Effect of Empagliflozin on Left Ventricular Volumes in Patients With Type 2 Diabetes, or Prediabetes, and Heart Failure With Reduced Ejection Fraction (SUGAR-DM-HF)

Matthew M Y Lee, Katriona J M Brooksbank, Kirsty Wetherall, Kenneth Mangion, Giles Roditi, Ross T Campbell, Colin Berry, Victor Chong, Liz Coyle, Kieran F Docherty, John G Dreisbach, Catherine Labinjoh, Ninian N Lang, Vera Lennie, Alex McConnachie, Clare L Murphy, Colin J Petrie, John R Petrie, Iain A Speirits, Steven Sourbron, Paul Welsh, Rosemary Woodward, Aleksandra Radjenovic, Patrick B Mark, John J V McMurray, Pardeep S Jhund, Mark C Petrie, Naveed Sattar, Matthew M Y Lee, Katriona J M Brooksbank, Kirsty Wetherall, Kenneth Mangion, Giles Roditi, Ross T Campbell, Colin Berry, Victor Chong, Liz Coyle, Kieran F Docherty, John G Dreisbach, Catherine Labinjoh, Ninian N Lang, Vera Lennie, Alex McConnachie, Clare L Murphy, Colin J Petrie, John R Petrie, Iain A Speirits, Steven Sourbron, Paul Welsh, Rosemary Woodward, Aleksandra Radjenovic, Patrick B Mark, John J V McMurray, Pardeep S Jhund, Mark C Petrie, Naveed Sattar

Abstract

Background: Sodium-glucose cotransporter 2 inhibitors reduce the risk of heart failure hospitalization and cardiovascular death in patients with heart failure and reduced ejection fraction (HFrEF). However, their effects on cardiac structure and function in HFrEF are uncertain.

Methods: We designed a multicenter, randomized, double-blind, placebo-controlled trial (the SUGAR-DM-HF trial [Studies of Empagliflozin and Its Cardiovascular, Renal and Metabolic Effects in Patients With Diabetes Mellitus, or Prediabetes, and Heart Failure]) to investigate the cardiac effects of empagliflozin in patients in New York Heart Association functional class II to IV with a left ventricular (LV) ejection fraction ≤40% and type 2 diabetes or prediabetes. Patients were randomly assigned 1:1 to empagliflozin 10 mg once daily or placebo, stratified by age (<65 and ≥65 years) and glycemic status (diabetes or prediabetes). The coprimary outcomes were change from baseline to 36 weeks in LV end-systolic volume indexed to body surface area and LV global longitudinal strain both measured using cardiovascular magnetic resonance. Secondary efficacy outcomes included other cardiovascular magnetic resonance measures (LV end-diastolic volume index, LV ejection fraction), diuretic intensification, symptoms (Kansas City Cardiomyopathy Questionnaire Total Symptom Score, 6-minute walk distance, B-lines on lung ultrasound, and biomarkers (including N-terminal pro-B-type natriuretic peptide).

Results: From April 2018 to August 2019, 105 patients were randomly assigned: mean age 68.7 (SD, 11.1) years, 77 (73.3%) male, 82 (78.1%) diabetes and 23 (21.9%) prediabetes, mean LV ejection fraction 32.5% (9.8%), and 81 (77.1%) New York Heart Association II and 24 (22.9%) New York Heart Association III. Patients received standard treatment for HFrEF. In comparison with placebo, empagliflozin reduced LV end-systolic volume index by 6.0 (95% CI, -10.8 to -1.2) mL/m2 (P=0.015). There was no difference in LV global longitudinal strain. Empagliflozin reduced LV end-diastolic volume index by 8.2 (95% CI, -13.7 to -2.6) mL/m2 (P=0.0042) and reduced N-terminal pro-B-type natriuretic peptide by 28% (2%-47%), P=0.038. There were no between-group differences in other cardiovascular magnetic resonance measures, diuretic intensification, Kansas City Cardiomyopathy Questionnaire Total Symptom Score, 6-minute walk distance, or B-lines.

Conclusions: The sodium-glucose cotransporter 2 inhibitor empagliflozin reduced LV volumes in patients with HFrEF and type 2 diabetes or prediabetes. Favorable reverse LV remodeling may be a mechanism by which sodium-glucose cotransporter 2 inhibitors reduce heart failure hospitalization and mortality in HFrEF. Registration: URL: https://www.clinicaltrials.gov. Unique identifier: NCT03485092.

Keywords: clinical trial; diabetes mellitus; empagliflozin; heart failure; magnetic resonance imaging; myocardium; sodium-glucose transporter 2 inhibitors; ventricular remodeling.

Figures

Figure 1.
Figure 1.
Change in coprimary cardiovascular magnetic resonance outcomes from baseline to week 36. Mean (95% CI). *Treatment effect calculated using an analysis of covariance model adjusted for treatment group, age at baseline, diabetes status, and baseline value. LVESVi indicates left ventricular end-systolic volume index; and LV GLS, left ventricular global longitudinal strain.
Figure 2.
Figure 2.
Change in secondary cardiovascular magnetic resonance outcomes from baseline to week 36. *Treatment effect calculated using an analysis of covariance model adjusted for treatment group, age at baseline, diabetes status, and baseline value. LAVi indicates left atrial volume index; LVEDVi, left ventricular end-diastolic volume index; LVEF, left ventricular ejection fraction; LVGFI, left ventricular global function index; and LVMi, left ventricular mass index.

References

    1. Kramer DG, Trikalinos TA, Kent DM, Antonopoulos GV, Konstam MA, Udelson JE. Quantitative evaluation of drug or device effects on ventricular remodeling as predictors of therapeutic effects on mortality in patients with heart failure and reduced ejection fraction: a meta-analytic approach. J Am Coll Cardiol. 2010;56:392–406. doi: 10.1016/j.jacc.2010.05.011
    1. Cohn JN, Ferrari R, Sharpe N. Cardiac remodeling–concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. Behalf of an International Forum on Cardiac Remodeling. J Am Coll Cardiol. 2000;35:569–582. doi: 10.1016/s0735-1097(99)00630-0
    1. Bellenger NG, Rajappan K, Rahman SL, Lahiri A, Raval U, Webster J, Murray GD, Coats AJ, Cleland JG, Pennell DJ; CHRISTMAS Study Steering Committee and Investigators. Effects of carvedilol on left ventricular remodelling in chronic stable heart failure: a cardiovascular magnetic resonance study. Heart. 2004;90:760–764. doi: 10.1136/hrt.2003.015552
    1. Groenning BA, Nilsson JC, Sondergaard L, Fritz-Hansen T, Larsson HB, Hildebrandt PR. Antiremodeling effects on the left ventricle during beta-blockade with metoprolol in the treatment of chronic heart failure. J Am Coll Cardiol. 2000;36:2072–2080. doi: 10.1016/s0735-1097(00)01006-8
    1. Tardif JC, O’Meara E, Komajda M, Böhm M, Borer JS, Ford I, Tavazzi L, Swedberg K; SHIFT Investigators. Effects of selective heart rate reduction with ivabradine on left ventricular remodelling and function: results from the SHIFT echocardiography substudy. Eur Heart J. 2011;32:2507–2515. doi: 10.1093/eurheartj/ehr311
    1. Desai AS, Solomon SD, Shah AM, Claggett BL, Fang JC, Izzo J, McCague K, Abbas CA, Rocha R, Mitchell GFEVALUATE-HF Investigators. Effect of sacubitril-valsartan vs enalapril on aortic stiffness in patients with heart failure and reduced ejection fraction: a randomized clinical trial. JAMA. 2019;322:1–10.
    1. Wong M, Staszewsky L, Latini R, Barlera S, Volpi A, Chiang YT, Benza RL, Gottlieb SO, Kleemann TD, Rosconi F, et al. ; Val-HeFT Heart Failure Trial Investigators. Valsartan benefits left ventricular structure and function in heart failure: Val-HeFT echocardiographic study. J Am Coll Cardiol. 2002;40:970–975. doi: 10.1016/s0735-1097(02)02063-6
    1. Greenberg B, Quinones MA, Koilpillai C, Limacher M, Shindler D, Benedict C, Shelton B. Effects of long-term enalapril therapy on cardiac structure and function in patients with left ventricular dysfunction. Results of the SOLVD echocardiography substudy. Circulation. 1995;91:2573–2581. doi: 10.1161/01.cir.91.10.2573
    1. Colucci WS, Kolias TJ, Adams KF, Armstrong WF, Ghali JK, Gottlieb SS, Greenberg B, Klibaner MI, Kukin ML, Sugg JE; REVERT Study Group. Metoprolol reverses left ventricular remodeling in patients with asymptomatic systolic dysfunction: the REversal of VEntricular Remodeling with Toprol-XL (REVERT) trial. Circulation. 2007;116:49–56. doi: 10.1161/CIRCULATIONAHA.106.666016
    1. Cleland JG, Daubert JC, Erdmann E, Freemantle N, Gras D, Kappenberger L, Tavazzi L; Cardiac Resynchronization-Heart Failure (CARE-HF) Study Investigators. The effect of cardiac resynchronization on morbidity and mortality in heart failure. N Engl J Med. 2005;352:1539–1549. doi: 10.1056/NEJMoa050496
    1. McMurray JJV, Solomon SD, Inzucchi SE, Køber L, Kosiborod MN, Martinez FA, Ponikowski P, Sabatine MS, Anand IS, Bělohlávek J, et a, et al. ; DAPA-HF Trial Committees and Investigators. Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med. 2019;381:1995–2008. doi: 10.1056/NEJMoa1911303
    1. Packer M, Anker SD, Butler J, Filippatos G, Pocock SJ, Carson P, Januzzi J, Verma S, Tsutsui H, Brueckmann M, et al. ; EMPEROR-Reduced Trial Investigators. Cardiovascular and Renal outcomes with empagliflozin in heart failure. N Engl J Med. 2020;383:1413–1424. doi: 10.1056/NEJMoa2022190
    1. Verma S, Mazer CD, Yan AT, Mason T, Garg V, Teoh H, Zuo F, Quan A, Farkouh ME, Fitchett DH, et al. Effect of empagliflozin on left ventricular mass in patients with type 2 diabetes mellitus and coronary artery disease: the EMPA-HEART CardioLink-6 randomized clinical trial. Circulation. 2019;140:1693–1702. doi: 10.1161/CIRCULATIONAHA.119.042375
    1. Singh JSS, Mordi IR, Vickneson K, Fathi A, Donnan PT, Mohan M, Choy AMJ, Gandy S, George J, Khan F, et al. Dapagliflozin versus placebo on left ventricular remodeling in patients with diabetes and heart failure: the REFORM trial. Diabetes Care. 2020;43:1356–1359. doi: 10.2337/dc19-2187
    1. Green CP, Porter CB, Bresnahan DR, Spertus JA. Development and evaluation of the Kansas City Cardiomyopathy Questionnaire: a new health status measure for heart failure. J Am Coll Cardiol. 2000;35:1245–1255. doi: 10.1016/s0735-1097(00)00531-3
    1. Demers C, McKelvie RS, Negassa A, Yusuf S; RESOLVD Pilot Study Investigators. Reliability, validity, and responsiveness of the six-minute walk test in patients with heart failure. Am Heart J. 2001;142:698–703. doi: 10.1067/mhj.2001.118468
    1. Platz E, Campbell RT, Claggett B, Lewis EF, Groarke JD, Docherty KF, Lee MMY, Merz AA, Silverman M, Swamy V, et al. Lung ultrasound in acute heart failure: prevalence of pulmonary congestion and short- and long-term outcomes. JACC Heart Fail. 2019;7:849–858. doi: 10.1016/j.jchf.2019.07.008
    1. Konstam MA, Kramer DG, Patel AR, Maron MS, Udelson JE. Left ventricular remodeling in heart failure: current concepts in clinical significance and assessment. JACC Cardiovasc Imaging. 2011;4:98–108. doi: 10.1016/j.jcmg.2010.10.008
    1. Kang DH, Park SJ, Shin SH, Hong GR, Lee S, Kim MS, Yun SC, Song JM, Park SW, Kim JJ. Angiotensin receptor neprilysin inhibitor for functional mitral regurgitation. Circulation. 2019;139:1354–1365. doi: 10.1161/CIRCULATIONAHA.118.037077
    1. Maeda K, Tsutamoto T, Wada A, Hisanaga T, Kinoshita M. Plasma brain natriuretic peptide as a biochemical marker of high left ventricular end-diastolic pressure in patients with symptomatic left ventricular dysfunction. Am Heart J. 1998;1355pt 1825–832. doi: 10.1016/s0002-8703(98)70041-9
    1. Packer M. Cardioprotective effects of sirtuin-1 and its downstream effectors: potential role in mediating the heart failure benefits of SGLT2 (sodium-glucose cotransporter 2) inhibitors. Circ Heart Fail. 2020;13:e007197 doi: 10.1161/CIRCHEARTFAILURE.120.007197
    1. Jung IH, Park JH, Lee JA, Kim GS, Lee HY, Byun YS, Kim BO. Left Ventricular Global Longitudinal Strain as a Predictor for Left Ventricular Reverse Remodeling in Dilated Cardiomyopathy. J Cardiovasc Imaging. 2020;28:137–149. doi: 10.4250/jcvi.2019.0111
    1. Petersen SE, Aung N, Sanghvi MM, Zemrak F, Fung K, Paiva JM, Francis JM, Khanji MY, Lukaschuk E, Lee AM, et al. Reference ranges for cardiac structure and function using cardiovascular magnetic resonance (CMR) in Caucasians from the UK Biobank population cohort. J Cardiovasc Magn Reson. 2017;19:18 doi: 10.1186/s12968-017-0327-9
    1. Le TT, Tan RS, De Deyn M, Goh EP, Han Y, Leong BR, Cook SA, Chin CW. Cardiovascular magnetic resonance reference ranges for the heart and aorta in Chinese at 3T. J Cardiovasc Magn Reson. 2016;18:21 doi: 10.1186/s12968-016-0236-3
    1. Dreisbach JG, Mathur S, Houbois CP, Oechslin E, Ross H, Hanneman K, Wintersperger BJ. Cardiovascular magnetic resonance based diagnosis of left ventricular non-compaction cardiomyopathy: impact of cine bSSFP strain analysis. J Cardiovasc Magn Reson. 2020;22:9 doi: 10.1186/s12968-020-0599-3
    1. Liu H, Wang J, Pan Y, Ge Y, Guo Z, Zhao S. Early and quantitative assessment of myocardial deformation in essential hypertension patients by using cardiovascular magnetic resonance feature tracking. Sci Rep. 2020;10:3582 doi: 10.1038/s41598-020-60537-x
    1. Mewton N, Opdahl A, Choi EY, Almeida AL, Kawel N, Wu CO, Burke GL, Liu S, Liu K, Bluemke DA, et al. Left ventricular global function index by magnetic resonance imaging–a novel marker for assessment of cardiac performance for the prediction of cardiovascular events: the multi-ethnic study of atherosclerosis. Hypertension. 2013;61:770–778. doi: 10.1161/HYPERTENSIONAHA.111.198028
    1. Eitel I, Pöss J, Jobs A, Eitel C, de Waha S, Barkhausen J, Desch S, Thiele H. Left ventricular global function index assessed by cardiovascular magnetic resonance for the prediction of cardiovascular events in ST-elevation myocardial infarction. J Cardiovasc Magn Reson. 2015;17:62 doi: 10.1186/s12968-015-0161-x
    1. McComb C, Berry C. Prognostic importance of a new measure of global systolic heart function in healthy adults. Hypertension. 2013;61:762–764. doi: 10.1161/HYPERTENSIONAHA.112.199992
    1. Sourbron S. plaresmedima/PMI-0.4-SUGAR: Outcomes. October 13 2020. Accessed October 14, 2020. 10.5281/zenodo.4086055
    1. Haaf P, Garg P, Messroghli DR, Broadbent DA, Greenwood JP, Plein S. Cardiac T1 mapping and extracellular volume (ECV) in clinical practice: a comprehensive review. J Cardiovasc Magn Reson. 2016;18:89 doi: 10.1186/s12968-016-0308-4
    1. Romano S, Judd RM, Kim RJ, Kim HW, Klem I, Heitner JF, Shah DJ, Jue J, White BE, Indorkar R, et al. Feature-tracking global longitudinal strain predicts death in a multicenter population of patients with ischemic and nonischemic dilated cardiomyopathy incremental to ejection fraction and late gadolinium enhancement. JACC Cardiovasc Imaging. 2018;11:1419–1429. doi: 10.1016/j.jcmg.2017.10.024

Source: PubMed

3
订阅