF. An integrated clinico-metabolomic model improves prediction of death in sepsis. Sci Transl Med. 2013;5(195):195ra95. doi: 10.1126/scitranslmed.3005893.
    1. Wong HR, Atkinson SJ, Cvijanovich NZ, Anas N, Allen GL, Thomas NJ, Bigham MT, Weiss SL, Fitzgerald JC, Checchia PA, Meyer K, Quasney M, Hall M, Gedeit R, Freishtat RJ, Nowak J, Raj SS, Gertz S, Lindsell CJ. Combining prognostic and predictive enrichment strategies to identify children with septic shock responsive to corticosteroids. Crit Care Med. 2016;44(10):e1000–1003. doi: 10.1097/CCM.0000000000001833.
    1. Vincent JL, Opal SM, Marshall JC. Ten reasons why we should NOT use severity scores as entry criteria for clinical trials or in our treatment decisions. Crit Care Med. 2010;38(1):283–287. doi: 10.1097/CCM.0b013e3181b785a2.
    1. Russell JA, Walley KR, Singer J, Gordon AC, Hebert PC, Cooper DJ, Holmes CL, Mehta S, Granton JT, Storms MM, Cook DJ, Presneill JJ, Ayers D, VASST Investigators Vasopressin versus norepinephrine infusion in patients with septic shock. N Engl J Med. 2008;358(9):877–887. doi: 10.1056/NEJMoa067373.
    1. Krag M, Marker S, Perner A, Wetterslev J, Wise MP, Schefold JC, Keus F, Guttormsen AB, Bendel S, Borthwick M, Lange T, Rasmussen BS, Siegemund M, Bundgaard H, Elkmann T, Jensen JV, Nielsen RD, Liboriussen L, Bestle MH, Elkjaer JM, Palmqvist DF, Backlund M, Laake JH, Badstolokken PM, Gronlund J, Breum O, Walli A, Winding R, Iversen S, Jarnvig IL, White JO, Brand B, Madsen MB, Quist L, Thornberg KJ, Moller A, Wiis J, Granholm A, Anthon CT, Meyhoff TS, Hjortrup PB, Aagaard SR, Andreasen JB, Sorensen CA, Haure P, Hauge J, Hollinger A, Scheuzger J, Tuchscherer D, Vuilliomenet T, Takala J, Jakob SM, Vang ML, Paelestik KB, Andersen KLD, van der Horst ICC, Dieperink W, Fjolner J, Kjer CKW, Solling C, Solling CG, Karttunen J, Morgan MPG, Sjobo B, Engstrom J, Agerholm-Larsen B, Moller MH, SUP-ICU Trial Group Pantoprazole in patients at risk for gastrointestinal bleeding in the ICU. N Engl J Med. 2018;379(23):2199–2208. doi: 10.1056/NEJMoa1714919.
    1. Marker S, Perner A, Wetterslev J, Krag M, Lange T, Wise MP, Borthwick M, Bendel S, Keus F, Guttormsen AB, Schefold JC, Moller MH, SUP-ICU Investigators Pantoprazole prophylaxis in ICU patients with high severity of disease: a post hoc analysis of the placebo-controlled SUP-ICU trial. Intensive Care Med. 2019;45(5):609–618. doi: 10.1007/s00134-019-05589-y.
    1. Calfee CS, Delucchi K, Parsons PE, Thompson BT, Ware LB, Matthay MA, NHLBI ARDS Network Subphenotypes in acute respiratory distress syndrome: latent class analysis of data from two randomised controlled trials. Lancet Respir Med. 2014;2(8):611–620. doi: 10.1016/S2213-2600(14)70097-9.
    1. Delucchi K, Famous KR, Ware LB, Parsons PE, Thompson BT, Calfee CS, NHLBI ARDS Network Stability of ARDS subphenotypes over time in two randomised controlled trials. Thorax. 2018;73(5):439–445. doi: 10.1136/thoraxjnl-2017-211090.
    1. Famous KR, Delucchi K, Ware LB, Kangelaris KN, Liu KD, Thompson BT, Calfee CS, NHLBI ARDS Network Acute respiratory distress syndrome subphenotypes respond differently to randomized fluid management strategy. Am J Respir Crit Care Med. 2017;195(3):331–338. doi: 10.1164/rccm.201603-0645OC.
    1. Calfee CS, Delucchi KL, Sinha P, Matthay MA, Hackett J, Shankar-Hari M, McDowell C, Laffey JG, O'Kane CM, McAuley DF, Irish Critical Care Trials Group Acute respiratory distress syndrome subphenotypes and differential response to simvastatin: secondary analysis of a randomised controlled trial. Lancet Respir Med. 2018;6(9):691–698. doi: 10.1016/S2213-2600(18)30177-2.
    1. Seymour CW, Kennedy JN, Wang S, Chang CH, Elliott CF, Xu Z, Berry S, Clermont G, Cooper G, Gomez H, Huang DT, Kellum JA, Mi Q, Opal SM, Talisa V, van der Poll T, Visweswaran S, Vodovotz Y, Weiss JC, Yealy DM, Yende S, Angus DC. Derivation, validation, and potential treatment implications of novel clinical phenotypes for sepsis. JAMA. 2019;321(20):2003–2017. doi: 10.1001/jama.2019.5791.
    1. Bellomo R, Landoni G, Young P. Improved survival in critically ill patients: are large RCTs more useful than personalized medicine? Yes. Intensive Care Med. 2016;42(11):1775–1777. doi: 10.1007/s00134-016-4491-4.
    1. Semler MW, Wanderer JP, Ehrenfeld JM, Stollings JL, Self WH, Siew ED, Wang L, Byrne DW, Shaw AD, Bernard GR, Rice TW, SALT Investigators, Pragmatic Critical Care Research Group Balanced Crystalloids versus Saline in the Intensive Care Unit The SALT Randomized Trial. Am J Respir Crit Care Med. 2017;195(10):1362–1372. doi: 10.1164/rccm.201607-1345OC.
    1. Self WH, Semler MW, Wanderer JP, Wang L, Byrne DW, Collins SP, Slovis CM, Lindsell CJ, Ehrenfeld JM, Siew ED, Shaw AD, Bernard GR, Rice TW, SALT-ED Investigators Balanced crystalloids versus saline in noncritically Ill adults. N Engl J Med. 2018;378(9):819–828. doi: 10.1056/NEJMoa1711586.
    1. Shah ASV, Anand A, Strachan FE, Ferry AV, Lee KK, Chapman AR, Sandeman D, Stables CL, Adamson PD, Andrews JPM, Anwar MS, Hung J, Moss AJ, O'Brien R, Berry C, Findlay I, Walker S, Cruickshank A, Reid A, Gray A, Collinson PO, Apple FS, McAllister DA, Maguire D, Fox KAA, Newby DE, Tuck C, Harkess R, Parker RA, Keerie C, Weir CJ, Mills NL, High-STEACS Investigators High-sensitivity troponin in the evaluation of patients with suspected acute coronary syndrome: a stepped-wedge, cluster-randomised controlled trial. Lancet. 2018;392(10151):919–928. doi: 10.1016/S0140-6736(18)31923-8.
    1. Frobert O, Lagerqvist B, Olivecrona GK, Omerovic E, Gudnason T, Maeng M, Aasa M, Angeras O, Calais F, Danielewicz M, Erlinge D, Hellsten L, Jensen U, Johansson AC, Karegren A, Nilsson J, Robertson L, Sandhall L, Sjogren I, Ostlund O, Harnek J, James SK. Thrombus aspiration during ST-segment elevation myocardial infarction. N Engl J Med. 2013;369(17):1587–1597. doi: 10.1056/NEJMoa1308789.
    1. van Werkhoven CH, Harbarth S, Bonten MJM. Adaptive designs in clinical trials in critically ill patients: principles, advantages and pitfalls. Intensive Care Med. 2019;45(5):678–682. doi: 10.1007/s00134-018-5426-z.
    1. Bhatt DL, Mehta C. Adaptive designs for clinical trials. N Engl J Med. 2016;375(1):65–74. doi: 10.1056/NEJMra1510061.
    1. Posch M, Maurer W, Bretz F. Type I error rate control in adaptive designs for confirmatory clinical trials with treatment selection at interim. Pharm Stat. 2011;10(2):96–104. doi: 10.1002/pst.413.
    1. Elsasser A, Regnstrom J, Vetter T, Koenig F, Hemmings RJ, Greco M, Papaluca-Amati M, Posch M. Adaptive clinical trial designs for European marketing authorization: a survey of scientific advice letters from the European Medicines Agency. Trials. 2014;15:383. doi: 10.1186/1745-6215-15-383.
    1. US Food and Drug Administration (FDA). Guidance: Adaptive Design Clinical Trials for Drugs and Biologics [Draft Guidance current as of October 31, 2018]. Docket Number FDA-2018-D-3124. Available at: . Accessed Nov 22 2019
    1. Jones AE, Puskarich MA, Shapiro NI, Guirgis FW, Runyon M, Adams JY, Sherwin R, Arnold R, Roberts BW, Kurz MC, Wang HE, Kline JA, Courtney DM, Trzeciak S, Sterling SA, Nandi U, Patki D, Viele K. Effect of Levocarnitine vs placebo as an adjunctive treatment for septic shock: the Rapid Administration of Carnitine in Sepsis (RACE) randomized clinical trial. JAMA Netw Open. 2018;1(8):e186076. doi: 10.1001/jamanetworkopen.2018.6076.
    1. Laterre PF, Berry SM, Blemings A, Carlsen JE, Francois B, Graves T, Jacobsen K, Lewis RJ, Opal SM, Perner A, Pickkers P, Russell JA, Windelov NA, Yealy DM, Asfar P, Bestle MH, Muller G, Bruel C, Brule N, Decruyenaere J, Dive AM, Dugernier T, Krell K, Lefrant JY, Megarbane B, Mercier E, Mira JP, Quenot JP, Rasmussen BS, Thorsen-Meyer HC, Vander Laenen M, Vang ML, Vignon P, Vinatier I, Wichmann S, Wittebole X, Kjolbye AL, Angus DC, SEPSIS-ACT Investigators Effect of selepressin vs placebo on ventilator- and vasopressor-free days in patients with septic shock: The SEPSIS-ACT randomized clinical trial. JAMA. 2019;322(15):1476–1485. doi: 10.1001/jama.2019.14607.
    1. Adaptive Platform Trials Coalition Adaptive platform trials: definition, design, conduct and reporting considerations. Nat Rev Drug Discov. 2019;18(10):797–807. doi: 10.1038/s41573-019-0034-3.
    1. Mello MM, Lieou V, Goodman SN. Clinical trial participants' views of the risks and benefits of data sharing. N Engl J Med. 2018;378(23):2202–2211. doi: 10.1056/NEJMsa1713258.
    1. Haug CJ. Whose data are they anyway? Can a patient perspective advance the data-sharing debate? N Engl J Med. 2017;376(23):2203–2205. doi: 10.1056/NEJMp1704485.
    1. Kiley R, Peatfield T, Hansen J, Reddington F. Data sharing from clinical trials–a research funder's perspective. N Engl J Med. 2017;377(20):1990–1992. doi: 10.1056/NEJMsb1708278.
    1. Taichman DB, Backus J, Baethge C, Bauchner H, de Leeuw PW, Drazen JM, Fletcher J, Frizelle FA, Groves T, Haileamlak A, James A, Laine C, Peiperl L, Pinborg A, Sahni P, Wu S. Sharing clinical trial data: a proposal from the international committee of medical journal editors. PLoS Med. 2016;13(1):e1001950. doi: 10.1371/journal.pmed.1001950.
    1. Rosenbaum L. Bridging the data-sharing divide - seeing the devil in the details, not the other Camp. N Engl J Med. 2017;376(23):2201–2203. doi: 10.1056/NEJMp1704482.
    1. International Consortium of Investigators for Fairness in Trial Data Sharing. Devereaux PJ, Guyatt G, Gerstein H, Connolly S, Yusuf S. Toward Fairness in Data Sharing. N Engl J Med. 2016;375(5):405–407. doi: 10.1056/NEJMp1605654.
    1. Strom BL, Buyse ME, Hughes J, Knoppers BM. Data sharing–Is the juice worth the squeeze? N Engl J Med. 2016;375(17):1608–1609. doi: 10.1056/NEJMp1610336.
    1. Contentin L, Ehrmann S, Giraudeau B. Heterogeneity in the definition of mechanical ventilation duration and ventilator-free days. Am J Respir Crit Care Med. 2014;189(8):998–1002. doi: 10.1164/rccm.201308-1499LE.
    1. Blackwood B, Clarke M, McAuley DF, McGuigan PJ, Marshall JC, Rose L. How outcomes are defined in clinical trials of mechanically ventilated adults and children. Am J Respir Crit Care Med. 2014;189(8):886–893. doi: 10.1164/rccm.201309-1645PP.
    1. Bourcier S, Hindlet P, Guidet B, Dechartres A. Reporting of organ support outcomes in septic shock randomized controlled trials: a methodologic review-the sepsis organ support study. Crit Care Med. 2019;47(7):984–992. doi: 10.1097/CCM.0000000000003746.
    1. Harhay MO, Ratcliffe SJ, Small DS, Suttner LH, Crowther MJ, Halpern SD. Measuring and analyzing length of stay in critical care trials. Med Care. 2019;57(9):e53–e59. doi: 10.1097/MLR.0000000000001059.
    1. Blackwood B, Marshall J, Rose L. Progress on core outcome sets for critical care research. Curr Opin Crit Care. 2015;21(5):439–444. doi: 10.1097/MCC.0000000000000232.
    1. Blackwood B, Ringrow S, Clarke M, Marshall JC, Connolly B, Rose L, McAuley DF. A core outcome set for critical care ventilation trials. Crit Care Med. 2019;47(10):1324–1331. doi: 10.1097/CCM.0000000000003904.
    1. Connolly B, Denehy L, Hart N, Pattison N, Williamson P, Blackwood B. Physical rehabilitation core outcomes in critical illness (PRACTICE): protocol for development of a core outcome set. Trials. 2018;19(1):294. doi: 10.1186/s13063-018-2678-4.
    1. Hodgson CL, Burrell AJC, Engeler DM, Pellegrino VA, Brodie D, Fan E, International ECMO Network Core Outcome Measures for Research in Critically Ill Patients Receiving Extracorporeal Membrane Oxygenation for Acute Respiratory or Cardiac Failure: An International, Multidisciplinary, Modified Delphi Consensus Study. Crit Care Med. 2019;47(11):1557–1563. doi: 10.1097/CCM.0000000000003954.
    1. Needham DM, Sepulveda KA, Dinglas VD, Chessare CM, Friedman LA, Bingham CO, 3rd, Turnbull AE. Core Outcome Measures for Clinical Research in Acute Respiratory Failure Survivors. An International Modified Delphi Consensus Study. Am J Respir Crit Care Med. 2017;196(9):1122–1130. doi: 10.1164/rccm.201702-0372OC.
    1. PRISM Investigators. Rowan KM, Angus DC, Bailey M, Barnato AE, Bellomo R, Canter RR, Coats TJ, Delaney A, Gimbel E, Grieve RD, Harrison DA, Higgins AM, Howe B, Huang DT, Kellum JA, Mouncey PR, Music E, Peake SL, Pike F, Reade MC, Sadique MZ, Singer M, Yealy DM. Early, goal-directed therapy for septic shock—a patient-level meta-analysis. N Engl J Med. 2017;376(23):2223–2234. doi: 10.1056/NEJMoa1701380.
    1. ProCess Investigators. Yealy DM, Kellum JA, Huang DT, Barnato AE, Weissfeld LA, Pike F, Terndrup T, Wang HE, Hou PC, LoVecchio F, Filbin MR, Shapiro NI, Angus DC. A randomized trial of protocol-based care for early septic shock. N Engl J Med. 2014;370(18):1683–1693. doi: 10.1056/NEJMoa1401602.
    1. ARISE Investigators, ANZICS Clinical Trials Group. Peake SL, Delaney A, Bailey M, Bellomo R, Cameron PA, Cooper DJ, Higgins AM, Holdgate A, Howe BD, Webb SA, Williams P. Goal-directed resuscitation for patients with early septic shock. N Engl J Med. 2014;371(16):1496–1506. doi: 10.1056/NEJMoa1404380.
    1. Mouncey PR, Osborn TM, Power GS, Harrison DA, Sadique MZ, Grieve RD, Jahan R, Harvey SE, Bell D, Bion JF, Coats TJ, Singer M, Young JD, Rowan KM, ProMISe Trial Investigators Trial of early, goal-directed resuscitation for septic shock. N Engl J Med. 2015;372(14):1301–1311. doi: 10.1056/NEJMoa1500896.
    1. Infanger D, Schmidt-Trucksass A. P value functions: An underused method to present research results and to promote quantitative reasoning. Stat Med. 2019;38(21):4189–4197. doi: 10.1002/sim.8293.
    1. Wasserstein RL, Schirm AL, Lazar NA. Moving to a World Beyond “p, 0.05”. Am Stat. 2019;73(1):1–19. doi: 10.1080/00031305.2019.1583913.
    1. Amrhein V, Greenland S, McShane B. Scientists rise up against statistical significance. Nature. 2019;567(7748):305–307. doi: 10.1038/d41586-019-00857-9.
    1. Lewis RJ, Angus DC. Time for clinicians to embrace their inner bayesian?: reanalysis of results of a clinical trial of extracorporeal membrane oxygenation. JAMA. 2018;320(21):2208–2210. doi: 10.1001/jama.2018.16916.
    1. Bittl JA, He Y. Bayesian analysis: A practical approach to interpret clinical trials and create clinical practice guidelines. Circ Cardiovasc Qual Outcomes. 2017;10(8):9–10. doi: 10.1161/CIRCOUTCOMES.117.003563.
    1. Combes A, Hajage D, Capellier G, Demoule A, Lavoue S, Guervilly C, Da Silva D, Zafrani L, Tirot P, Veber B, Maury E, Levy B, Cohen Y, Richard C, Kalfon P, Bouadma L, Mehdaoui H, Beduneau G, Lebreton G, Brochard L, Ferguson ND, Fan E, Slutsky AS, Brodie D, Mercat A, EOLIA Trial Group, REVA, ECMONet Extracorporeal membrane oxygenation for severe acute respiratory distress syndrome. N Engl J Med. 2018;378(21):1965–1975. doi: 10.1056/NEJMoa1800385.
    1. Hernandez G, Ospina-Tascon GA, Damiani LP, Estenssoro E, Dubin A, Hurtado J, Friedman G, Castro R, Alegria L, Teboul JL, Cecconi M, Ferri G, Jibaja M, Pairumani R, Fernandez P, Barahona D, Granda-Luna V, Cavalcanti AB, Bakker J, Hernandez G, Ospina-Tascon G, Petri Damiani L, Estenssoro E, Dubin A, Hurtado J, Friedman G, Castro R, Alegria L, Teboul JL, Cecconi M, Cecconi M, Ferri G, Jibaja M, Pairumani R, Fernandez P, Barahona D, Cavalcanti AB, Bakker J, ANDROMEDA SHOCK Investigators and the Latin America Intensive Care Network (LIVEN) Hernandez G, Alegria L, Ferri G, Rodriguez N, Holger P, Soto N, Pozo M, Bakker J, Cook D, Vincent JL, Rhodes A, Kavanagh BP, Dellinger P, Rietdijk W, Carpio D, Pavez N, Henriquez E, Bravo S, Valenzuela ED, Vera M, Dreyse J, Oviedo V, Cid MA, Larroulet M, Petruska E, Sarabia C, Gallardo D, Sanchez JE, Gonzalez H, Arancibia JM, Munoz A, Ramirez G, Aravena F, Aquevedo A, Zambrano F, Bozinovic M, Valle F, Ramirez M, Rossel V, Munoz P, Ceballos C, Esveile C, Carmona C, Candia E, Mendoza D, Sanchez A, Ponce D, Ponce D, Lastra J, Nahuelpan B, Fasce F, Luengo C, Medel N, Cortes C, Campassi L, Rubatto P, Horna N, Furche M, Pendino JC, Bettini L, Lovesio C, Gonzalez MC, Rodruguez J, Canales H, Caminos F, Galletti C, Minoldo E, Aramburu MJ, Olmos D, Nin N, Tenzi J, Quiroga C, Lacuesta P, Gaudin A, Pais R, Silvestre A, Olivera G, Rieppi G, Berrutti D, Ochoa M, Cobos P, Vintimilla F, Ramirez V, Tobar M, Garcia F, Picoita F, Remache N, Granda V, Paredes F, Barzallo E, Garces P, Guerrero F, Salazar S, Torres G, Tana C, Calahorrano J, Solis F, Torres P, Herrera L, Ornes A, Perez V, Delgado G, Lopez A, Espinosa E, Moreira J, Salcedo B, Villacres I, Suing J, Lopez M, Gomez L, Toctaquiza G, Cadena Zapata M, Orazabal MA, Pardo Espejo R, Jimenez J, Calderon A, Paredes G, Barberan JL, Moya T, Atehortua H, Sabogal R, Ortiz G, Lara A, Sanchez F, Hernan Portilla A, Davila H, Mora JA, Calderon LE, Alvarez I, Escobar E, Bejarano A, Bustamante LA, Aldana JL. Effect of a Resuscitation strategy targeting peripheral perfusion status vs serum lactate levels on 28-day mortality among patients with septic shock: the ANDROMEDA-SHOCK randomized clinical trial. JAMA. 2019;321(7):654–664. doi: 10.1001/jama.2019.0071.
    1. Goligher EC, Tomlinson G, Hajage D, Wijeysundera DN, Fan E, Juni P, Brodie D, Slutsky AS, Combes A. Extracorporeal membrane oxygenation for severe acute respiratory distress syndrome and posterior probability of mortality benefit in a post Hoc bayesian analysis of a randomized clinical trial. JAMA. 2018;320(21):2251–2259. doi: 10.1001/jama.2018.14276.
    1. Zampieri FG, Damiani LP, Bakker J, Ospina-Tascon GA, Castro R, Cavalcanti AB, Hernandez G, ANDROMEDA-SHOCK Investigators. Latin America Intensive Care Network (LIVEN) Effects of a resuscitation strategy targeting peripheral perfusion status vs serum lactate levels among patients with septic shock: a bayesian reanalysis of the ANDROMEDA-SHOCK trial. Am J Respir Crit Care Med. 2019 doi: 10.1164/rccm.201905-0968OC.
    1. Vasilevskis EE, Kuzniewicz MW, Dean ML, Clay T, Vittinghoff E, Rennie DJ, Dudley RA. Relationship between discharge practices and intensive care unit in-hospital mortality performance: evidence of a discharge bias. Med Care. 2009;47(7):803–812. doi: 10.1097/MLR.0b013e3181a39454.
    1. Perner A, Haase N, Guttormsen AB, Tenhunen J, Klemenzson G, Aneman A, Madsen KR, Moller MH, Elkjaer JM, Poulsen LM, Bendtsen A, Winding R, Steensen M, Berezowicz P, Soe-Jensen P, Bestle M, Strand K, Wiis J, White JO, Thornberg KJ, Quist L, Nielsen J, Andersen LH, Holst LB, Thormar K, Kjaeldgaard AL, Fabritius ML, Mondrup F, Pott FC, Moller TP, Winkel P, Wetterslev J, 6S Trial Group. Scandinavian Critical Care Trials Group Hydroxyethyl starch 130/0.42 versus Ringer's acetate in severe sepsis. N Engl J Med. 2012;367(2):124–134. doi: 10.1056/NEJMoa1204242.
    1. Rhee C, Jones TM, Hamad Y, Pande A, Varon J, O'Brien C, Anderson DJ, Warren DK, Dantes RB, Epstein L, Klompas M, Centers for Disease Control and Prevention (CDC) Prevention Epicenters Program Prevalence, underlying causes, and preventability of sepsis-associated mortality in US acute care hospitals. JAMA Netw Open. 2019;2(2):e187571. doi: 10.1001/jamanetworkopen.2018.7571.
    1. Messika J, Gaudry S, Tubach F, Guillo S, Dreyfuss D, Hajage D, Ricard JD. Underreporting of end-of-life decisions in critical care trials: a call to modify the consolidated standards of reporting trials statement. Am J Respir Crit Care Med. 2018;197(2):263–266. doi: 10.1164/rccm.201703-0586LE.
    1. Mehter HM, Wiener RS, Walkey AJ. "Do not resuscitate" decisions in acute respiratory distress syndrome. A secondary analysis of clinical trial data. Ann Am Thorac Soc. 2014;11(10):1592–1596. doi: 10.1513/AnnalsATS.201406-244BC.
    1. Lautrette A, Garrouste-Orgeas M, Bertrand PM, Goldgran-Toledano D, Jamali S, Laurent V, Argaud L, Schwebel C, Mourvillier B, Darmon M, Ruckly S, Dumenil AS, Lemiale V, Souweine B, Timsit JF, Outcomerea Study Group Respective impact of no escalation of treatment, withholding and withdrawal of life-sustaining treatment on ICU patients' prognosis: a multicenter study of the Outcomerea Research Group. Intensive Care Med. 2015;41(10):1763–1772. doi: 10.1007/s00134-015-3944-5.
    1. Bein T, Bienvenu OJ, Hopkins RO. Focus on long-term cognitive, psychological and physical impairments after critical illness. Intensive Care Med. 2019;45(10):1466–1468. doi: 10.1007/s00134-019-05718-7.
    1. Dinglas VD, Faraone LN, Needham DM. Understanding patient-important outcomes after critical illness: a synthesis of recent qualitative, empirical, and consensus-related studies. Curr Opin Crit Care. 2018;24(5):401–409. doi: 10.1097/MCC.0000000000000533.
    1. Timsit JF, de Kraker MEA, Sommer H, Weiss E, Bettiol E, Wolkewitz M, Nikolakopoulos S, Wilson D, Harbarth S, COMBACTE-NET consortium Appropriate endpoints for evaluation of new antibiotic therapies for severe infections: a perspective from COMBACTE's STAT-Net. Intensive Care Med. 2017;43(7):1002–1012. doi: 10.1007/s00134-017-4802-4.
    1. Colantuoni E, Scharfstein DO, Wang C, Hashem MD, Leroux A, Needham DM, Girard TD. Statistical methods to compare functional outcomes in randomized controlled trials with high mortality. BMJ. 2018;360:j5748. doi: 10.1136/bmj.j5748.
    1. Colantuoni E, Dinglas VD, Ely EW, Hopkins RO, Needham DM. Statistical methods for evaluating delirium in the ICU. Lancet Respir Med. 2016;4(7):534–536. doi: 10.1016/S2213-2600(16)30138-2.
    1. Hayden D, Pauler DK, Schoenfeld D. An estimator for treatment comparisons among survivors in randomized trials. Biometrics. 2005;61(1):305–310. doi: 10.1111/j.0006-341X.2005.030227.x.
    1. Chiba Y, VanderWeele TJ. A simple method for principal strata effects when the outcome has been truncated due to death. Am J Epidemiol. 2011;173(7):745–751. doi: 10.1093/aje/kwq418.
    1. Deslandes E, Chevret S. Joint modeling of multivariate longitudinal data and the dropout process in a competing risk setting: application to ICU data. BMC Med Res Methodol. 2010;10:69. doi: 10.1186/1471-2288-10-69.
    1. Checkley W, Brower RG, Munoz A, NHLBI ARDS Network Inference for mutually exclusive competing events through a mixture of generalized gamma distributions. Epidemiology. 2010;21(4):557–565. doi: 10.1097/EDE.0b013e3181e090ed.
    1. Schoenfeld DA, Bernard GR, NHLBI ARDS Network Statistical evaluation of ventilator-free days as an efficacy measure in clinical trials of treatments for acute respiratory distress syndrome. Crit Care Med. 2002;30(8):1772–1777. doi: 10.1097/00003246-200208000-00016.
    1. Young P, Hodgson C, Dulhunty J, Saxena M, Bailey M, Bellomo R, Davies A, Finfer S, Kruger P, Lipman J, Myburgh J, Peake S, Seppelt I, Streat S, Tate R, Webb S, ANZICS Clinical Trials Group End points for phase II trials in intensive care: recommendations from the Australian and New Zealand Clinical Trials Group consensus panel meeting. Crit Care Resusc. 2012;14(3):211–215.
    1. Tomlinson G, Detsky AS. Composite end points in randomized trials: there is no free lunch. JAMA. 2010;303(3):267–268. doi: 10.1001/jama.2009.2017.
    1. Bodet-Contentin L, Frasca D, Tavernier E, Feuillet F, Foucher Y, Giraudeau B. Ventilator-free day outcomes can be misleading. Crit Care Med. 2018;46(3):425–429. doi: 10.1097/CCM.0000000000002890.
    1. Yehya N, Harhay MO, Curley MAQ, Schoenfeld DA, Reeder RW. Reappraisal of ventilator-free days in critical care research. Am J Respir Crit Care Med. 2019;200(7):828–836. doi: 10.1164/rccm.201810-2050CP.
    1. Novack V, Beitler JR, Yitshak-Sade M, Thompson BT, Schoenfeld DA, Rubenfeld G, Talmor D, Brown SM. Alive and ventilator free: a hierarchical, composite outcome for clinical trials in the acute respiratory distress syndrome. Crit Care Med. 2020;48(2):158–166. doi: 10.1097/CCM.0000000000004104.
    1. Wang C, Scharfstein DO, Colantuoni E, Girard TD, Yan Y. Inference in randomized trials with death and missingness. Biometrics. 2017;73(2):431–440. doi: 10.1111/biom.12594.
    1. Lin W, Halpern SD, Prasad Kerlin M, Small DS. A "placement of death" approach for studies of treatment effects on ICU length of stay. Stat Methods Med Res. 2017;26(1):292–311. doi: 10.1177/0962280214545121.
    1. Geven C, Blet A, Kox M, Hartmann O, Scigalla P, Zimmermann J, Marx G, Laterre PF, Mebazaa A, Pickkers P. A double-blind, placebo-controlled, randomised, multicentre, proof-of-concept and dose-finding phase II clinical trial to investigate the safety, tolerability and efficacy of adrecizumab in patients with septic shock and elevated adrenomedullin concentration (AdrenOSS-2) BMJ Open. 2019;9(2):e024475. doi: 10.1136/bmjopen-2018-024475.
    1. NHLBI PETAL Clinical Trials Network. Ginde AA, Brower RG, Caterino JM, Finck L, Banner-Goodspeed VM, Grissom CK, Hayden D, Hough CL, Hyzy RC, Khan A, Levitt JE, Park PK, Ringwood N, Rivers EP, Self WH, Shapiro NI, Thompson BT, Yealy DM, Talmor D. Early high-dose vitamin D3 for critically Ill, vitamin D-deficient patients. N Engl J Med. 2019;381(26):2529–2540. doi: 10.1056/NEJMoa1911124.
    1. Dellinger RP, Bagshaw SM, Antonelli M, Foster DM, Klein DJ, Marshall JC, Palevsky PM, Weisberg LS, Schorr CA, Trzeciak S, Walker PM, EUPHRATES Trial Investigators Effect of targeted polymyxin B hemoperfusion on 28-day mortality in patients with septic shock and elevated endotoxin level: the EUPHRATES randomized clinical trial. JAMA. 2018;320(14):1455–1463. doi: 10.1001/jama.2018.14618.
    1. Roberts I, Yates D, Sandercock P, Farrell B, Wasserberg J, Lomas G, Cottingham R, Svoboda P, Brayley N, Mazairac G, Laloe V, Munoz-Sanchez A, Arango M, Hartzenberg B, Khamis H, Yutthakasemsunt S, Komolafe E, Olldashi F, Yadav Y, Murillo-Cabezas F, Shakur H, Edwards P, CRASH Trial Collaborators Effect of intravenous corticosteroids on death within 14 days in 10008 adults with clinically significant head injury (MRC CRASH trial): randomised placebo-controlled trial. Lancet. 2004;364(9442):1321–1328. doi: 10.1016/S0140-6736(04)17188-2.

Source: PubMed

3
订阅