Repeatability and reproducibility of multiparametric magnetic resonance imaging of the liver

Velicia Bachtiar, Matthew D Kelly, Henry R Wilman, Jaco Jacobs, Rexford Newbould, Catherine J Kelly, Michael L Gyngell, Katherine E Groves, Andy McKay, Amy H Herlihy, Carolina C Fernandes, Mark Halberstadt, Marion Maguire, Naomi Jayaratne, Sophia Linden, Stefan Neubauer, Rajarshi Banerjee, Velicia Bachtiar, Matthew D Kelly, Henry R Wilman, Jaco Jacobs, Rexford Newbould, Catherine J Kelly, Michael L Gyngell, Katherine E Groves, Andy McKay, Amy H Herlihy, Carolina C Fernandes, Mark Halberstadt, Marion Maguire, Naomi Jayaratne, Sophia Linden, Stefan Neubauer, Rajarshi Banerjee

Abstract

As the burden of liver disease reaches epidemic levels, there is a high unmet medical need to develop robust, accurate and reproducible non-invasive methods to quantify liver tissue characteristics for use in clinical development and ultimately in clinical practice. This prospective cross-sectional study systematically examines the repeatability and reproducibility of iron-corrected T1 (cT1), T2*, and hepatic proton density fat fraction (PDFF) quantification with multiparametric MRI across different field strengths, scanner manufacturers and models. 61 adult participants with mixed liver disease aetiology and those without any history of liver disease underwent multiparametric MRI on combinations of 5 scanner models from two manufacturers (Siemens and Philips) at different field strengths (1.5T and 3T). We report high repeatability and reproducibility across different field strengths, manufacturers, and scanner models in standardized cT1 (repeatability CoV: 1.7%, bias -7.5ms, 95% LoA of -53.6 ms to 38.5 ms; reproducibility CoV 3.3%, bias 6.5 ms, 95% LoA of -76.3 to 89.2 ms) and T2* (repeatability CoV: 5.5%, bias -0.18 ms, 95% LoA -5.41 to 5.05 ms; reproducibility CoV 6.6%, bias -1.7 ms, 95% LoA -6.61 to 3.15 ms) in human measurements. PDFF repeatability (0.8%) and reproducibility (0.75%) coefficients showed high precision of this metric. Similar precision was observed in phantom measurements. Inspection of the ICC model indicated that most of the variance in cT1 could be accounted for by study participants (ICC = 0.91), with minimal contribution from technical differences. We demonstrate that multiparametric MRI is a non-invasive, repeatable and reproducible method for quantifying liver tissue characteristics across manufacturers (Philips and Siemens) and field strengths (1.5T and 3T).

Conflict of interest statement

Authors are employees of Perspectum Diagnostics. V.B., M.D.K., J.J., R.N., C.J.K., M.L.G., K.E.G., A.M., A.H.H., C.C.F., M.H., M.M., N.J., S.L., and R.B. are employees at Perspectum Diagnostics. V.B., M.D.K., H.R.W., J.J., R.N., C.J.K., M.L.G., A.H.H., C.C.F., M.M., S.L., S.N., and R.B. are shareholders of Perspectum Diagnostics. S.N. and R.B. are founders of Perspectum Diagnostics. This commercial affiliation does not alter our adherence to PLOS ONE policies on sharing data and materials.

Figures

Fig 1. Study design.
Fig 1. Study design.
Two manufacturers (Siemens and Philips) and a range of scanner models were used to systematically test the repeatability and reproducibility of multiparametric-MRI derived measurements in human participants and phantoms.
Fig 2. Phantom T1 Standardisation.
Fig 2. Phantom T1 Standardisation.
Bland-Altman plots demonstrating T1 measurements in phantoms before and after standardisation at (a) 1.5T and (b) 3T.
Fig 3. Repeatability and reproducibility of phantom…
Fig 3. Repeatability and reproducibility of phantom measurements.
Bland-Altman plots from phantom measurements across manufacturer and field strength for (a) T1, (b) T2*, and (c) PDFF.
Fig 4. Repeatability and reproducibility of human…
Fig 4. Repeatability and reproducibility of human multiparametric MRI measurements.
Bland-Altman plots from human measurements across manufacturer and field strength for (a) cT1, (b) T2*, and (c) PDFF.

References

    1. Younossi Z. M., Koenig A. B., Abdelatif D., Fazel Y., Henry L., and Wymer M., “Global epidemiology of nonalcoholic fatty liver disease—Meta-analytic assessment of prevalence, incidence, and outcomes,” Hepatology, vol. 64, no. 1, pp. 73–84, 2016. 10.1002/hep.28431
    1. Loomba R. and Sanyal A. J., “The global NAFLD epidemic,” Nat. Rev. Gastroenterol. Hepatol., vol. 10, no. 11, 2013.
    1. Poynard T., Ingiliz P., Elkrief L., Munteanu M., Lebray P., Morra R., Messous D., Bismut F. I., Roulot D., Benhamou Y., Thabut D., and Ratziu V., “Concordance in a world without a gold standard: A new non-invasive methodology for improving accuracy of fibrosis markers,” PLoS One, vol. 3, no. 12, pp. 1–8, 2008.
    1. Bedossa P., Dargere D., and Paradis V., “Sampling variability of liver fibrosis in chronic hepatitis C,” Hepatology, vol. 38, no. 6, p. ajhep09022, 2003.
    1. Tapper E. B. and Lok A. S.-F., “Use of Liver Imaging and Biopsy in Clinical Practice,” N. Engl. J. Med., vol. 377, no. 8, pp. 756–768, 2017. 10.1056/NEJMra1610570
    1. Friedman L. S., “Controversies in liver biopsy: Who, where, when, how, why?,” Curr. Gastroenterol. Rep., vol. 6, no. 1, pp. 30–36, January 2004.
    1. Pavlides M., Banerjee R., Sellwood J., Kelly C. J., Robson M. D., Booth J. C., Collier J., Neubauer S., and Barnes E., “Multiparametric magnetic resonance imaging predicts clinical outcomes in patients with chronic liver disease,” J. Hepatol., vol. 64, no. 2, pp. 308–315, 2016. 10.1016/j.jhep.2015.10.009
    1. Banerjee R., Pavlides M., Tunnicliffe E. M., Piechnik S. K., Sarania N., Philips R., Collier J. D., Booth J. C., Schneider J. E., Wang L. M., Delaney D. W., Fleming K. A., Robson M. D., Barnes E., and Neubauer S., “Multiparametric magnetic resonance for the non-invasive diagnosis of liver disease,” J. Hepatol., vol. 60, no. 1, pp. 69–77, 2014. 10.1016/j.jhep.2013.09.002
    1. Pavlides M., Banerjee R., Tunnicliffe E. M., Kelly C., Collier J., Wang L. M., Fleming K. A., Cobbold J. F., Robson M. D., Neubauer S., and Barnes E., “Multiparametric magnetic resonance imaging for the assessment of non-alcoholic fatty liver disease severity,” Liver Int., vol. 37, no. 7, pp. 1065–1073, 2017. 10.1111/liv.13284
    1. Tunnicliffe E. M., Banerjee R., Pavlides M., Neubauer S., and Robson M. D., “A model for hepatic fibrosis: the competing effects of cell loss and iron on shortened modified Look-Locker inversion recovery T1 (shMOLLI-T1) in the liver,” J. Magn. Reson. Imaging, vol. 45, no. 2, pp. 450–462, 2017. 10.1002/jmri.25392
    1. Blake L., V Duarte R., and Cummins C., “Decision analytic model of the diagnostic pathways for patients with suspected non-alcoholic fatty liver disease using non-invasive transient elastography and multiparametric magnetic resonance imaging,” BMJ Open, vol. 6, no. 9, p. e010507, 2016. 10.1136/bmjopen-2015-010507
    1. Eddowes P. J., McDonald N., Davies N., Semple S. I. K., Kendall T. J., Hodson J., Newsome P. N., Flintham R. B., Wesolowski R., Blake L., Duarte R. V., Kelly C. J., Herlihy A. H., Kelly M. D., Olliff S. P., Hübscher S. G., Fallowfield J. A., and Hirschfield G. M., “Utility and cost evaluation of multiparametric magnetic resonance imaging for the assessment of non-alcoholic fatty liver disease,” Aliment. Pharmacol. Ther., vol. 47, no. 5, pp. 631–644, 2018. 10.1111/apt.14469
    1. McDonald N., Eddowes P. J., Hodson J., Semple S. I. K., Davies N. P., Kelly C. J., Kin S., Phillips M., Herlihy A. H., Kendall T. J., Brown R. M., Neil D. A. H., Hübscher S. G., Hirschfield G. M., and Fallowfield J. A., “Multiparametric magnetic resonance imaging for quantitation of liver disease: A two-centre cross-sectional observational study,” Sci. Rep., vol. 8, no. 1, pp. 1–10, 2018. 10.1038/s41598-017-17765-5
    1. Koo T. K. and Li M. Y., “A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research,” J. Chiropr. Med., vol. 15, no. 2, pp. 155–163, 2016. 10.1016/j.jcm.2016.02.012
    1. Bartlett J. W. and Frost C., “Reliability, repeatability and reproducibility: Analysis of measurement errors in continuous variables,” Ultrasound Obstet. Gynecol., vol. 31, no. 4, pp. 466–475, 2008. 10.1002/uog.5256
    1. Hines C. D. G., Yu H., Shimakawa A., McKenzie C. A., Brittain J. H., and Reeder S. B., “T1 independent, T2* corrected MRI with accurate spectral modeling for quantification of fat: Validation in a fat-water-SPIO phantom,” J. Magn. Reson. Imaging, vol. 30, no. 5, pp. 1215–1222, 2009. 10.1002/jmri.21957
    1. Messroghli D. R., Radjenovic A., Kozerke S., Higgins D. M., Sivananthan M. U., and Ridgway J. P., “Modified look-locker inversion recovery (MOLLI) for high-resolution T 1 mapping of the heart,” Magn. Reson. Med., vol. 52, no. 1, pp. 141–146, 2004. 10.1002/mrm.20110
    1. Wilman H. R., Kelly M., Garratt S., Matthews P. M., Milanesi M., Herlihy A., Gyngell M., Neubauer S., Bell J. D., Banerjee R., and Thomas E. L., “Characterisation of liver fat in the UK Biobank cohort,” PLoS One, vol. 12, no. 2, pp. 1–14, 2017.
    1. R. C. Team and others, “R foundation for statistical computing,” Vienna, Austria, vol. 3, no. 0, 2013.
    1. Pinheiro J., Bates D., DebRoy S., Sarkar D., and R Core Team, “{nlme}: Linear and Nonlinear Mixed Effects Models.” 2017.
    1. Bernal-Rusiel J. L., Greve D. N., Reuter M., Fischl B., and Sabuncu M. R., “Statistical analysis of longitudinal neuroimage data with Linear Mixed Effects models.,” Neuroimage, vol. 66, pp. 249–260, February 2013. 10.1016/j.neuroimage.2012.10.065
    1. Bartlett J. W., De Stavola B. L., and Frost C., “Linear mixed models for replication data to efficiently allow for covariate measurement error.,” Stat. Med., vol. 28, no. 25, pp. 3158–3178, November 2009. 10.1002/sim.3713
    1. Harrison S. A., Dennis A., Fiore M. M., Kelly M. D., Kelly C. J., Paredes A. H., Whitehead J. M., Neubauer S., Traber P. G., and Banerjee R., “Utility and variability of three non-invasive liver fibrosis imaging modalities to evaluate efficacy of GR-MD-02 in subjects with NASH and bridging fibrosis during a phase-2 randomized clinical trial,” PLoS One, vol. 13, no. 9, pp. 8–15, 2018.
    1. Trout A. T. and Mahley A. D., “with MR Elastography: Agreement and Repeatability across Imaging,” vol. 000, no. 0, pp. 1–12, 2016.
    1. Hines C. D. G., Bley T. A., Lindstrom M. J., and Reeder S. B., “Repeatability of magnetic resonance elastography for quantification of hepatic stiffness,” J. Magn. Reson. Imaging, vol. 31, no. 3, pp. 725–731, 2010. 10.1002/jmri.22066
    1. Bane O., Hectors S. J., Wagner M., Arlinghaus L. L., Aryal M. P., Cao Y., Chenevert T. L., Fennessy F., Huang W., Hylton N. M., Kalpathy-Cramer J., Keenan K. E., Malyarenko D. I., Mulkern R. V., Newitt D. C., Russek S. E., Stupic K. F., Tudorica A., Wilmes L. J., Yankeelov T. E., Yen Y. F., Boss M. A., and Taouli B., “Accuracy, repeatability, and interplatform reproducibility of T1quantification methods used for DCE-MRI: Results from a multicenter phantom study,” Magn. Reson. Med., vol. 79, no. 5, pp. 2564–2575, 2018. 10.1002/mrm.26903
    1. Reeder S. B., Hu H. H., and Sirlin C. B., “Proton Density Fat-Fraction: A Standardized MR-Based Biomarker of Tissue Fat Concentration,” J. Magn. Reson. Imaging, vol. 36, no. 5, pp. 1011–1014, November 2012. 10.1002/jmri.23741
    1. Yokoo T., Serai S. D., Pirasteh A., Bashir M. R., Hamilton G., Hernando D., Hu H. H., Hetterich H., Kühn J.-P., Kukuk G. M., Loomba R., Middleton M. S., Obuchowski N. A., Song J. S., Tang A., Wu X., Reeder S. B., and Sirlin C. B., “Linearity, Bias, and Precision of Hepatic Proton Density Fat Fraction Measurements by Using MR Imaging: A Meta-Analysis,” Radiology, vol. 286, no. 2, pp. 486–498, September 2017. 10.1148/radiol.2017170550
    1. Mozes F. E., Tunnicliffe E. M., Pavlides M., and Robson M. D., “Influence of fat on liver T1 measurements using modified Look–Locker inversion recovery (MOLLI) methods at 3T,” J. Magn. Reson. Imaging, vol. 44, no. 1, pp. 105–111, 2016. 10.1002/jmri.25146

Source: PubMed

3
订阅