How context can impact clinical trials: a multi-country qualitative case study comparison of diagnostic biomarker test interventions

Marco J Haenssgen, Nutcha Charoenboon, Nga T T Do, Thomas Althaus, Yuzana Khine Zaw, Heiman F L Wertheim, Yoel Lubell, Marco J Haenssgen, Nutcha Charoenboon, Nga T T Do, Thomas Althaus, Yuzana Khine Zaw, Heiman F L Wertheim, Yoel Lubell

Abstract

Background: Context matters for the successful implementation of medical interventions, but its role remains surprisingly understudied. Against the backdrop of antimicrobial resistance, a global health priority, we investigated the introduction of a rapid diagnostic biomarker test (C-reactive protein, or CRP) to guide antibiotic prescriptions in outpatient settings and asked, "Which factors account for cross-country variations in the effectiveness of CRP biomarker test interventions?"

Methods: We conducted a cross-case comparison of CRP point-of-care test trials across Yangon (Myanmar), Chiang Rai (Thailand), and Hanoi (Vietnam). Cross-sectional qualitative data were originally collected as part of each clinical trial to broaden their evidence base and help explain their respective results. We synthesised these data and developed a large qualitative data set comprising 130 interview and focus group participants (healthcare workers and patients) and nearly one million words worth of transcripts and interview notes. Inductive thematic analysis was used to identify contextual factors and compare them across the three case studies. As clinical trial outcomes, we considered patients' and healthcare workers' adherence to the biomarker test results, and patient exclusion to gauge the potential "impact" of CRP point-of-care testing on the population level.

Results: We identified three principal domains of contextual influences on intervention effectiveness. First, perceived risks from infectious diseases influenced the adherence of the clinical users (nurses, doctors). Second, the health system context related to all three intervention outcomes (via the health policy and antibiotic policy environment, and via health system structures and the ensuing utilisation patterns). Third, the demand-side context influenced the patient adherence to CRP point-of-care tests and exclusion from the intervention through variations in local healthcare-seeking behaviours, popular conceptions of illness and medicine, and the resulting utilisation of the health system.

Conclusions: Our study underscored the importance of contextual variation for the interpretation of clinical trial findings. Further research should investigate the range and magnitude of contextual effects on trial outcomes through meta-analyses of large sets of clinical trials. For this to be possible, clinical trials should collect qualitative and quantitative contextual information for instance on their disease, health system, and demand-side environment.

Trial registration: ClinicalTrials.gov, NCT02758821 registered on 3 May 2016 and NCT01918579 registered on 7 August 2013.

Keywords: Antibiotic prescription; Contextual factors; Intervention implementation; Myanmar; Qualitative research; Thailand; Vietnam.

Conflict of interest statement

Ethics approval and consent to participate

Written informed consent was obtained from all participants. The Thailand and Myanmar research was registered under ClinicalTrials.gov identifier NCT02758821 and approved by the University of Oxford Tropical Research Ethics Committee (ref. 49-15), Mahidol University Faculty of Tropical Medicine Ethics Committee (ref. 16-015), the Chiang Rai Provincial Public Health Office Ethics Committee (ref. CR 0032.002/3516), and the Myanmar Department of Medical Research (ref. Ethics/DMR/2016/137). The Vietnam research was registered at ClinicalTrials.gov Identifier NCT01918579 and approved by the Oxford University Tropical Research Ethics Committee (OxTREC Ref. 176-12), the ethical committee of the National Hospital for Tropical Diseases in Hanoi (39/IRB-NHTD), and by local authorities in Vietnam.

Consent for publication

N/A.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Contextual factors influencing C-reactive protein point-of-care test (CRP POCT). Source: Authors, derived from qualitative analysis. “Health systems” here comprise all formal and informal actors involved in promoting, maintaining, or restoring health according to the World Health Organization [91], which can include for example medicine-selling grocery stores alongside public and private hospitals

References

    1. Nabi J, Bump JB. Implementing healthcare interventions: context is key. In: Demaio S, editor. PLOS Global Health; 2018. . Accessed 4 Oct 2018.
    1. Pfadenhauer LM, Mozygemba K, Gerhardus A, Hofmann B, Booth A, Lysdahl KB, Tummers M, Burns J, Rehfuess EA. Context and implementation: a concept analysis towards conceptual maturity. Z Evid Fortbild Qual Gesundhwes. 2015;109:103–114.
    1. McCormack B, Kitson A, Harvey G, Rycroft-Malone J, Titchen A, Seers K. Getting evidence into practice: the meaning of ‘context’. J Adv Nurs. 2002;38:94–104.
    1. Damschroder LJ, Aron DC, Keith RE, Kirsh SR, Alexander JA, Lowery JC. Fostering implementation of health services research findings into practice: a consolidated framework for advancing implementation science. Implement Sci. 2009;4(1):50.
    1. Hoddinott P, Britten J, Pill R. Why do interventions work in some places and not others: a breastfeeding support group trial. Soc Sci Med. 2010;70:769–778.
    1. Reynolds J, DiLiberto D, Mangham-Jefferies L, Ansah EK, Lal S, Mbakilwa H, Bruxvoort K, Webster J, Vestergaard LS, Yeung S, et al. The practice of ‘doing’ evaluation: lessons learned from nine complex intervention trials in action. Implement Sci. 2014;9(1):75.
    1. Fuller D, Potvin L. Context by treatment interactions as the primary object of study in cluster randomized controlled trials of population health interventions. Int J Public Health. 2012;57:633–636.
    1. Kent DM, Kitsios G. Against pragmatism: on efficacy, effectiveness and the real world. Trials. 2009;10(1):48.
    1. Candy B, King M, Jones L, Oliver S. Using qualitative evidence on patients’ views to help understand variation in effectiveness of complex interventions: a qualitative comparative analysis. Trials. 2013;14(1):179.
    1. Wells M, Williams B, Treweek S, Coyle J, Taylor J. Intervention description is not enough: evidence from an in-depth multiple case study on the untold role and impact of context in randomised controlled trials of seven complex interventions. Trials. 2012;13(1):95.
    1. Voigt-Radloff S, Graff M, Leonhart R, Hull M, Rikkert MO, Vernooij-Dassen M. Why did an effective Dutch complex psycho-social intervention for people with dementia not work in the German healthcare context? Lessons learnt from a process evaluation alongside a multicentre RCT. BMJ Open. 2011;1:e000094.
    1. Lewin S, Glenton C, Oxman AD. Use of qualitative methods alongside randomised controlled trials of complex healthcare interventions: methodological study. BMJ. 2009;339:b3 496.
    1. O’Cathain A, Thomas K, Drabble S, Rudolph A, Goode J, Hewison J. Maximising the value of combining qualitative research and randomised controlled trials in health research: the qualitative research in trials (QUART) study – a mixed methods study. Health Technol Assess. 2014;18.
    1. Burchett HED, Leurent B, Baiden F, Baltzell K, Björkman A, Bruxvoort K, Clarke S, DiLiberto D, Elfving K, Goodman C, et al. Improving prescribing practices with rapid diagnostic tests (RDTs): synthesis of 10 studies to explore reasons for variation in malaria RDT uptake and adherence. BMJ Open. 2017;7:e012973.
    1. O’Cathain A, Hoddinott P, Lewin S, Thomas KJ, Young B, Adamson J, Jansen YJ, Mills N, Moore G, Donovan JL. Maximising the impact of qualitative research in feasibility studies for randomised controlled trials: guidance for researchers. Pilot Feasibility Stud. 2015;1(1):32.
    1. Hawe P, Shiell A, Riley T, Gold L. Methods for exploring implementation variation and local context within a cluster randomised community intervention trial. J Epidemiol Community Health. 2004;58:788–793.
    1. The review on antimicrobial resistance . tackling drug-resistant infections globally: final report and recommendations. London: The UK Prime Minister; 2016.
    1. World Bank. 2017. “Drug-Resistant Infections: A Threat to Our Economic Future.” Washington, DC: World Bank. License: Creative Commons Attribution CC BY 3.0 IGO.
    1. Morgan DJ, Okeke IN, Laxminarayan R, Perencevich EN, Weisenberg S. Non-prescription antimicrobial use worldwide: a systematic review. Lancet Infect Dis. 2011;11:692–701.
    1. Kumarasamy KK, Toleman MA, Walsh TR, Bagaria J, Butt F, Balakrishnan R, Chaudhary U, Doumith M, Giske CG, Irfan S, et al. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect Dis. 2010;10:597–602.
    1. Klein EY, Van Boeckel TP, Martinez EM, Pant S, Gandra S, Levin SA, Goossens H, Laxminarayan R. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proc Natl Acad Sci. 2018;115:E3463-E3470.
    1. Public Health England. UK case of Neisseria gonorrhoeae with high-level resistance to azithromycin and resistance to ceftriaxone acquired abroad. Health Prot Rep Adv Access Rep. 2018;12.
    1. Butler CC, Hood K, Verheij T, Little P, Melbye H, Nuttall J, Kelly MJ, Mölstad S, Godycki-Cwirko M, Almirall J, et al. Variation in antibiotic prescribing and its impact on recovery in patients with acute cough in primary care: prospective study in 13 countries. BMJ. 2009;338:b2242.
    1. Linder JA. Comparative effectiveness of three anxiolytics for acute respiratory infections: antibiotics, C-reactive protein point-of-care testing, and improved communication. J Gen Intern Med. 2015;30:387–389.
    1. Hoa NQ, Thi Lan P, Phuc HD, Chuc NTK, Stalsby Lundborg C. Antibiotic prescribing and dispensing for acute respiratory infections in children: effectiveness of a multi-faceted intervention for health-care providers in Vietnam. Glob Health Action. 2017;10:1327638.
    1. Phuong NTK, Hoang TT, Van PH, Tu L, Graham SM, Marais BJ. Encouraging rational antibiotic use in childhood pneumonia: a focus on Vietnam and the Western Pacific Region. Pneumonia. 2017;9:7.
    1. Davey P, Marwick CA, Scott CL, Charani E, McNeil K, Brown E, Gould IM, Ramsay CR, Michie S. Interventions to improve antibiotic prescribing practices for hospital inpatients. Cochrane Database Syst Rev. 2017.
    1. Nesta . Longitude prize. 2018.
    1. Aabenhus R, Jensen JUS, Jorgensen KJ, Hrobjartsson A, Bjerrum L. Biomarkers as point-of-care tests to guide prescription of antibiotics in patients with acute respiratory infections in primary care. Cochrane Database Syst Rev. 2014;11:Cd010130.
    1. Nora D, Salluh J, Martin-Loeches I, Póvoa P. Biomarker-guided antibiotic therapy—strengths and limitations. Ann Transl Med. 2017;5:208.
    1. Keitel K, Kagoro F, Samaka J, Masimba J, Said Z, Temba H, Mlaganile T, Sangu W, Rambaud-Althaus C, Gervaix A, et al. A novel electronic algorithm using host biomarker point-of-care tests for the management of febrile illnesses in Tanzanian children (e-POCT): a randomized, controlled non-inferiority trial. PLoS Med. 2017;14:e1002411.
    1. Lubell Y, Blacksell SD, Dunachie S, Tanganuchitcharnchai A, Althaus T, Watthanaworawit W, Paris DH, Mayxay M, Peto TJ, Dondorp AM, et al. Performance of C-reactive protein and procalcitonin to distinguish viral from bacterial and malarial causes of fever in Southeast Asia. BMC Infect Dis. 2015;15(1):511.
    1. Hildenwall H, Muro F, Jansson J, Mtove G, Reyburn H, Amos B. Point-of-care assessment of C-reactive protein and white blood cell count to identify bacterial aetiologies in malaria-negative paediatric fevers in Tanzania. Tropical Med Int Health. 2017;22:286–293.
    1. Van den Bruel A, Jones C, Thompson M, Mant D. C-reactive protein point-of-care testing in acutely ill children: a mixed methods study in primary care. Arch Dis Child. 2016;101:382–386.
    1. Cals JWL, Schot MJC, de Jong SAM, Dinant G-J, Hopstaken RM. Point-of-care C-reactive protein testing and antibiotic prescribing for respiratory tract infections: a randomized controlled trial. Ann Fam Med. 2010;8:124–133.
    1. Cals JWL, de Bock L, Beckers P-JHW, Francis NA, Hopstaken RM, Hood K, de Bont EGPM, Butler CC, Dinant G-J. Enhanced communication skills and C-reactive protein point-of-care testing for respiratory tract infection: 3.5-year follow-up of a cluster randomized trial. Ann Fam Med. 2013;11:157–164.
    1. Drain PK, Hyle EP, Noubary F, Freedberg KA, Wilson D, Bishai WR, Rodriguez W, Bassett IV. Diagnostic point-of-care tests in resource-limited settings. Lancet Infect Dis. 2014;14:239–249.
    1. Lubell Y, Althaus T. Biomarker tests for bacterial infection-a costly wait for the holy grail. Lancet Infect Dis. 2017;17:369–370.
    1. Do NTT, Ta NTD, Tran NTH, Than HM, Vu BTN, Hoang LB, van Doorn HR, Vu DTV, Cals JWL, Chandna A, et al. Point-of-care C-reactive protein testing to reduce inappropriate use of antibiotics for non-severe acute respiratory infections in Vietnamese primary health care: a randomised controlled trial. Lancet Glob Health. 2016;4:e633–ee41.
    1. Bazeley P. Qualitative data analysis: practical strategies. London: Sage; 2013.
    1. Huddy JR, Ni MZ, Barlow J, Majeed A, Hanna GB. Point-of-care C reactive protein for the diagnosis of lower respiratory tract infection in NHS primary care: a qualitative study of barriers and facilitators to adoption. BMJ Open. 2016;6:e009959.
    1. Hardy V, Thompson M, Keppel GA, Alto W, Dirac MA, Neher J, Sanford C, Hornecker J, Cole A. Qualitative study of primary care clinicians’ views on point-of-care testing for C-reactive protein for acute respiratory tract infections in family medicine. BMJ Open. 2017;7(1):e012503.
    1. Gelband H, Miller-Petrie M, Pant S, Gandra S, Levinson J, Barter D, White A, Laxminarayan R. State of the world’s antibiotics, 2015. Washington, DC: Center for Disease Dynamics, Economics & Policy; 2015.
    1. Quet F, Vlieghe E, Leyer C, Buisson Y, Newton PN, Naphayvong P, Keoluangkhot V, Chomarat M, Longuet C, Steenkeste N, Jacobs J. Antibiotic prescription behaviours in Lao People’s Democratic Republic: a knowledge, attitude and practice survey. Bull World Health Organ. 2015;93:219–227.
    1. Holloway KA, Batmanabane G, Puri M, Tisocki K. Antibiotic use in South East Asia and policies to promote appropriate use: reports from country situational analyses. BMJ. 2017;358:j2291.
    1. O’Cathain A. A practical guide to using qualitative research with randomized controlled trials. Oxford: Oxford University Press; 2018.
    1. Haenssgen MJ, Charoenboon N, Althaus T, Greer RC, Intralawan D, Lubell Y. The social role of C-reactive protein point-of-care testing to guide antibiotic prescription in Northern Thailand. Soc Sci Med. 2018;202:1–12.
    1. Do TTN. Assessing and improving rational antimicrobial use in urban and rural health care facilities in Vietnam. PhD Thesis. Milton Keynes: Open University; 2017.
    1. Lapadat JC. Thematic analysis. In: Mills AJ, Eurepos G, Wiebe E, editors. Encyclopedia of case study research. Thousand Oaks: Sage; 2010. pp. 925–927.
    1. Nga do TT, Chuc NT, Hoa NP, Hoa NQ, Nguyen NT, Loan HT, Toan TK, Phuc HD, Horby P, Van Yen N, et al. Antibiotic sales in rural and urban pharmacies in northern Vietnam: an observational study. BMC Pharmacol Toxicol. 2014;15(1):6.
    1. Guest G, Bunce A, Johnson L. How many interviews are enough? An experiment with data saturation and variability. Field Methods. 2006;18:59–82.
    1. Kerr C, Nixon A, Wild D. Assessing and demonstrating data saturation in qualitative inquiry supporting patient-reported outcomes research. Expert Rev Pharmacoecon Outcomes Res. 2010;10:269–281.
    1. Radyowijati A, Haak H. Improving antibiotic use in low-income countries: an overview of evidence on determinants. Soc Sci Med. 2003;57:733–744.
    1. Ruizendaal E, Dierickx S, Peeters Grietens K, Schallig HD, Pagnoni F, Mens PF. Success or failure of critical steps in community case management of malaria with rapid diagnostic tests: a systematic review. Malar J. 2014;13(1):229.
    1. Sheikh K, Porter JDH. Understanding practitioners’ responses to national policy guidelines: the case of HIV testing in hospitals. In: Sheikh K, George A, editors. Health providers in India: on the frontlines of change. London: Routledge; 2010. pp. 119–141.
    1. Lune H, Berg BL. Qualitative research methods for the social sciences. 9. Harlow: Pearson; 2017.
    1. QSR International . Nvivo 11. Doncaster: QSR International Pty Ltd; 2017.
    1. Lewis J. Design issues. In: Ritchie J, Lewis J, editors. Qualitative research practice: a guide for social science students and researchers. London: Sage; 2003. pp. 47–76.
    1. Ritchie J, Spencer L, O’Connor W. Carrying out qualitative analysis. In: Ritchie J, Lewis J, editors. Qualitative research practice: a guide for social science students and researchers. London: Sage; 2003. pp. 219–262.
    1. Minh NNQ. Outpatient antibiotic use in acute respiratory infections in Ho Chi Minh City, Vietnam. PhD Thesis. Milton Keynes: Open University; 2014.
    1. Forbes EI. On the frontier of urbanization: informal settlements in Yangon, Myanmar. Indep J Burmese Scholarsh. 2016;1:197–238.
    1. Htwe T, Oo WM, Lwin N, Win KH, Dar HT. Poverty among households living in slum area of Hlaing Tharyar Township, Yangon City, Myanmar. Int J Res Med Sci. 2017;5:2497–2501.
    1. World Bank . World databank. 2018.
    1. Sumpradit N, Chongtrakul P, Anuwong K, Pumtong S, Kongsomboon K, Butdeemee P, Khonglormyati J, Chomyong S, Tongyoung P, Losiriwat S, et al. Antibiotics smart use: a workable model for promoting the rational use of medicines in Thailand. Bull World Health Organ. 2012;90:905–913.
    1. MPH, MAC . National strategic plan on antimicrobial resistance 2017–2021, Thailand. Nonthaburi: Ministry of Public Health and Ministry of Agriculture and Cooperatives; 2017.
    1. Sumpradit N, Wongkongkathep S, Poonpolsup S, Janejai N, Paveenkittiporn W, Boonyarit P, Jaroenpoj S, Kiatying-Angsulee N, Kalpravidh W, Sommanustweechai A, Tangcharoensathien V. New chapter in tackling antimicrobial resistance in Thailand. BMJ. 2017;358:j3415.
    1. Tangcharoensathien V, Sattayawutthipong W, Kanjanapimai S, Kanpravidth W, Brown R, Sommanustweechai A. Antimicrobial resistance: from global agenda to national strategic plan, Thailand. Bull World Health Organ. 2017;95:599–603.
    1. Nguyen KV, Thi Do NT, Chandna A, Nguyen TV, Pham CV, Doan PM, Nguyen AQ, Thi Nguyen CK, Larsson M, Escalante S, et al. Antibiotic use and resistance in emerging economies: a situation analysis for Viet Nam. BMC Public Health. 2013;13(1):1158.
    1. Holloway KA. Myanmar: drug policy and pharmaceuticals in health care delivery. New Delhi: World Health Organization Regional Officer for South East Asia; 2011.
    1. Ministry of Health and Sports . National action plan for containment of antimicrobial resistance: Myanmar, 2017-2022 (draft, Version 01) Naypyidaw: Ministry of Health and Sports; 2017.
    1. Greer RC, Intralawan D, Mukaka M, Wannapinij P, Day NPJ, Nedsuwan S, Lubell Y. Retrospective review of the management of acute infections and the indications for antibiotic prescription in primary care in northern Thailand. BMJ Open. 2018;8(7):e022250.
    1. Apidechkul T, Laingoen O, Suwannaporn S. Inequity in accessing health care service in Thailand in 2015: a case study of the hill tribe people in Mae Fah Luang district, Chiang Rai, Thailand. J Health Res. 2016;30:67–71.
    1. Khine Zaw Y, Charoenboon N, Haenssgen MJ, Lubell Y. A comparison of patients’ local conceptions of illness and medicines in the context of C-reactive protein biomarker testing in Chiang Rai and Yangon. Am J Trop Med Hyg. 2018;98:1661–1760.
    1. Beisel U, Umlauf R, Hutchinson E, Chandler CIR. The complexities of simple technologies: re-imagining the role of rapid diagnostic tests in malaria control efforts. Malar J. 2016;15:64.
    1. Hopkins H, Bruxvoort KJ, Cairns ME, Chandler CIR, Leurent B, Ansah EK, Baiden F, Baltzell KA, Björkman A, Burchett HED, et al. Impact of introduction of rapid diagnostic tests for malaria on antibiotic prescribing: analysis of observational and randomised studies in public and private healthcare settings. BMJ. 2017;356:j1054.
    1. Okeke IN, Klugman KP, Bhutta ZA, Duse AG, Jenkins P, O’Brien TF, Pablos-Mendez A, Laxminarayan R. Antimicrobial resistance in developing countries. Part II: strategies for containment. Lancet Infect Dis. 2005;5:568–580.
    1. Mendelson M, Balasegaram M, Jinks T, Pulcini C, Sharland M. Antibiotic resistance has a language problem. Nature. 2017;545:23–25.
    1. Nichter M. Risk, vulnerability, and harm reduction: preventing STIs in Southeast Asia by antibiotic prophylaxis, a misguided practice. In: Obermeyer CM, editor. Cultural perspectives on reproductive health. Oxford: Oxford University Press; 2001. pp. 101–127.
    1. Karumbi J, Garner P. Directly observed therapy for treating tuberculosis. Cochrane Database Syst Rev. 2015.
    1. WHO . Treatment of tuberculosis: guidelines for treatment of drug-susceptible tuberculosis and patient care: 2017 update. Geneva: World Health Organization; 2017.
    1. Skinner D, Claassens M. It’s complicated: why do tuberculosis patients not initiate or stay adherent to treatment? A qualitative study from South Africa. BMC Infect Dis. 2016;16(1):712.
    1. Sagbakken M, Frich JC, Bjune GA, Porter JD. Ethical aspects of directly observed treatment for tuberculosis: a cross-cultural comparison. BMC Med Ethics. 2013;14(1):25.
    1. Engel N, Zeiss R. Situating standards in practices: multi drug-resistant tuberculosis treatment in India. Sci Cult. 2014;23:201–225.
    1. Spurling GKP, Del Mar CB, Dooley L, Foxlee R, Farley R. Delayed antibiotic prescriptions for respiratory infections. Cochrane Database Syst Rev. 2017;9.
    1. Dupas P. Health behavior in developing countries. Annu Rev Econ. 2011;3:425–449.
    1. Lau J, Ioannidis JPA, Schmid CH. Summing up evidence: one answer is not always enough. Lancet. 1998;351:123–127.
    1. Kravitz RL, Duan N, Braslow J. Evidence-based medicine, heterogeneity of treatment effects, and the trouble with averages. Milbank Q. 2004;82:661–687.
    1. Kent DM, Rothwell PM, Ioannidis JP, Altman DG, Hayward RA. Assessing and reporting heterogeneity in treatment effects in clinical trials: a proposal. Trials. 2010;11(1):85.
    1. Supakankunti S, Janjaroen WS, Tangphao O, Ratanawijitrasin S, Kraipornsak P, Pradithavanij P. Impact of the World Trade Organization TRIPS Agreement on the pharmaceutical industry in Thailand. Bull World Health Organ. 2001;79:461–470.
    1. Thomas C. Trade policy and the politics of access to drugs. Third World Q. 2002;23:251–264.
    1. WHO . Strengthening health systems to improve health outcomes: WHO’s framework for action. Geneva: World Health Organization; 2007.

Source: PubMed

3
订阅