Neuroprotective properties of citicoline: facts, doubts and unresolved issues

Pawel Grieb, Pawel Grieb

Abstract

Citicoline is the generic name of the pharmaceutical substance that chemically is cytidine-5'-diphosphocholine (CDP-choline), which is identical to the natural intracellular precursor of phospholipid phosphatidylcholine. Following injection or ingestion, citicoline is believed to undergo quick hydrolysis and dephosphorylation to yield cytidine and choline, which then enter the brain separately and are used to resynthesize CDP-choline inside brain cells. Neuroprotective activity of citicoline has been repeatedly shown in preclinical models of brain ischaemia and trauma, but two recent, large, pivotal clinical trials have revealed no benefits in ischaemic stroke and traumatic brain injury. However, the substance seems to be beneficial in some slowly advancing neurodegenerative disorders such as glaucoma and mild vascular cognitive impairment. This paper critically discusses issues related to the clinical pharmacology of citicoline, including its pharmacokinetics/biotransformation and pharmacodynamics/mode of action. It is concluded that at present, there is no adequate description of the mechanism(s) of the pharmacological actions of this substance. The possibility should be considered and tested that, in spite of apparently fast catabolism, the intact citicoline molecule or the phosphorylated intermediate products of its hydrolysis, cytidine monophosphate and phosphocholine, are pharmacologically active.

Figures

Fig. 1
Fig. 1
The cytidine-5′-diphosphocholine (CDP-choline) pathway of enzymatic synthesis of phosphatidylcholine. ADP adenosine diphosphate, ATP adenosine triphosphate, CCT choline phosphate cytidilyltransferase, CK cytidine kinase, CMP cytidine monophosphate, CPT CDP-choline:1,2-diacylglycerol choline phosphotransferase, CTP cytidine triphosphate, DAG 1,2-dicacylglycerol, PC phosphatidylcholine, PPi pyrophosphate
Fig. 2
Fig. 2
Presumed catabolism of citicoline (Cyt-P-P-Cho) in the rodent intravascular compartment. In the first step, hydrolysis of the pyrophosphate bridge takes place. In the second step, cytidine monophosphate (Cyt-P) and phosphocholine (Cho-P) are dephosphorylated to cytidine (Cyt) and choline (Cho), respectively; supposedly, a large part of the liberated choline is taken up by the liver (which may explain the unexpectedly low cholinergic toxicity of citicoline)

References

    1. Weiss SB, Smith SW, Kennedy EP. The enzymatic formation of lecithin from cytidine diphosphate choline and d-1,2-diglyceride. J Biol Chem. 1958;231:53–64.
    1. Gibellini F, Smith TK. The Kennedy pathway—de novo synthesis of phosphatidylethanolamine and phosphatidylcholine. IUBMB Life. 2010;62:414–428. doi: 10.1002/iub.354.
    1. Hunt AN, Clark GT, Attard GS, Postle AD. Highly saturated endonuclear phosphatidylcholine is synthesized in situ and colocated with CDP-choline pathway enzymes. J Biol Chem. 2001;276:8492–8499. doi: 10.1074/jbc.M009878200.
    1. Kent C, Carman GM. Interactions among pathways for phosphatidylcholine metabolism, CTP synthesis and secretion through the Golgi apparatus. Trends Biochem Sci. 1999;24:146–150. doi: 10.1016/S0968-0004(99)01365-1.
    1. Berger L, Gimenez WT. Crystallization of cytidine diphosphate choline from yeast. Science. 1956;124:81.
    1. Ansell GB, Bayliss BJ. The cytidine diphosphate choline content of rat brain. Biochem J. 1961;78:209–213.
    1. Manaka S, Sano K, Fuchinoue T, Sekino H. Mechanism of action CDP-choline in parkinsonism. Experientia. 1974;30:179–180. doi: 10.1007/BF01927720.
    1. Horrocks LA, Dorman RV, Dabrowiecki Z, Goracci G, Porcellati G. CDPcholine and CDPethanolamine prevent the release of free fatty acids during brain ischemia. Prog Lipid Res. 1981;20:531–534. doi: 10.1016/0163-7827(81)90093-X.
    1. Horrocks LA, Dorman RV, Dabrowiecki ZM. Therapeutic agents for preventing phospholipid degradation and free fatty acid proliferation. United States Patent. 1981 no: 4,386,078.
    1. García-Cobos R, Frank-García A, Gutiérrez-Fernández M, Díez-Tejedor E. Citicoline, use in cognitive decline: vascular and degenerative. J Neurol Sci. 2010;299:188–192. doi: 10.1016/j.jns.2010.08.027.
    1. Alvarez-Sabín J, Román GC. Citicoline in vascular cognitive impairment and vascular dementia after stroke. Stroke. 2011;42:S40–S43. doi: 10.1161/STROKEAHA.110.606509.
    1. Arenth PM, Russell KC, Ricker JH, Zafonte RD. CDP-choline as a biological supplement during neurorecovery: a focused review. PMR. 2011;6:S123–S131. doi: 10.1016/j.pmrj.2011.03.012.
    1. Hurtado O, Lizasoain I, Moro MÁ. Neuroprotection and recovery: recent data at the bench on citicoline. Stroke. 2011;42:S33–S35. doi: 10.1161/STROKEAHA.110.597435.
    1. Secades JJ. Probably role of citicoline in stroke rehabilitation: review of the literature. Rev Neurol. 2012;54:173–179.
    1. Schauss AG, Somfai-Relle S, Financsek I, Glavits R, Parent SC, Endres JR, Varga T, Szücs Z, Clewell A. Single- and repeated-dose oral toxicity studies of citicoline free-base (choline cytidine 5′-pyrophosphate) in Sprague-Dawley rats. Int J Toxicol. 2009;28:479–487. doi: 10.1177/1091581809349452.
    1. Cho HJ, Kim YJ. Efficacy and safety of oral citicoline in acute ischemic stroke: drug surveillance study in 4,191 cases. Methods Find Exp Clin Pharmacol. 2009;31:171–176. doi: 10.1358/mf.2009.31.3.1364241.
    1. Dávalos A, Castillo J, Alvarez-Sabín J, Secades JJ, Mercadal J, López S, Cobo E, Warach S, Sherman D, Clark WM, Lozano R. Oral citicoline in acute ischemic stroke: an individual patient data pooling analysis of clinical trials. Stroke. 2002;33:2850–2857. doi: 10.1161/01.STR.0000038691.03334.71.
    1. Galletti P, De Rosa M, Cotticelli MG, Morana A, Vaccaro R, Zappia V. Biochemical rationale for the use of CDPcholine in traumatic brain injury: pharmacokinetics of the orally administered drug. J Neurol Sci. 1991;103:S19–S25. doi: 10.1016/0022-510X(91)90004-Q.
    1. Galletti P, De Rosa M, Nappi MA, Pontoni G, del Piano L, Salluzzo A, Zappia V. Transport and metabolism of double-labelled CDPcholine in mammalian tissues. Biochem Pharmacol. 1985;34:4121–4130. doi: 10.1016/0006-2952(85)90204-7.
    1. López-Coviella I, Agut J, Savci V, Ortiz JA, Wurtman RJ. Evidence that 5′-cytidinediphospho-choline can affect brain phospholipid composition by increasing choline and cytidine plasma levels. J Neurochem. 1995;65:889–894. doi: 10.1046/j.1471-4159.1995.65020889.x.
    1. Sarkar AK, Ghosh D, Haldar D, Sarkar P, Gupta B, Dastidar SG, Pal TK. A rapid LC-ESI-MS/MS method for the quantitation of choline, an active metabolite of citicoline: application to in vivo pharmacokinetic and bioequivalence study in Indian healthy male volunteers. J Pharm Biomed Anal. 2012;71:144–147. doi: 10.1016/j.jpba.2012.07.003.
    1. Bligh J. The level of free choline in plasma. J Physiol. 1951;117:234–240.
    1. Adamczyk M, Brashear RJ, Mattingly PG. Choline concentration in normal blood donor and cardiac troponin-positive plasma samples. Clin Chem. 2006;52:2123–2124. doi: 10.1373/clinchem.2006.074369.
    1. Glunde K, Serkova NJ. Therapeutic targets and biomarkers identified in cancer choline phospholipid metabolism. Pharmacogenomics. 2006;7:1109–1123. doi: 10.2217/14622416.7.7.1109.
    1. EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP). Scientific opinion on safety and efficacy of choline chloride as a feed additive for all animal species. EFSA J. 2011;9:2353.
    1. Food Safety Authority of Ireland. Safety assessment of citicoline. 2012. . Accessed 24 Oct 2012.
    1. Johansson M, Van Guelpen B, Vollset SE, Hultdin J, Bergh A, Key T, Midttun O, Hallmans G, Ueland PM, Stattin P. One-carbon metabolism and prostate cancer risk: prospective investigation of seven circulating B vitamins and metabolites. Cancer Epidemiol Biomark Prev. 2009;18:1538–1543. doi: 10.1158/1055-9965.EPI-08-1193.
    1. Lee JE, Giovannucci E, Fuchs CS, Willett WC, Zeisel SH, Cho E. Choline and betaine intake and the risk of colorectal cancer in men. Cancer Epidemiol Biomark Prev. 2010;19:884–887. doi: 10.1158/1055-9965.EPI-09-1295.
    1. Xu X, Gammon MD, Zeisel SH, Lee YL, Wetmur JG, Teitelbaum SL, Bradshaw PT, Neugut AI, Santella RM, Chen J. Choline metabolism and risk of breast cancer in a population-based study. FASEB J. 2008;22:2045–2052. doi: 10.1096/fj.07-101279.
    1. Adibhatla RM, Hatcher JF. Cytidine 5′-diphosphocholine (CDP-choline) in stroke and other CNS disorders. Neurochem Res. 2005;30:15–23. doi: 10.1007/s11064-004-9681-8.
    1. Yücel N, Cayli SR, Ateş O, Karadağ N, Firat S, Turköz Y. Evaluation of the neuroprotective effects of citicoline after experimental spinal cord injury: improved behavioral and neuroanatomical recovery. Neurochem Res. 2006;31:767–775. doi: 10.1007/s11064-006-9075-1.
    1. Matyja E, Taraszewska A, Nagańska E, Grieb P, Rafałowska J. CDP-choline protects motor neurons against apoptotic changes in a model of chronic glutamate excitotoxicity in vitro. Folia Neuropathol. 2008;46:139–148.
    1. Mir C, Clotet J, Aledo R, Durany N, Argemí J, Lozano R, Cervós-Navarro J, Casals N. CDP-choline prevents glutamate-mediated cell death in cerebellar granule neurons. J Mol Neurosci. 2003;20:53–60. doi: 10.1385/JMN:20:1:53.
    1. Alvarez XA, Sampedro C, Lozano R, Cacabelos R. Citicoline protects hippocampal neurons against apoptosis induced by brain beta-amyloid deposits plus cerebral hypoperfusion in rats. Methods Find Exp Clin Pharmacol. 1999;21:535–540. doi: 10.1358/mf.1999.21.8.794835.
    1. Babb SM, Wald LL, Cohen BM, Villafuerte RA, Gruber SA, Yurgelun-Todd DA, Renshaw PF. Chronic citicoline increases phosphodiesters in the brains of healthy older subjects: an in vivo phosphorus magnetic resonance spectroscopy study. Psychopharmacology (Berl) 2002;161:248–254. doi: 10.1007/s00213-002-1045-y.
    1. D’Orlando KJ, Sandage BW., Jr Citicoline (CDP-choline): mechanisms of action and effects in ischemic brain injury. Neurol Res. 1995;17:281–284.
    1. Babb SM, Appelmans KE, Renshaw PF, Wurtman RJ, Cohen BM. Differential effect of CDP-choline on brain cytosolic choline levels in younger and older subjects as measured by proton magnetic resonance spectroscopy. Psychopharmacology (Berl) 1996;127:88–94. doi: 10.1007/BF02805979.
    1. Adibhatla RM, Hatcher JF. Citicoline decreases phospholipase A2 stimulation and hydroxyl radical generation in transient cerebral ischemia. J Neurosci Res. 2003;73:308–315. doi: 10.1002/jnr.10672.
    1. Giménez R, Aguilar J. Effects of CDP-choline administration on brain striatum platelet-activating factor in aging rats. Eur J Pharmacol. 1998;344:149–152. doi: 10.1016/S0014-2999(98)00035-1.
    1. Krupinski J, Slevin M, Badimon L. Citicoline inhibits MAP kinase signalling pathways after focal cerebral ischaemia. Neurochem Res. 2005;30:1067–1073. doi: 10.1007/s11064-005-7201-0.
    1. Krupinski J, Abudawood M, Matou-Nasri S, Al-Baradie R, Petcu E, Justicia C, Planas A, Liu D, Rovira N, Grau-Slevin M, Secades J, Slevin M. Citicoline induces angiogenesis improving survival of vascular/human brain microvessel endothelial cells through pathways involving ERK1/2 and insulin receptor substrate-1. Vasc Cell. 2012;4:20. doi: 10.1186/2045-824X-4-20.
    1. Hurtado O, Hernández-Jiménez M, Zarruk JG, Cuartero MI, Ballesteros I, Camarero G, Moraga A, Pradillo JM, Moro MA, Lizasoain I. Citicoline (CDP-choline) increases Sirtuin1 expression concomitant to neuroprotection in experimental stroke. J Neurochem. 2013;126:819–826. doi: 10.1111/jnc.12269.
    1. Zafonte RD, Bagiella E, Ansel BM, Novack TA, Friedewald WT, Hesdorffer DC, Timmons SD, Jallo J, Eisenberg H, Hart T, Ricker JH, Diaz-Arrastia R, Merchant RE, Temkin NR, Melton S, Dikmen SS. Effect of citicoline on functional and cognitive status among patients with traumatic brain injury: Citicoline Brain Injury Treatment Trial (COBRIT) JAMA. 2012;308:1993–2000. doi: 10.1001/jama.2012.13256.
    1. Dávalos A, Alvarez-Sabín J, Castillo J, Díez-Tejedor E, Ferro J, Martínez-Vila E, Serena J, Segura T, Cruz VT, Masjuan J, Cobo E, Secades JJ, International Citicoline Trial on Acute Stroke (ICTUS) Trial Investigators Citicoline in the treatment of acute ischaemic stroke: an international, randomised, multicentre, placebo-controlled study (ICTUS trial) Lancet. 2012;380:349–357. doi: 10.1016/S0140-6736(12)60813-7.
    1. Clark WM, Clark TD. Stroke: treatment for acute stroke—the end of the citicoline saga. Nat Rev Neurol. 2012;8:484–485. doi: 10.1038/nrneurol.2012.166.
    1. Hankey GJ. How effective is citicoline for acute ischaemic stroke? Lancet. 2012;380:318–320. doi: 10.1016/S0140-6736(12)60912-X.
    1. Ruff RL, Riechers RG. Effective treatment of traumatic brain injury: learning from experience. JAMA. 2012;308:2032–2033. doi: 10.1001/jama.2012.14008.
    1. Parisi V, Coppola G, Centofanti M, Oddone F, Angrisani AM, Ziccardi L, Ricci B, Quaranta L, Manni G. Evidence of the neuroprotective role of citicoline in glaucoma patients. Prog Brain Res. 2008;173:541–554. doi: 10.1016/S0079-6123(08)01137-0.
    1. Ottobelli L, Manni GL, Centofanti M, Iester M, Allevena F, Rossetti L. Citicoline oral solution in glaucoma: is there a role in slowing disease progression? Ophthalmologica. 2013;229:219–226. doi: 10.1159/000350496.
    1. Putignano S, Gareri P, Castagna A, Cerqua G, Cervera P, Cotroneo AM, Fiorillo F, Grella R, Lacava R, Maddonni A, Marino S, Pluderi A, Putignano D, Rocca F. Retrospective and observational study to assess the efficacy of citicoline in elderly patients suffering from stupor related to complex geriatric syndrome. Clin Interv Aging. 2012;7:113–118. doi: 10.2147/CIA.S29366.
    1. Rejdak R, Toczołowski J, Solski J, Duma D, Grieb P. Citicoline treatment increases retinal dopamine content in rabbits. Ophthalmic Res. 2002;34:146–149. doi: 10.1159/000063658.
    1. Cotroneo AM, Castagna A, Putignano S, Lacava R, Fantò F, Monteleone F, Rocca F, Malara A, Gareri P. Effectiveness and safety of citicoline in mild vascular cognitive impairment: the IDEALE study. Clin Interv Aging. 2013;8:131–137.
    1. Wurtman RJ, Regan M, Ulus I, Yu L. Effect of oral CDP-choline on plasma choline and uridine levels in humans. Biochem Pharmacol. 2000;60:989–992. doi: 10.1016/S0006-2952(00)00436-6.
    1. Ramos-Cabrer P, Agulla J, Argibay B, Pérez-Mato M, Castillo J. Serial MRI study of the enhanced therapeutic effects of liposome-encapsulated citicoline in cerebral ischemia. Int J Pharm. 2011;405:228–233. doi: 10.1016/j.ijpharm.2010.12.014.
    1. Tolvanen T, Yli-Kerttula T, Ujula T, Autio A, Lehikoinen P, Minn H, Roivainen A. Biodistribution and radiation dosimetry of [(11)C]choline: a comparison between rat and human data. Eur J Nucl Med Mol Imaging. 2010;37:874–883. doi: 10.1007/s00259-009-1346-z.
    1. Weiss GB. Metabolism and actions of CDP-choline as an endogenous compound and administered exogenously as citicoline. Life Sci. 1995;56:637–660. doi: 10.1016/0024-3205(94)00427-T.
    1. Danne O, Möckel M. Choline in acute coronary syndrome: an emerging biomarker with implications for the integrated assessment of plaque vulnerability. Expert Rev Mol Diagn. 2010;10:159–171. doi: 10.1586/erm.10.2.
    1. Bustamante A, Giralt D, Garcia-Bonilla L, Campos M, Rosell A, Montaner J. Citicoline in pre-clinical animal models of stroke: a meta-analysis shows the optimal neuroprotective profile and the missing steps for jumping into a stroke clinical trial. J Neurochem. 2012;123:217–225. doi: 10.1111/j.1471-4159.2012.07891.x.
    1. Eyigor O, Coskun C, Cavun S, Savci V. Intravenous CDP-choline activates neurons in supraoptic and paraventricular nuclei and induces hormone secretion. Brain Res Bull. 2012;87:286–294. doi: 10.1016/j.brainresbull.2011.11.013.
    1. Jochem J, Savci V, Filiz N, Rybus-Kalinowska B, Fogel WA, Yalcin M. Involvement of the histaminergic system in cytidine 5′-diphosphocholine-induced reversal of critical haemorrhagic hypotension in rats. J Physiol Pharmacol. 2010;61:37–43.
    1. Savci V, Goktalay G, Cansev M, Cavun S, Yilmaz MS, Ulus IH. Intravenously injected CDP-choline increases blood pressure and reverses hypotension in haemorrhagic shock: effect is mediated by central cholinergic activation. Eur J Pharmacol. 2003;468:129–139. doi: 10.1016/S0014-2999(03)01602-9.
    1. Gutiérrez-Fernández M, Leciñana MA, Rodríguez-Frutos B, Ramos-Cejudo J, Roda JM, Díez-Tejedor E. CDP-choline at high doses is as effective as i.v. thrombolysis in experimental animal stroke. Neurol Res. 2012;34:649–656. doi: 10.1179/1743132812Y.0000000058.
    1. Wardlaw JM, Murray V, Berge E, del Zoppo G, Sandercock P, Lindley RL, Cohen G. Recombinant tissue plasminogen activator for acute ischaemic stroke: an updated systematic review and meta-analysis. Lancet. 2012;379:2364–2372. doi: 10.1016/S0140-6736(12)60738-7.
    1. Agut J, Font E, Sacristán A, Ortiz JA. Dissimilar effects in acute toxicity studies of CDP-choline and choline. Arzneimittelforschung. 1983;33:1016–1018.
    1. Yashima K, Takamatsu M, Okuda K. Intestinal absorption of cytidine diphosphate choline and its changes in the digestive tract. J Nutr Sci Vitaminol (Tokyo) 1975;21:49–60. doi: 10.3177/jnsv.21.49.
    1. Mykita S, Golly F, Dreyfus H, Freysz L, Massarelli R. Effect of CDP-choline on hypocapnic neurons in culture. J Neurochem. 1986;47:223–231. doi: 10.1111/j.1471-4159.1986.tb02853.x.
    1. Oshitari T, Fujimoto N, Adachi-Usami E. Citicoline has a protective effect on damaged retinal ganglion cells in mouse culture retina. Neuroreport. 2002;13:2109–2111. doi: 10.1097/00001756-200211150-00023.
    1. Secades JJ, Frontera G. CDP-choline: pharmacological and clinical review. Methods Find Exp Clin Pharmacol. 1995;17B:1–54.
    1. Fresta M, Puglisi G. Survival rate improvement in a rat ischemia model by long circulating liposomes containing cytidine-5I-diphosphate choline. Life Sci. 1997;61:1227–1235. doi: 10.1016/S0024-3205(97)00667-X.
    1. Adibhatla RM, Hatcher JF, Tureyen K. CDP-choline liposomes provide significant reduction in infarction over free CDP-choline in stroke. Brain Res. 2005;1058:193–197. doi: 10.1016/j.brainres.2005.07.067.
    1. Park CH, Kim YS, Cheon EW, Noh HS, Cho CH, Chung IY, Yoo JM, Kang SS, Choi WS, Cho GJ. Action of citicoline on rat retinal expression of extracellular-signal-regulated kinase (ERK1/2) Brain Res. 2006;1081:203–210. doi: 10.1016/j.brainres.2005.12.128.
    1. Kyriakis JM. Making the connection: coupling of stress-activated ERK/MAPK (extracellular-signal-regulated kinase/mitogen-activated protein kinase) core signalling modules to extracellular stimuli and biological responses. Biochem Soc Symp. 1999;64:29–48.
    1. Murphy LO, Blenis J. MAPK signal specificity: the right place at the right time. Trends Biochem Sci. 2006;31:268–275. doi: 10.1016/j.tibs.2006.03.009.
    1. Cui F, Wang J, Yao X, Wang L, Zhang Q, Qu G. Spectroscopic and molecular modeling studies of the interaction between cytidine and human serum albumin and its analytical application. Biopolymers. 2007;87:174–182. doi: 10.1002/bip.20815.
    1. Han M, Kim YL, Sacket SJ, Kim K, Kim HL, Jo JY, Ha NC, Im DS. Effect of direct albumin binding to sphingosylphosphorylcholine in Jurkat T cells. Prostaglandins Other Lipid Mediat. 2007;84:174–183. doi: 10.1016/j.prostaglandins.2007.08.003.

Source: PubMed

3
订阅