Pharmacological Properties of 4', 5, 7-Trihydroxyflavone (Apigenin) and Its Impact on Cell Signaling Pathways

Rameesha Abid, Shakira Ghazanfar, Arshad Farid, Samra Muhammad Sulaman, Maryam Idrees, Radwa Abdallnasser Amen, Muhammad Muzammal, Muhammad Khurram Shahzad, Mohamed Omar Mohamed, Alaa Ashraf Khaled, Waqas Safir, Ifra Ghori, Abdelbaset Mohamed Elasbali, Bandar Alharbi, Rameesha Abid, Shakira Ghazanfar, Arshad Farid, Samra Muhammad Sulaman, Maryam Idrees, Radwa Abdallnasser Amen, Muhammad Muzammal, Muhammad Khurram Shahzad, Mohamed Omar Mohamed, Alaa Ashraf Khaled, Waqas Safir, Ifra Ghori, Abdelbaset Mohamed Elasbali, Bandar Alharbi

Abstract

Plant bioactive compounds, particularly apigenin, have therapeutic potential and functional activities that aid in the prevention of infectious diseases in many mammalian bodies and promote tumor growth inhibition. Apigenin is a flavonoid with low toxicities and numerous bioactive properties due to which it has been considered as a traditional medicine for decades. Apigenin shows synergistic effects in combined treatment with sorafenib in the HepG2 human cell line (HCC) in less time and statistically reduces the viability of tumor cells, migration, gene expression and apoptosis. The combination of anti-cancerous drugs with apigenin has shown health promoting potential against various cancers. It can prevent cell mobility, maintain the cell cycle and stimulate the immune system. Apigenin also suppresses mTOR activity and raises the UVB-induced phagocytosis and reduces the cancerous cell proliferation and growth. It also has a high safety threshold, and active (anti-cancer) doses can be gained by consuming a vegetable and apigenin rich diet. Apigenin also boosted autophagosome formation, decreased cell proliferation and activated autophagy by preventing the activity of the PI3K pathway, specifically in HepG2 cells. This paper provides an updated overview of apigenin's beneficial anti-inflammatory, antibacterial, antiviral, and anticancer effects, making it a step in the right direction for therapeutics. This study also critically analyzed the effect of apigenin on cancer cell signaling pathways including the PI3K/AKT/MTOR, JAK/STAT, NF-κB and ERK/MAPK pathways.

Keywords: ROS; apigenin; apoptosis; flavonoid; signaling cascades.

Conflict of interest statement

The authors declare that they have no conflicts of interest.

Figures

Figure 1
Figure 1
Detailed mechanism of the pharmacological properties of apigenin. (A) Anti-inflammatory response; apigenin inhibits the activity of reactive oxygen species and cancer cell metastasis which further inhibits several cell signaling pathways. It promotes the growth and development of healthy cells and downregulates the expression of cancer cell metastasis. Moreover, it blocks the activity of the phospholipase A2 (PLA2) enzyme which releases from the plasma membrane. Generally, PLA2 induces arachidonic acid (AA), which is a precursor of eicosanoid. Apigenin inhibits the expression of AA and promotes anti-inflammatory response in the host body. (B) Anti-oxidant response; host body modulates the expression of ROS when exposed to external stimuli (UV, drugs and smoke, etc.) which stimulates P53 activity and promotes apoptosis and lipid peroxidation in the host (mice) body. Apigenin consumption can significantly improve the oxidative damage caused by enhanced apoptosis and lipid peroxidation. (C) Anti-bacterial response; apigenin induces ROS in the bacterial cell and causes DNA damage and disruption in its cell wall. Furthermore, it can block beta-barrel proteins, intracellular proteins and toxins which are released from the bacterial cell. (D) Anti-viral response; apigenin enhances the reduced expression of miR122 and blocks the viral entry sites, which ultimately prevents viral DNA translation and protein synthesis. (E) Hypoglycemic response; apigenin stimulates Ras and MEK activity and increased the production of glycogen in the muscle and liver of the host body.
Figure 2
Figure 2
Modulation of PI3K/AKT/MTOR pathway by apigein.
Figure 3
Figure 3
Inhibition of JAK/STAT pathway by apigenin.
Figure 4
Figure 4
Downregulation of NF-kB pathway by apigenin.
Figure 5
Figure 5
Inhibition of ERK/MAPK pathway by apigenin.

References

    1. Salehi B., Venditti A., Sharifi-Rad M., Kręgiel D., Sharifi-Rad J., Durazzo A., Lucarini M., Santini A., Souto E.B., Novellino E., et al. The therapeutic potential of Apigenin. Int. J. Mol. Sci. 2019;20:1305. doi: 10.3390/ijms20061305.
    1. Li A.N., Li S., Zhang Y.J., Xu X.R., Chen Y.M., Li H. Bin Resources and biological activities of natural polyphenols. Nutrients. 2014;6:6020–6047. doi: 10.3390/nu6126020.
    1. Bhagwat S., Haytowitz D.B., Holden J.M. USDA Database for the Flavonoid Content of Selected Foods Release 3. U.S. Department of Agriculture; Washington, DC, USA: 2011. pp. 1–156.
    1. Jack C.R., Jr., Bennett D.A., Blennow K., Carrillo M.C., Dunn B., Haeberlein S.B., Holtzman D.M., Jagust W., Jessen F., Karlawish J., et al. NIA-AA research framework: Toward a biological definition of Alzheimer’s disease. Alzheimer’s Dement. 2018;14:535–562. doi: 10.1016/j.jalz.2018.02.018.
    1. DeRango-Adem E.F., Blay J. Does Oral Apigenin Have Real Potential for a Therapeutic Effect in the Context of Human Gastrointestinal and Other Cancers? Front. Pharmacol. 2021;12:681477. doi: 10.3389/fphar.2021.681477.
    1. Wang M., Firrman J., Liu L.S., Yam K. A review on flavonoid apigenin: Dietary intake, ADME, antimicrobial effects, and interactions with human gut microbiota. Biomed. Res. Int. 2019;2019:7010467. doi: 10.1155/2019/7010467.
    1. Baumann L.S. Apigenin. Skin Allergy News. 2008;39:32. doi: 10.1016/S0037-6337(08)70149-9.
    1. Kashyap D., Sharma A., Tuli H.S., Sak K., Garg V.K., Buttar H.S., Setzer W.N., Sethi G. Apigenin: A natural bioactive flavone-type molecule with promising therapeutic function. J. Funct. Foods. 2018;48:457–471. doi: 10.1016/j.jff.2018.07.037.
    1. Hong S., Dia V.P., Baek S.J., Zhong Q. Nanoencapsulation of apigenin with whey protein isolate: Physicochemical properties, in vitro activity against colorectal cancer cells, and bioavailability. LWT. 2022;154:112751. doi: 10.1016/j.lwt.2021.112751.
    1. Kim J.K., Park S.U. Letter to the editor: Recent insights into the biological functions of apigenin. EXCLI J. 2020;19:984–991. doi: 10.17179/excli2020-2579.
    1. Gupta S., Afaq F., Mukhtar H. Selective growth-inhibitory, cell-cycle deregulatory and apoptotic response of apigenin in normal versus human prostate carcinoma cells. Biochem. Biophys. Res. Commun. 2001;287:914–920. doi: 10.1006/bbrc.2001.5672.
    1. Singh P., Mishra S.K., Noel S., Sharma S., Rath S.K. Acute exposure of apigenin induces hepatotoxicity in Swiss mice. PLoS ONE. 2012;7:e31964. doi: 10.1371/journal.pone.0031964.
    1. Hashem S., Ali T.A., Akhtar S., Nisar S., Sageena G., Ali S., Al-Mannai S., Therachiyil L., Mir R., Elfaki I., et al. Targeting cancer signaling pathways by natural products: Exploring promising anti-cancer agents. Biomed. Pharmacother. 2022;150:113054. doi: 10.1016/j.biopha.2022.113054.
    1. Takagaki N., Sowa Y., Oki T., Nakanishi R., Yogosawa S., Sakai T. Apigenin induces cell cycle arrest and p21/WAF1 expression in a p53-independent pathway. Int. J. Oncol. 2005;26:185–189. doi: 10.3892/ijo.26.1.185.
    1. Maggioni D., Garavello W., Rigolio R., Pignataro L., Gaini R., Nicolini G. Apigenin impairs oral squamous cell carcinoma growth in vitro inducing cell cycle arrest and apoptosis. Int. J. Oncol. 2013;43:1675–1682. doi: 10.3892/ijo.2013.2072.
    1. Seo H.S., Ku J.M., Choi H.S., Woo J.K., Jang B.H., Shin Y.C., Ko S.G. Induction of caspase-dependent apoptosis by apigenin by inhibiting STAT3 signaling in HER2-overexpressing MDA-MB-453 breast cancer cells. Anticancer Res. 2014;34:2869–2882.
    1. Huang C.S., Lii C.K., Lin A.H., Yeh Y.W., Yao H.T., Li C.C., Wang T.S., Chen H.W. Protection by chrysin, apigenin, and luteolin against oxidative stress is mediated by the Nrf2-dependent up-regulation of heme oxygenase 1 and glutamate cysteine ligase in rat primary hepatocytes. Arch. Toxicol. 2013;87:167–178. doi: 10.1007/s00204-012-0913-4.
    1. Farid A., Javed R., Hayat M., Muzammal M., Khan M.H., Ismail S., Rashid S.A. Screening of Strobilanthes urticifolia wall.ex kuntze for Antitermite and insecticidal activities. Abasyn J. life Sci. 2021;4:40–45. doi: 10.34091/AJLS.4.2.5.
    1. Rezai-Zadeh K., Ehrhart J., Bai Y., Sanberg P.R., Bickford P., Tan J., Douglas R.D. Apigenin and luteolin modulate microglial activation via inhibition of STAT1-induced CD40 expression. J. Neuroinflamm. 2008;5:41. doi: 10.1186/1742-2094-5-41.
    1. Jung U.J., Cho Y.Y., Choi M.S. Apigenin ameliorates dyslipidemia, hepatic steatosis and insulin resistance by modulating metabolic and transcriptional profiles in the liver of high-fat diet-induced obese mice. Nutrients. 2016;8:305. doi: 10.3390/nu8050305.
    1. Escande C., Nin V., Price N.L., Capellini V., Gomes A.P., Barbosa M.T., O’Neil L., White T.A., Sinclair D.A., Chini E.N. Flavonoid apigenin is an inhibitor of the NAD+ase CD38: Implications for cellular NAD+ metabolism, protein acetylation, and treatment of metabolic syndrome. Diabetes. 2013;62:1084–1093. doi: 10.2337/db12-1139.
    1. Cardenas H., Arango D., Nicholas C., Duarte S., Nuovo G.J., He W., Voss O.H., Gonzalez-Mejia M.E., Guttridge D.C., Grotewold E., et al. Dietary apigenin exerts immune-regulatory activity in vivo by reducing NF-κB activity, halting leukocyte infiltration and restoring normal metabolic function. Int. J. Mol. Sci. 2016;17:323. doi: 10.3390/ijms17030323.
    1. Seo H.S., Jo J.K., Ku J.M., Choi H.S., Choi Y.K., Woo J.K., Kim H.I., Kang S.Y., Lee K.M., Nam K.W., et al. Induction of caspase-dependent extrinsic apoptosis by apigenin through inhibition of signal transducer and activator of transcription 3 (STAT3) signalling in HER2-overexpressing BT-474 breast cancer cells. Biosci. Rep. 2015;35:e00276. doi: 10.1042/BSR20150165.
    1. Hu W., Wang X., Wu L., Shen T., Ji L., Zhao X., Si C.L., Jiang Y., Wang G. Apigenin-7-O-β-d-glucuronide inhibits LPS-induced inflammation through the inactivation of AP-1 and MAPK signaling pathways in RAW 264.7 macrophages and protects mice against endotoxin shock. Food Funct. 2016;7:1002–1013. doi: 10.1039/C5FO01212K.
    1. Zhang S., Liu X., Sun C., Yang J., Wang L., Liu J., Gong L., Jing Y. Apigenin Attenuates Experimental Autoimmune Myocarditis by Modulating Th1/Th2 Cytokine Balance in Mice. Inflammation. 2016;39:678–686. doi: 10.1007/s10753-015-0294-y.
    1. Li R., Wang X., Qin T., Qu R., Ma S. Apigenin ameliorates chronic mild stress-induced depressive behavior by inhibiting interleukin-1β production and NLRP3 inflammasome activation in the rat brain. Behav. Brain Res. 2016;296:318–325. doi: 10.1016/j.bbr.2015.09.031.
    1. Calvo-Guirado J.L., López-López P.J., Domínguez M.F., Gosálvez M.M., Prados-Frutos J.C., Gehrke S.A. Histologic evaluation of new bone in post-extraction sockets induced by melatonin and apigenin: An experimental study in American fox hound dogs. Clin. Oral Implants Res. 2018;29:1176. doi: 10.1111/clr.12866.
    1. Guerra J.A., Molina M.F., Abad M.J., Villar A.M., Paulina B. Inhibition of inducible nitric oxide synthase and cyclooxygenase-2 expression by flavonoids isolated from Tanacetum microphyllum. Int. Immunopharmacol. 2006;6:1723–1728. doi: 10.1016/j.intimp.2006.08.012.
    1. Adamczak A., Ożarowski M., Karpiński T.M. Antibacterial activity of some flavonoids and organic acids widely distributed in plants. J. Clin. Med. 2020;9:109. doi: 10.3390/jcm9010109.
    1. Cha S., Kim G.-U., Cha J.-D. Synergistic antimicrobial activity of apigenin against oral Pathogens. Int. J. Eng. Res. Sci. 2016;2:27–37.
    1. Ali F., Rahul, Naz F., Jyoti S., Siddique Y.H. Health functionality of apigenin: A review. Int. J. Food Prop. 2017;20:1197–1238. doi: 10.1080/10942912.2016.1207188.
    1. Nayaka H.B., Londonkar R.L., Umesh M.K., Tukappa A. Antibacterial Attributes of Apigenin, Isolated from Portulaca oleracea L. Int. J. Bacteriol. 2014;2014:175851. doi: 10.1155/2014/175851.
    1. Eumkeb G., Chukrathok S. Synergistic activity and mechanism of action of ceftazidime and apigenin combination against ceftazidime-resistant Enterobacter cloacae. Phytomedicine. 2013;20:262–269. doi: 10.1016/j.phymed.2012.10.008.
    1. Banerjee K., Banerjee S., Das S., Mandal M. Probing the potential of apigenin liposomes in enhancing bacterial membrane perturbation and integrity loss. J. Colloid Interface Sci. 2015;453:48–59. doi: 10.1016/j.jcis.2015.04.030.
    1. Koo H., Schobel B., Scott-Anne K., Watson G., Bowen W.H., Cury J.A., Rosalen P.L., Park Y.K. Apigenin and tt-farnesol with fluoride effects on S. mutans biofilms and dental caries. J. Dent. Res. 2005;84:1016–1020. doi: 10.1177/154405910508401109.
    1. Engelmann C., Blot E., Panis Y., Bauer S., Trochon V., Nagy H.J., Lu H., Soria C. Apigenin—Strong cytostatic and anti-angiogenic action in vitro contrasted by lack of efficacy in vivo. Phytomedicine. 2002;9:489–495. doi: 10.1078/09447110260573100.
    1. Fang J., Bao Y.-Y., Zhou S.H., Fan J. Apigenin inhibits the proliferation of adenoid cystic carcinoma via suppression of glucose transporter-1. Mol. Med. Rep. 2015;12:6461–6466. doi: 10.3892/mmr.2015.4233.
    1. Lee W.J., Chen W.K., Wang C.J., Lin W.L., Tseng T.H. Apigenin inhibits HGF-promoted invasive growth and metastasis involving blocking PI3K/Akt pathway and β4 integrin function in MDA-MB-231 breast cancer cells. Toxicol. Appl. Pharmacol. 2008;226:178–191. doi: 10.1016/j.taap.2007.09.013.
    1. Stapleton P.D., Shah S., Ehlert K., Hara Y., Taylor P.W. The β-lactam-resistance modifier (-)-epicatechin gallate alters the architecture of the cell wall of Staphylococcus aureas. Microbiology. 2007;153:2093–2103. doi: 10.1099/mic.0.2007/007807-0.
    1. Visintini Jaime M.F., Redko F., Muschietti L.V., Campos R.H., Martino V.S., Cavallaro L.V. In vitro antiviral activity of plant extracts from Asteraceae medicinal plants. Virol. J. 2013;10:245. doi: 10.1186/1743-422X-10-245.
    1. Lalani S., Poh C.L. Flavonoids as antiviral agents for enterovirus A71 (EV-A71) Viruses. 2020;12:184. doi: 10.3390/v12020184.
    1. Shibata C., Ohno M., Otsuka M., Kishikawa T., Goto K., Muroyama R., Kato N., Yoshikawa T., Takata A., Koike K. The flavonoid apigenin inhibits hepatitis C virus replication by decreasing mature microRNA122 levels. Virology. 2014;462–463:42–48. doi: 10.1016/j.virol.2014.05.024.
    1. Wang L., Song J., Liu A., Xiao B., Li S., Wen Z., Lu Y., Du G. Research Progress of the Antiviral Bioactivities of Natural Flavonoids. Nat. Prod. Bioprospect. 2020;10:271–283. doi: 10.1007/s13659-020-00257-x.
    1. Dai W., Bi J., Li F., Wang S., Huang X., Meng X., Sun B., Wang D., Kong W., Jiang C., et al. Antiviral efficacy of flavonoids against enterovirus 71 infection in vitro and in newborn mice. Viruses. 2019;11:625. doi: 10.3390/v11070625.
    1. Zhang W., Qiao H., Lv Y., Wang J., Chen X., Hou Y., Tan R., Li E. Apigenin inhibits enterovirus-71 infection by disrupting viral RNA association with trans-acting factors. PLoS ONE. 2014;9:e110429. doi: 10.1371/journal.pone.0110429.
    1. Lv X., Qiu M., Chen D., Zheng N., Jin Y., Wu Z. Apigenin inhibits enterovirus 71 replication through suppressing viral IRES activity and modulating cellular JNK pathway. Antivir. Res. 2014;109:30–41. doi: 10.1016/j.antiviral.2014.06.004.
    1. Chiang L.C., Ng L.T., Cheng P.W., Chiang W., Lin C.C. Antiviral activities of extracts and selected pure constituents of Ocimum basilicum. Clin. Exp. Pharmacol. Physiol. 2005;32:811–816. doi: 10.1111/j.1440-1681.2005.04270.x.
    1. Hakobyan A., Arabyan E., Avetisyan A., Abroyan L., Hakobyan L., Zakaryan H. Apigenin inhibits African swine fever virus infection in vitro. Arch. Virol. 2016;161:3445–3453. doi: 10.1007/s00705-016-3061-y.
    1. Kulshreshtha A., Piplani P. Current pharmacotherapy and putative disease-modifying therapy for Alzheimer’s disease. Neurol. Sci. 2016;37:1403–1435. doi: 10.1007/s10072-016-2625-7.
    1. Lee J.S., Kim H.J., Lee Y.S. A new Anti-HIV Flavonoid Glucuronide from Chrysanthemum morifolium. Planta Med. 2003;69:859–861. doi: 10.1055/s-2003-43207.
    1. Kalra S., Mukherjee J., Venkataraman S., Bantwal G., Shaikh S., Saboo B., Das A., Ramachandran A. Hypoglycemia: The neglected complication. Indian J. Endocrinol. Metab. 2013;17:819. doi: 10.4103/2230-8210.117219.
    1. Cazarolli L.H., Folador P., Moresco H.H., Brighente I.M.C., Pizzolatti M.G., Silva F.R.M.B. Mechanism of action of the stimulatory effect of apigenin-6-C-(2″-O-α-l-rhamnopyranosyl)-β-l-fucopyranoside on 14C-glucose uptake. Chem. Biol. Interact. 2009;179:407–412. doi: 10.1016/j.cbi.2008.11.012.
    1. Cazarolli L.H., Folador P., Moresco H.H., Brighente I.M.C., Pizzolatti M.G., Silva F.R.M.B. Stimulatory effect of apigenin-6-C-β-l-fucopyranoside on insulin secretion and glycogen synthesis. Eur. J. Med. Chem. 2009;44:4668–4673. doi: 10.1016/j.ejmech.2009.07.001.
    1. Ragab El Barky A., Abdel hamid Ezz A., Mostafa Mohammed T. The Potential Role of apigenin in Diabetes Mellitus Stem. Int. J. Clin. Case Rep. Rev. 2020;3:1–3. doi: 10.31579/2690-4861/032.
    1. Osigwe C.C., Akah P.A., Nworu C.S., Okoye F.B.C. Apigenin: A methanol fraction component of Newbouldia laevis leaf, as a potential antidiabetic agent. J. Phytopharm. 2017;6:38–44. doi: 10.31254/phyto.2017.6106.
    1. Anandan S., Urooj A. Hypoglycemic effects of apigenin from Morus indica in streptozotocin induced diabetic rats. Int. J. Curr. Res. Rev. 2021;13:100–105. doi: 10.31782/IJCRR.2021.13213.
    1. Abdel-Megeed R.M., El Newary S.A., Kadry M.O., Ghanem H.Z., El-Shesheny R.A., Said-Al Ahl H.A.H., Abdel-Hamid A.H.Z. Hyssopus officinalis exerts hypoglycemic effects on streptozotocin-induced diabetic rats via modulating GSK-3β, C-fos, NF-κB, ABCA1 and ABGA1 gene expression. J. Diabetes Metab. Disord. 2020;19:483–491. doi: 10.1007/s40200-020-00535-y.
    1. Abd El-Ghffar E.A., Hegazi N.M., Saad H.H., Soliman M.M., El-Raey M.A., Shehata S.M., Barakat A., Yasri A., Sobeh M. HPLC-ESI-MS/MS analysis of beet (Beta vulgaris) leaves and its beneficial properties in type 1 diabetic rats. Biomed. Pharmacother. 2019;120:109541. doi: 10.1016/j.biopha.2019.109541.
    1. Deveraux Q.L., Schendel S.L., Reed J.C. Antiapoptotic proteins: The Bcl-2 and inhibitor of apoptosis protein families. Cardiol. Clin. 2001;19:57–74. doi: 10.1016/S0733-8651(05)70195-8.
    1. Gupta K., Thakur V.S., Bhaskaran N., Nawab A., Babcook M.A., Jackson M.W., Gupta S. Green Tea Polyphenols Induce p53-Dependent and p53-Independent Apoptosis in Prostate Cancer Cells through Two Distinct Mechanisms. PLoS ONE. 2012;7:e52572. doi: 10.1371/journal.pone.0052572.
    1. Dubrez-Daloz L., Dupoux A., Cartier J. IAPs: More than just inhibitors of apoptosis proteins. Cell Cycle. 2008;7:1036–1046. doi: 10.4161/cc.7.8.5783.
    1. McEleny K.R., Watson R.W.G., Coffey R.N.T., O’Neill A.J., Fitzpatrick J.M. Inhibitors of apoptosis proteins in prostate cancer cell lines. Prostate. 2002;51:133–140. doi: 10.1002/pros.10061.
    1. Kale J., Osterlund E.J., Andrews D.W. BCL-2 family proteins: Changing partners in the dance towards death. Cell Death Differ. 2018;25:65–80. doi: 10.1038/cdd.2017.186.
    1. Xu Y., Xin Y., Diao Y., Lu C., Fu J., Luo L., Yin Z. Synergistic effects of apigenin and paclitaxel on apoptosis of cancer cells. PLoS ONE. 2011;6:e29169. doi: 10.1371/journal.pone.0029169.
    1. Imran M., Aslam Gondal T., Atif M., Shahbaz M., Batool Qaisarani T., Hanif Mughal M., Salehi B., Martorell M., Sharifi-Rad J. Apigenin as an anticancer agent. Phyther. Res. 2020;34:1812–1828. doi: 10.1002/ptr.6647.
    1. Vargo M.A., Voss O.H., Poustka F., Cardounel A.J., Grotewold E., Doseff A.I. Apigenin-induced-apoptosis is mediated by the activation of PKCδ and caspases in leukemia cells. Biochem. Pharmacol. 2006;72:681–692. doi: 10.1016/j.bcp.2006.06.010.
    1. Subhasitanont P., Chokchaichamnankit D., Chiablaem K., Keeratichamroen S., Ngiwsara L., Paricharttanakul N.M., Lirdprapamongkol K., Weeraphan C., Svasti J., Srisomsap C. Apigenin inhibits growth and induces apoptosis in human cholangiocarcinoma cells. Oncol. Lett. 2017;14:4361–4371. doi: 10.3892/ol.2017.6705.
    1. Zhu Y., Mao Y., Chen H., Lin Y., Hu Z., Wu J., Xu X., Xu X., Qin J., Xie L. Apigenin promotes apoptosis, inhibits invasion and induces cell cycle arrest of T24 human bladder cancer cells. Cancer Cell Int. 2013;13:54. doi: 10.1186/1475-2867-13-54.
    1. Franke T.F., Hornik C.P., Segev L., Shostak G.A., Sugimoto C. PI3K/Akt and apoptosis: Size matters. Oncogene. 2003;22:8983–8998. doi: 10.1038/sj.onc.1207115.
    1. Pugazhenthi S., Nesterova A., Sable C., Heidenreich K.A., Boxer L.M., Heasley L.E., Reusch J.E. Akt/Protein Kinase B Up-Regulates Bcl-2 Expression through cAMP-Response Element-Binding Protein. J. Biol. Chem. 2000;275:10761–10766. doi: 10.1074/jbc.275.15.10761.
    1. Zheng P.W., Chiang L.C., Lin C.C. Apigenin induced apoptosis through p53-dependent pathway in human cervical carcinoma cells. Life Sci. 2005;76:1367–1379. doi: 10.1016/j.lfs.2004.08.023.
    1. Pandey P., Khan F., Qari H.A., Oves M. Rutin (Bioflavonoid) as cell signaling pathway modulator: Prospects in treatment and chemoprevention. Pharmaceuticals. 2021;14:1069. doi: 10.3390/ph14111069.
    1. Şirin N., Elmas L., Seçme M., Dodurga Y. Investigation of possible effects of apigenin, sorafenib and combined applications on apoptosis and cell cycle in hepatocellular cancer cells. Gene. 2020;737:144428. doi: 10.1016/j.gene.2020.144428.
    1. Lu H.F., Chie Y.J., Yang M.S., Lu K.W., Fu J.J., Yang J.S., Chen H.Y., Hsia T.C., Ma C.Y., Ip S.W., et al. Apigenin induces apoptosis in human lung cancer H460 cells through caspase- and mitochondria-dependent pathways. Hum. Exp. Toxicol. 2011;30:1053–1061. doi: 10.1177/0960327110386258.
    1. Balez R., Steiner N., Engel M., Muñoz S.S., Lum J.S., Wu Y., Wang D., Vallotton P., Sachdev P., O’Connor M., et al. Neuroprotective effects of apigenin against inflammation, neuronal excitability and apoptosis in an induced pluripotent stem cell model of Alzheimer’s disease. Sci. Rep. 2016;6:31450. doi: 10.1038/srep31450.
    1. Lin C.C., Chuang Y.J., Yu C.C., Yang J.S., Lu C.C., Chiang J.H., Lin J.P., Tang N.Y., Huang A.C., Chung J.G. Apigenin induces apoptosis through mitochondrial dysfunction in U-2 OS human osteosarcoma cells and inhibits osteosarcoma xenograft tumor growth in vivo. J. Agric. Food Chem. 2012;60:11395–11402. doi: 10.1021/jf303446x.
    1. Toh E.Y.S., Lim C.L., Ling A.P.K., Chye S.M., Koh R.Y. Overview of the pharmacological activities of aframomum melegueta. Pertanika J. Trop. Agric. Sci. 2019;42:1–13.
    1. Alexandrescu D.T., Ichim T.E., Riordan N.H., Marincola F.M., Di Nardo A., Kabigting F.D., Dasanu C.A. Immunotherapy for melanoma: Current status and perspectives. J. Immunother. 2010;33:570–590. doi: 10.1097/CJI.0b013e3181e032e8.
    1. Mahoney K.M., Rennert P.D., Freeman G.J. Combination cancer immunotherapy and new immunomodulatory targets. Nat. Rev. Drug Discov. 2015;14:561–584. doi: 10.1038/nrd4591.
    1. Pardoll D.M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer. 2012;12:252–264. doi: 10.1038/nrc3239.
    1. Mascaraque C., González R., Suárez M.D., Zarzuelo A., De Medina F.S., Martínez-Augustin O. Intestinal anti-inflammatory activity of apigenin K in two rat colitis models induced by trinitrobenzenesulfonic acid and dextran sulphate sodium. Br. J. Nutr. 2015;113:618–626. doi: 10.1017/S0007114514004292.
    1. Li J., Zhang B. Apigenin protects ovalbumin-induced asthma through the regulation of Th17 cells. Fitoterapia. 2013;91:298–304. doi: 10.1016/j.fitote.2013.09.009.
    1. Mishra A.K., Kadoishi T., Wang X., Driver E., Chen Z., Wang X.J., Wang J.H. Squamous cell carcinomas escape immune surveillance via inducing chronic activation and exhaustion of CD8+ T Cells co-expressing PD-1 and LAG-3 inhibitory receptors. Oncotarget. 2016;7:81341–81356. doi: 10.18632/oncotarget.13228.
    1. Yano S., Umeda D., Maeda N., Fujimura Y., Yamada K., Tachibana H. Dietary apigenin suppresses IgE and inflammatory cytokines production in C57BL/6N mice. J. Agric. Food Chem. 2006;54:5203–5207. doi: 10.1021/jf0607361.
    1. Kwanten W.J., Martinet W., Michielsen P.P., Francque S.M. Role of autophagy in the pathophysiology of nonalcoholic fatty liver disease: A controversial issue. World J. Gastroenterol. 2014;20:7325–7338. doi: 10.3748/wjg.v20.i23.7325.
    1. Lu J., Meng Z., Chen Y., Yu L., Gao B., Zheng Y., Guan S. Apigenin induced autophagy and stimulated autophagic lipid degradation. Food Funct. 2020;11:9208–9215. doi: 10.1039/D0FO00949K.
    1. Wang Y., Hao C.L., Zhang Z.H., Wang L.H., Yan L.N., Zhang R.J., Lin L., Yang Y. Valproic Acid Increased Autophagic Flux in Human Multiple Myeloma Cells In Vitro. Biomed. Pharmacother. 2020;127:110167. doi: 10.1016/j.biopha.2020.110167.
    1. Madrigal-Matute J., Cuervo A.M. Regulation of Liver Metabolism by Autophagy. Gastroenterology. 2016;150:328–339. doi: 10.1053/j.gastro.2015.09.042.
    1. Singh R., Kaushik S., Wang Y., Xiang Y., Novak I., Komatsu M., Tanaka K., Cuervo A.M., Czaja M.J. Autophagy regulates lipid metabolism. Nature. 2009;458:1131–1135. doi: 10.1038/nature07976.
    1. Kim H.S., Montana V., Jang H.J., Parpura V., Kim J.A. Epigallocatechin gallate (EGCG) stimulates autophagy in vascular endothelial cells: A potential role for reducing lipid accumulation. J. Biol. Chem. 2013;288:22693–22705. doi: 10.1074/jbc.M113.477505.
    1. Li L., Li M., Xu S., Chen H., Chen X., Gu H. Apigenin restores impairment of autophagy and downregulation of unfolded protein response regulatory proteins in keratinocytes exposed to ultraviolet B radiation. J. Photochem. Photobiol. B Biol. 2019;194:84–95. doi: 10.1016/j.jphotobiol.2019.03.010.
    1. Granato M., Gilardini Montani M.S., Santarelli R., D’Orazi G., Faggioni A., Cirone M. Apigenin, by activating p53 and inhibiting STAT3, modulates the balance between pro-apoptotic and pro-survival pathways to induce PEL cell death. J. Exp. Clin. Cancer Res. 2017;36:167. doi: 10.1186/s13046-017-0632-z.
    1. Zhang X., Bu H., Jiang Y., Sun G., Jiang R., Huang X., Duan H., Huang Z., Wu Q. The antidepressant effects of apigenin are associated with the promotion of autophagy via the mTOR/AMPK/ULK1 pathway. Mol. Med. Rep. 2019;20:2867–2874. doi: 10.3892/mmr.2019.10491.
    1. Gassen N.C., Hartmann J., Zschocke J., Stepan J., Hafner K., Zellner A., Kirmeier T., Kollmannsberger L., Wagner K.V., Dedic N., et al. Association of FKBP51 with Priming of Autophagy Pathways and Mediation of Antidepressant Treatment Response: Evidence in Cells, Mice, and Humans. PLoS Med. 2014;11:e1001755. doi: 10.1371/journal.pmed.1001755.
    1. Tewari D., Patni P., Bishayee A., Sah A.N., Bishayee A. Natural products targeting the PI3K-Akt-mTOR signaling pathway in cancer: A novel therapeutic strategy. Semin. Cancer Biol. 2022;80:1–17. doi: 10.1016/j.semcancer.2019.12.008.
    1. Yu J.S.L., Cui W. Proliferation, survival and metabolism: The role of PI3K/AKT/mTOR signalling in pluripotency and cell fate determination. Development. 2016;143:3050–3060. doi: 10.1242/dev.137075.
    1. Pavlidou A., Vlahos N.F. Molecular alterations of PI3K/Akt/mTOR pathway: A therapeutic target in endometrial cancer. Sci. World J. 2014;2014:709736. doi: 10.1155/2014/709736.
    1. Cantley L.C. The phosphoinositide 3-kinase pathway. Science. 2002;296:1655–1657. doi: 10.1126/science.296.5573.1655.
    1. Engelman J.A., Luo J., Cantley L.C. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat. Rev. Genet. 2006;7:606–619. doi: 10.1038/nrg1879.
    1. Markman B., Dienstmann R., Tabernero J. Targeting the PI3K/Akt/mTOR pathway—Beyond rapalogs. Oncotarget. 2010;1:530–543. doi: 10.18632/oncotarget.188.
    1. Carpenter C.L., Duckworth B.C., Auger K.R., Cohen B., Schaffhausen B.S., Cantley L.C. Purification and characterization of phosphoinositide 3-kinase from rat liver. J. Biol. Chem. 1990;265:19704–19711. doi: 10.1016/S0021-9258(17)45429-9.
    1. Huang J., Lam G.Y., Brumell J.H. Autophagy signaling through reactive oxygen species. Antioxid. Redox Signal. 2011;14:2215–2231. doi: 10.1089/ars.2010.3554.
    1. Lipton J.O., Sahin M. The Neurology of mTOR. Neuron. 2014;84:275–291. doi: 10.1016/j.neuron.2014.09.034.
    1. Hay N., Sonenberg N. Upstream and downstream of mTOR. Genes Dev. 2004;18:1926–1945. doi: 10.1101/gad.1212704.
    1. Brown J.S., Banerji U. Maximising the potential of AKT inhibitors as anti-cancer treatments. Pharmacol. Ther. 2017;172:101–115. doi: 10.1016/j.pharmthera.2016.12.001.
    1. Tong X., Pelling J. Targeting the PI3K/Akt/mTOR Axis by Apigenin for Cancer Prevention. Anticancer Agents Med. Chem. 2013;13:971–978. doi: 10.2174/18715206113139990119.
    1. Lin C.H., Chang C.Y., Lee K.R., Lin H.J., Chen T.H., Wan L. Flavones inhibit breast cancer proliferation through the Akt/FOXO3a signaling pathway. BMC Cancer. 2015;15:958. doi: 10.1186/s12885-015-1965-7.
    1. Lim W., Park S., Bazer F.W., Song G. Apigenin Reduces Survival of Choriocarcinoma Cells by Inducing Apoptosis via the PI3K/AKT and ERK1/2 MAPK Pathways. J. Cell. Physiol. 2016;231:2690–2699. doi: 10.1002/jcp.25372.
    1. Bridgeman B.B., Wang P., Ye B., Pelling J.C., Volpert O.V., Tong X. Inhibition of mTOR by apigenin in UVB-irradiated keratinocytes: A new implication of skin cancer prevention. Cell. Signal. 2016;28:460–468. doi: 10.1016/j.cellsig.2016.02.008.
    1. Yan X., Qi M., Li P., Zhan Y., Shao H. Apigenin in cancer therapy: Anti-cancer effects and mechanisms of action. Cell Biosci. 2017;7:50. doi: 10.1186/s13578-017-0179-x.
    1. Roberts S., Peyman S., Speirs V. Current and Emerging 3D Models to Study Breast Cancer. Adv. Exp. Med. Biol. 2019;1152:413–427. doi: 10.1007/978-3-030-20301-6_22.
    1. Schindler C., Levy D.E., Decker T. JAK-STAT signaling: From interferons to cytokines. J. Biol. Chem. 2007;282:20059–20063. doi: 10.1074/jbc.R700016200.
    1. Kiu H., Nicholson S.E. Biology and significance of the JAK/STAT signalling pathways. Growth Factors. 2012;30:88–106. doi: 10.3109/08977194.2012.660936.
    1. Xin P., Xu X., Deng C., Liu S., Wang Y., Zhou X., Ma H., Wei D., Sun S. The role of JAK/STAT signaling pathway and its inhibitors in diseases. Int. Immunopharmacol. 2020;80:106210. doi: 10.1016/j.intimp.2020.106210.
    1. Pérez-Ruiz E., Melero I., Kopecka J., Sarmento-Ribeiro A.B., García-Aranda M., De Las Rivas J. Cancer immunotherapy resistance based on immune checkpoints inhibitors: Targets, biomarkers, and remedies. Drug Resist. Updates. 2020;53:100718. doi: 10.1016/j.drup.2020.100718.
    1. Cao H.H., Chu J.H., Kwan H.Y., Su T., Yu H., Cheng C.Y., Fu X.Q., Guo H., Li T., Tse A.K.W., et al. Inhibition of the STAT3 signaling pathway contributes to apigenin-mediated anti-metastatic effect in melanoma. Sci. Rep. 2016;6:21731. doi: 10.1038/srep21731.
    1. Ruela-De-Sousa R.R., Fuhler G.M., Blom N., Ferreira C.V., Aoyama H., Peppelenbosch M.P. Cytotoxicity of apigenin on leukemia cell lines: Implications for prevention and therapy. Cell Death Dis. 2010;1:e19. doi: 10.1038/cddis.2009.18.
    1. Fatima S., Muzammal M., Khan M.A., Farid A., Kamran M., Qayum J., Qureshi M., Khan M.N., Khan M.A. CRISPR/Cas9 endonucleases: A new era of genetic engineering. Abasyn J. life Sci. 2021:29–39. doi: 10.34091/AJLS.4.2.4.
    1. Seo H.S., Choi H.S., Kim S.R., Choi Y.K., Woo S.M., Shin I., Woo J.K., Park S.Y., Shin Y.C., Ko S.K. Apigenin induces apoptosis via extrinsic pathway, inducing p53 and inhibiting STAT3 and NFκB signaling in HER2-overexpressing breast cancer cells. Mol. Cell. Biochem. 2012;366:319–334. doi: 10.1007/s11010-012-1310-2.
    1. Shukla S., Fu P., Gupta S. Apigenin induces apoptosis by targeting inhibitor of apoptosis proteins and Ku70-Bax interaction in prostate cancer. Apoptosis. 2014;19:883–894. doi: 10.1007/s10495-014-0971-6.
    1. Shukla S., Bhaskaran N., Babcook M.A., Fu P., MacLennan G.T., Gupta S. Apigenin inhibits prostate cancer progression in TRAMP mice via targeting PI3K/Akt/FoxO pathway. Carcinogenesis. 2014;35:452–460. doi: 10.1093/carcin/bgt316.
    1. Karin M. Nuclear factor-κB in cancer development and progression. Nature. 2006;441:431–436. doi: 10.1038/nature04870.
    1. Chaturvedi M.M., Sung B., Yadav V.R., Kannappan R., Aggarwal B.B. NF-κB addiction and its role in cancer: One size does not fit all. Oncogene. 2011;30:1615–1630. doi: 10.1038/onc.2010.566.
    1. Shukla S., MacLennan G.T., Fu P., Patel J., Marengo S.R., Resnick M.I., Gupta S. Nuclear factor-κB/p65 (Rel A) is constitutively activated in human prostate adenocarcinoma and correlates with disease progression. Neoplasia. 2004;6:390–400. doi: 10.1593/neo.04112.
    1. Shukla S., MacLennan G.T., Marengo S.R., Resnick M.I., Gupta S. Constitutive activation of PI3K-Akt and NF-κB during prostate cancer progression in autochthonous transgenic mouse model. Prostate. 2005;64:224–239. doi: 10.1002/pros.20217.
    1. Lessard L., Karakiewicz P.I., Bellon-Gagnon P., Alam-Fahmy M., Ismail H.A., Mes-Masson A.M., Saad F. Nuclear localization of nuclear factor-κB p65 in primary prostate tumors is highly predictive of pelvic lymph node metastases. Clin. Cancer Res. 2006;12:5741–5745. doi: 10.1158/1078-0432.CCR-06-0330.
    1. Domingo-Domenech J., Mellado B., Ferrer B., Truan D., Codony-Servat J., Sauleda S., Alcover J., Campo E., Gascon P., Rovira A., et al. Activation of nuclear factor-κB in human prostate carcinogenesis and association to biochemical relapse. Br. J. Cancer. 2005;93:1285–1294. doi: 10.1038/sj.bjc.6602851.
    1. Ross J.S., Kallakury B.V.S., Sheehan C.E., Fisher H.A.G., Kaufman R.P., Kaur P., Gray K., Stringer B. Expression of Nuclear Factor-κB and IκBα Proteins in Prostatic Adenocarcinomas: Correlation of Nuclear Factor-κB Immunoreactivity with Disease Recurrence. Clin. Cancer Res. 2004;10:2466–2472. doi: 10.1158/1078-0432.CCR-0543-3.
    1. Shukla S., Kanwal R., Shankar E., Datt M., Chance M.R., Fu P., MacLennan G.T., Gupta S. Apigenin blocks IKKa activation and suppresses prostate cancer progression. Oncotarget. 2015;6:31216–31232. doi: 10.18632/oncotarget.5157.
    1. Shukla S., Shankar E., Fu P., MacLennan G.T., Gupta S. Suppression of NF-κB and NF-κB-regulated gene expression by apigenin through IκBα and IKK pathway in TRAMP mice. PLoS ONE. 2015;10:e0138710. doi: 10.1371/journal.pone.0138710.
    1. Masuelli L., Benvenuto M., Mattera R., Di Stefano E., Zago E., Taffera G., Tresoldi I., Giganti M.G., Frajese G.V., Berardi G., et al. In vitro and in vivo anti-tumoral effects of the flavonoid apigenin in malignant mesothelioma. Front. Pharmacol. 2017;8:373. doi: 10.3389/fphar.2017.00373.
    1. Chen M., Wang X., Zha D., Cai F., Zhang W., He Y., Huang Q., Zhuang H., Hua Z.C. Apigenin potentiates TRAIL therapy of non-small cell lung cancer via upregulating DR4/DR5 expression in a p53-dependent manner. Sci. Rep. 2016;6:35468. doi: 10.1038/srep35468.
    1. Krens S.F.G., Spaink H.P., Snaar-Jagalska B.E. Functions of the MAPK family in vertebrate-development. FEBS Lett. 2006;580:4984–4990. doi: 10.1016/j.febslet.2006.08.025.
    1. Hasnat M.A., Pervin M., Lim J.H., Lim B.O. Apigenin attenuates melanoma cell migration by inducing anoikis through integrin and focal adhesion kinase inhibition. Molecules. 2015;20:21157–21166. doi: 10.3390/molecules201219752.
    1. Roux P.P., Blenis J. ERK and p38 MAPK-Activated Protein Kinases: A Family of Protein Kinases with Diverse Biological Functions. Microbiol. Mol. Biol. Rev. 2004;68:320–344. doi: 10.1128/MMBR.68.2.320-344.2004.
    1. Van Dross R.T., Hong X., Pelling J.C. Inhibition of TPA-induced cyclooxygenase-2 (COX-2) expression by apigenin through downregulation of Akt signal transduction in human keratinocytes. Mol. Carcinog. 2005;44:83–91. doi: 10.1002/mc.20123.
    1. Cai Q., Dozmorov M., Oh Y. IGFBP-3/IGFBP-3 Receptor System as an Anti-Tumor and Anti-Metastatic Signaling in Cancer. Cells. 2020;9:1261. doi: 10.3390/cells9051261.
    1. Wang H., Guo B., Lin S., Chang P., Tao K. Apigenin inhibits growth and migration of fibroblasts by suppressing FAK signaling. Aging. 2019;11:3668–3678. doi: 10.18632/aging.102006.
    1. Zhao G., Han X., Cheng W., Ni J., Zhang Y., Lin J., Song Z. Apigenin inhibits proliferation and invasion, and induces apoptosis and cell cycle arrest in human melanoma cells. Oncol. Rep. 2017;37:2277–2285. doi: 10.3892/or.2017.5450.
    1. Javed Z., Sadia H., Iqbal M.J., Shamas S., Malik K., Ahmed R., Raza S., Butnariu M., Cruz-Martins N., Sharifi-Rad J. Apigenin role as cell-signaling pathways modulator: Implications in cancer prevention and treatment. Cancer Cell Int. 2021;21:189. doi: 10.1186/s12935-021-01888-x.
    1. Shukla S., Gupta S. Apigenin-induced cell cycle arrest is mediated by modulation of MAPK, PI3K-Akt, and loss of cyclin D1 associated retinoblastoma dephosphorylation in human prostate cancer cells. Cell Cycle. 2007;6:1102–1114. doi: 10.4161/cc.6.9.4146.
    1. Shao H., Jing K., Mahmoud E., Huang H., Fang X., Yu C. Apigenin sensitizes colon cancer cells to antitumor activity of abt-263. Mol. Cancer Ther. 2013;12:2640–2650. doi: 10.1158/1535-7163.MCT-13-0066.
    1. Pham H., Chen M., Takahashi H., King J., Reber H.A., Hines O.J., Pandol S., Eibl G. Apigenin inhibits NNK-Induced focal adhesion kinase activation in pancreatic cancer cells. Pancreas. 2012;41:1306–1315. doi: 10.1097/MPA.0b013e31824d64d9.

Source: PubMed

3
订阅