Outcomes after major surgery in patients with myasthenia gravis: A nationwide matched cohort study

Yi-Wen Chang, Yi-Chun Chou, Chun-Chieh Yeh, Chaur-Jong Hu, Chih-Jen Hung, Chao-Shun Lin, Ta-Liang Chen, Chien-Chang Liao, Yi-Wen Chang, Yi-Chun Chou, Chun-Chieh Yeh, Chaur-Jong Hu, Chih-Jen Hung, Chao-Shun Lin, Ta-Liang Chen, Chien-Chang Liao

Abstract

Objective: To validate the comprehensive features of adverse outcomes after surgery for patients with myasthenia gravis.

Methods: Using reimbursement claims from Taiwan's National Health Insurance Research Database, we analyzed 2290 patients who received major surgery between 2004 and 2010 and were diagnosed with myasthenia gravis preoperatively. Surgical patients without myasthenia gravis (n = 22,900) were randomly selected by matching procedure with propensity score for comparison. The adjusted odds ratios and 95% confidence intervals of postoperative adverse events associated with preoperative myasthenia gravis were calculated under the multiple logistic regressions.

Results: Compared with surgical patients without myasthenia gravis, surgical patients with myasthenia gravis had higher risks of postoperative pneumonia (OR = 2.09; 95% CI: 1.65-2.65), septicemia (OR = 1.31; 95% CI: 1.05-1.64), postoperative bleeding (OR = 1.71; 95% CI: 1.07-2.72), and overall complications (OR = 1.70; 95% CI: 1.44-2.00). The ORs of postoperative adverse events for patients with myasthenia gravis who had symptomatic therapy, chronic immunotherapy, and short-term immunotherapy were 1.76 (95% CI 1.50-2.08), 1.70 (95% CI 1.36-2.11), and 4.36 (95% CI 2.11-9.04), respectively.

Conclusions: Patients with myasthenia gravis had increased risks of postoperative adverse events, particularly those experiencing emergency care, hospitalization, and thymectomy for care of myasthenia gravis. Our findings suggest the urgency of revising protocols for perioperative care for these populations.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

References

    1. Spillane J, Higham E, Kullmann DM. Myasthenia gravis. BMJ. 2012;345: e8497 doi:
    1. Carr AS, Cardwell CR, McCarron PO, McConville J. A systematic review of population-based epidemiological studies in myasthenia gravis. BMC Neurol. 2010;10: 46 doi:
    1. Guptill JT, Sharma BK, Marano A, Soucy A, Krueger A, Sanders DB. Estimated cost of treating myasthenia gravis in an insured U.S. population. Muscle Nerve. 2012;45: 363–366. doi:
    1. Kulaksizoglu IB. Mood and anxiety disorders in patients with myasthenia gravis aetiology, diagnosis and treatment. CNS Drugs. 2007;21: 473–481.
    1. Martínez-Lapiscina EH, Erro ME, Ayuso T, Jericó I. Myasthenia gravis: sleep quality, quality of life, and disease severity. Muscle Nerve. 2012;46: 174–180. doi:
    1. Harvey AM, Lilienthal JL, Talbot SA. Observations on the nature of myasthenia gravis: the effect of thymectomy on neuro-muscular transmission. J Clin Invest. 1942;21: 579–588. doi:
    1. Alshaikh JT, Amdur R, Sidawy A, Trachiotis G, Kaminski HJ. Thymectomy is safe for myasthenia gravis patients: Analysis of the NSQIP database. Muscle Nerve. 2016;53: 370–374. doi:
    1. Cheng C, Liu Z, Xu F, Deng Z, Feng H, Lei Y, et al. Clinical outcome of juvenile myasthenia gravis after extended transsternal thymectomy in a Chinese cohort. Ann Thorac Surg. 2013;95: 1035–1041. doi:
    1. Marulli G, Schiavon M, Perissinotto E, Bugana A, Di Chiara F, Rebusso A, et al. Surgical and neurologic outcomes after robotic thymectomy in 100 consecutive patients with myasthenia gravis. J Thorac Cardiovasc Surg. 2013;145: 730–735. doi:
    1. Tomulescu V, Sgarbura O, Stanescu C, Valciu C, Campeanu A, Herlea V, et al. Ten-year results of thoracoscopic unilateral extended thymectomy performed in nonthymomatous myasthenia gravis. Ann Surg. 2011;254: 761–765. doi:
    1. Keijzers M, de Baets M, Hochstenbag M, Abdul-Hamid M, Zur Hausen A, van der Linden M, et al. Robotic thymectomy in patients with myasthenia gravis: neurological and surgical outcomes. Eur J Cardiothorac Surg. 2015;48: 40–45. doi:
    1. Pakzad Z, Aziz T, Oger J. Increasing incidence of myasthenia gravis among elderly in British Columbia, Canada. Neurology. 2011;76: 1526–1528. doi:
    1. Buzello W, Noeldge G, Krieg N, Brobmann GF. Vecuronium for muscle relaxation in patients with myasthenia gravis. Anesthesiology. 1986;64: 507–509.
    1. Yeh CC, Liao CC, Chang YC, Jeng LB, Yang HR, Shih CC, et al. Adverse outcomes after noncardiac surgery in patients with diabetes: a nationwide population-based retrospective cohort study. Diabetes Care. 2013;36: 3216–3221. doi:
    1. Liao CC, Shen WW, Chang CC, Chang H, Chen TL. Surgical adverse outcomes in patients with schizophrenia: a population-based study. Ann Surg. 2013;257: 433–438. doi:
    1. Ke CC, Lin CS, Yeh CC, Chung CL, Hung CJ, Liao CC, et al. Adverse outcomes after non-chest surgeries in patients with pulmonary tuberculosis: a nationwide study. PLoS One. 2015;10: e0133064 doi:
    1. Chou CL, Lee WR, Yeh CC, Shih CC, Chen TL, Liao CC. Adverse outcomes after major surgery in patients with pressure ulcer: a nationwide population-based retrospective cohort study. PLoS One. 2015;10: e0127731 doi:
    1. Rosenbaum PR, Rubin DB. Constructing a control group using multivariate matched sampling methods that incorporate the propensity score. Am Stat. 1985;39: 33–38.
    1. Wijeysundera DN, Beattie WS, Austin PC, Hux JE, Laupacis A. Epidural anaesthesia and survival after intermediate-to-high-risk non-cardiac surgery: a population-based cohort study. Lancet. 2008;372: 562–569. doi:
    1. Andersen JB, Owe JF, Engeland A, Gilhus NE. Total drug treatment and comorbidity in myasthenia gravis: a population-based cohort study. Eur J Neurol. 2014;21: 948–955. doi:
    1. Gilhus NE, Nacu A, Andersen JB, Owe JF. Myasthenia gravis and risks for comorbidity. Eur J Neurol. 2015;22: 17–23. doi:
    1. Fang F, Sveinsson O, Thormar G, Granqvist M, Askling J, Lundberg IE, et al. The autoimmune spectrum of myasthenia gravis: a Swedish population-based study. J Intern Med. 2015;277: 594–604. doi:
    1. Alshekhlee A, Miles JD, Katirji B, Preston DC, Kaminski HJ. Incidence and mortality rates of myasthenia gravis and myasthenic crisis in US hospitals. Neurology. 2009;72: 1548–1554. doi:
    1. Termsarasab P, Katirji B. Opportunistic infections in myasthenia gravis treated with mycophenolate mofetil. J Neuroimmunol. 2012;249: 83–85. doi:
    1. Plante J, Turgeon AF, Zarychanski R, Lauzier F, Vigneault L, Moore L, et al. Effect of systemic steroids on post-tonsillectomy bleeding and reinterventions: systematic review and meta-analysis of randomised controlled trials. BMJ. 2012;345: e5389 doi:
    1. Connell WR, Kamm MA, Ritchie JK, Lennard-Jones JE. Bone marrow toxicity caused by azathioprine in inflammatory bowel disease: 27 years of experience. Gut. 1993;34: 1081–1085.
    1. Fraiser LH, Kanekal S, Kehrer JP. Cyclophosphamide toxicity: characterising and avoiding the problem. Drugs. 1991;42: 781–795.
    1. Duggan M, Kavanagh BP. Pulmonary atelectasis: a pathogenic perioperative entity. Anesthesiology. 2005;102: 838–854.
    1. Seneviratne J, Mandrekar J, Wijdicks EF, Rabinstein AA. Predictors of extubation failure in myasthenic crisis. Arch Neurol. 2008;65: 929–933. doi:
    1. Ramagopalan SV, Wotton CJ, Handel AE, Yeates D, Goldacre MJ. Risk of venous thromboembolism in people admitted to hospital with selected immune-mediated diseases: record-linkage study. BMC Med. 2011;9: 1 doi:
    1. Hansen JS, Danielsen DH, Somnier FE, Frøslev T, Jakobsen J, Johnsen SP, et al. Mortality in myasthenia gravis: a nationwide population-based follow-up study in Denmark. Muscle Nerve. 2016;53: 73–77. doi:
    1. Gilhus NE, Verschuuren JJ. Myasthenia gravis: subgroup classification and therapeutic strategies. Lancet Neurol. 2015;14: 1023–1036. doi:
    1. Ramos-Fransi A, Rojas-García R, Segovia S, Márquez-Infante C, Pardo J, Coll-Cantí J, et al. Myasthenia gravis: descriptive analysis of life-threatening events in a recent nationwide registry. Eur J Neurol. 2015;22: 1056–1061. doi:
    1. Ando T, Omasa M, Kondo T, Yamada T, Sato M, Menju T, et al. Predictive factors of myasthenic crisis after extended thymectomy for patients with myasthenia gravis. Eur J Cardiothorac Surg. 2015;48: 705–709. doi:
    1. Leuzzi G, Meacci E, Cusumano G, Cesario A, Chiappetta M, Dall'armi V, et al. Thymectomy in myasthenia gravis: proposal for a predictive score of postoperative myasthenic crisis. Eur J Cardiothorac Surg. 2014;45: e76–e88. doi:
    1. Marx A, Pfister P, Schalke B, et al. The different roles of the thymus in the pathogenesis of the various myasthenia gravis subtypes. Autoimmun Rev. 2013;12: 875–884. doi:
    1. Skeie GO, Apostolski S, Evoli A, Gilhus NE, Illa I, Harms L, et al. Guidelines for treatment of autoimmune neuromuscular transmission disorders. Eur J Neurol. 2010;17: 893–902. doi:
    1. Jaretzki A 3rd, Barohn RJ, Ernstoff RM, Kaminski HJ, Keesey JC, Penn AS, Sanders DB. Myasthenia gravis: recommendations for clinical research standards. Task Force of the Medical Scientific Advisory Board of the Myasthenia Gravis Foundation of America. Neurology. 2000;55: 16–23.

Source: PubMed

3
订阅