Electronic pillbox-enabled self-administered therapy versus standard directly observed therapy for tuberculosis medication adherence and treatment outcomes in Ethiopia (SELFTB): protocol for a multicenter randomized controlled trial

Tsegahun Manyazewal, Yimtubezinash Woldeamanuel, David P Holland, Abebaw Fekadu, Henry M Blumberg, Vincent C Marconi, Tsegahun Manyazewal, Yimtubezinash Woldeamanuel, David P Holland, Abebaw Fekadu, Henry M Blumberg, Vincent C Marconi

Abstract

Background: To address the multifaceted challenges associated with tuberculosis (TB) in-person directly observed therapy (DOT), the World Health Organization recently recommended that countries maximize the use of digital adherence technologies. Sub-Saharan Africa needs to investigate the effectiveness of such technologies in local contexts and proactively contribute to global decisions around patient-centered TB care. This study aims to evaluate the effectiveness of pillbox-enabled self-administered therapy (SAT) compared to standard DOT on adherence to TB medication and treatment outcomes in Ethiopia. It also aims to assess the usability, acceptability, and cost-effectiveness of the intervention from the patient and provider perspectives.

Methods: This is a multicenter, randomized, controlled, open-label, superiority, effectiveness-implementation hybrid, mixed-methods, two-arm trial. The study is designed to enroll 144 outpatients with new or previously treated, bacteriologically confirmed, drug-sensitive pulmonary TB who are eligible to start the standard 6-month first-line anti-TB regimen. Participants in the intervention arm (n = 72) will receive 15 days of HRZE-isoniazid, rifampicin, pyrazinamide, and ethambutol-fixed-dose combination therapy in the evriMED500 medication event reminder monitor device for self-administration. When returned, providers will count any remaining tablets in the device, download the pill-taking data, and refill based on preset criteria. Participants can consult the provider in cases of illness or adverse events outside of scheduled visits. Providers will handle participants in the control arm (n = 72) according to the standard in-person DOT. Both arms will be followed up throughout the 2-month intensive phase. The primary outcomes will be medication adherence and sputum conversion. Adherence to medication will be calculated as the proportion of patients who missed doses in the intervention (pill count) versus DOT (direct observation) arms, confirmed further by IsoScreen urine isoniazid test and a self-report of adherence on eight-item Morisky Medication Adherence Scale. Sputum conversion is defined as the proportion of patients with smear conversion following the intensive phase in intervention versus DOT arms, confirmed further by pre-post intensive phase BACTEC MGIT TB liquid culture. Pre-post treatment MGIT drug susceptibility testing will determine whether resistance to anti-TB drugs could have impacted culture conversion. Secondary outcomes will include other clinical outcomes (treatment not completed, death, or loss to follow-up), cost-effectiveness-individual and societal costs with quality-adjusted life years-and acceptability and usability of the intervention by patients and providers.

Discussion: This study will be the first in Ethiopia, and of the first three in sub-Saharan Africa, to determine whether electronic pillbox-enabled SAT improves adherence to TB medication and treatment outcomes, all without affecting the inherent dignity and economic wellbeing of patients with TB.

Trial registration: ClinicalTrials.gov, NCT04216420. Registered on 2 January 2020.

Keywords: Adherence; Directly observed therapy (DOT); Ethiopia; Pillbox; Self-administered therapy; Sub-Saharan Africa; Treatment outcome; Trials; Tuberculosis.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
SPIRIT figure of the study

References

    1. Jiang WX, Long Q, Lucas H, Dong D, Chen JY, Xiang L, et al. Impact of an innovative financing and payment model on tuberculosis patients' financial burden: is tuberculosis care more affordable for the poor? Infect Dis Poverty. 2019;8(1):21. doi: 10.1186/s40249-019-0532-x.
    1. Ukwaja KN. Social protection interventions could improve tuberculosis treatment outcomes. Lancet Glob Health. 2019;7(2):e167–e168. doi: 10.1016/S2214-109X(18)30523-0.
    1. Richterman A, Steer-Massaro J, Jarolimova J, Luong Nguyen LB, Werdenberg J, Ivers LC. Cash interventions to improve clinical outcomes for pulmonary tuberculosis: systematic review and meta-analysis. Bull World Health Organ. 2018;96(7):471–483. doi: 10.2471/BLT.18.208959.
    1. Shete PB, Reid M, Goosby E. Message to world leaders: we cannot end tuberculosis without addressing the social and economic burden of the disease. Lancet Glob Health. 2018;6(12):e1272–e1273. doi: 10.1016/S2214-109X(18)30378-4.
    1. Dara M, Zachariah R. Hunger and tuberculosis: Two sides of the same coin. Int J Tuberc Lung Dis. 2018;22(6):592. doi: 10.5588/ijtld.18.0279.
    1. Sakamoto H, Lee S, Ishizuka A, Hinoshita E, Hori H, Ishibashi N, et al. Challenges and opportunities for eliminating tuberculosis - leveraging political momentum of the UN high-level meeting on tuberculosis. BMC Public Health. 2019;19(1):76. doi: 10.1186/s12889-019-6399-8.
    1. Ki-Moon B. Building a tuberculosis-free world on a foundation of universal health coverage. Lancet. 2019;393(10178):1268–1270. doi: 10.1016/S0140-6736(19)30433-7.
    1. Agins BD, Ikeda DJ, Reid MJA, Goosby E, Pai M, Cattamanchi A. Improving the cascade of global tuberculosis care: moving from the “what” to the “how” of quality improvement. Lancet Infect Dis. 2019;19:e437–e443. doi: 10.1016/S1473-3099(19)30420-7.
    1. Reid MJA, Arinaminpathy N, Bloom A, Bloom BR, Boehme C, Chaisson R, et al. Building a tuberculosis-free world: The Lancet Commission on tuberculosis. Lancet. 2019;393(10178):1331–1384. doi: 10.1016/S0140-6736(19)30024-8.
    1. Cohen KA, Manson AL, Abeel T, Desjardins CA, Chapman SB, Hoffner S, et al. Extensive global movement of multidrug-resistantM. tuberculosis strains revealed by whole-genome analysis. Thorax. 2019;74(9):882–889. doi: 10.1136/thoraxjnl-2018-211616.
    1. Chihota VN, Niehaus A, Streicher EM, Wang X, Sampson SL, Mason P, et al. Geospatial distribution of Mycobacterium tuberculosis genotypes in Africa. PLoS One. 2018;13(8):e0200632. doi: 10.1371/journal.pone.0200632.
    1. Knight GM, McQuaid CF, Dodd PJ, Houben RMGJ. Global burden of latent multidrug-resistant tuberculosis: trends and estimates based on mathematical modelling. Lancet Infect Dis. 2019;19(8):903–912. doi: 10.1016/S1473-3099(19)30307-X.
    1. Walker TM, Merker M, Knoblauch AM, Helbling P, Schoch OD, van der Werf MJ, et al. A cluster of multidrug-resistant Mycobacterium tuberculosis among patients arriving in Europe from the Horn of Africa: a molecular epidemiological study. Lancet Infect Dis. 2018;18(4):431–440. doi: 10.1016/S1473-3099(18)30004-5.
    1. Wild V, Jaff D, Shah NS, Frick M. Tuberculosis, human rights and ethics considerations along the route of a highly vulnerable migrant from sub-Saharan Africa to Europe. Int J Tuberc Lung Dis. 2017;21(10):1075–1085. doi: 10.5588/ijtld.17.0324.
    1. Armstrong LR, Winston CA, Stewart B, Tsang CA, Langer AJ, Navin TR. Changes in tuberculosis epidemiology, United States, 1993-2017. Int J Tuberc Lung Dis. 2019;23(7):797–804. doi: 10.5588/ijtld.18.0757.
    1. Ismail N, Ismail F, Omar SV, Blows L, Gardee Y, Koornhof H, et al. Drug resistant tuberculosis in Africa: Current status, gaps and opportunities. Afr J Lab Med. 2018;7(2):781. doi: 10.4102/ajlm.v7i2.781.
    1. World Health Organization (WHO) Global tuberculosis report 2019. Geneva: WHO; 2019.
    1. Eshetie S, Gizachew M, Alebel A, van Soolingen D. Tuberculosis treatment outcomes in Ethiopia from 2003 to 2016, and impact of HIV co-infection and prior drug exposure: A systematic review and meta-analysis. PLoS One. 2018;13(3):e0194675. doi: 10.1371/journal.pone.0194675.
    1. Matteelli A, Rendon A, Tiberi S, Al-Abri S, Voniatis C, Carvalho ACC, et al. Tuberculosis elimination: where are we now? Eur Respir Rev. 2018;27(148):180035. doi: 10.1183/16000617.0035-2018.
    1. Collins D, Hafidz F, Mustikawati D. The economic burden of tuberculosis in Indonesia. Int J Tuberc Lung Dis. 2017;21:1041–1048. doi: 10.5588/ijtld.16.0898.
    1. Tanimura T, Jaramillo E, Weil D, Raviglione M, Lonnroth K. Financial burden for tuberculosis patients in low- and middle income countries: a systematic review. Eur Respir J. 2014;43:1763–1775. doi: 10.1183/09031936.00193413.
    1. van den Hof S, Collins D, Hafidz F, Beyene D, Tursynbayeva A, Tiemersma E. The socioeconomic impact of multidrug resistant tuberculosis on patients: results from Ethiopia, Indonesia and Kazakhstan. BMC Infect Dis. 2016;16:470. doi: 10.1186/s12879-016-1802-x.
    1. Harries AD, Schwoebel V, Monedero-Recuero I, Aung TK, Chadha S, Chiang CY, et al. Challenges and opportunities to prevent tuberculosis in people living with HIV in low-income countries. Int J Tuberc Lung Dis. 2019;23(2):241–251. doi: 10.5588/ijtld.18.0207.
    1. Diallo A, Dahourou DL, Dah TTE, Tassembedo S, Sawadogo R, Meda N. Factors associated with tuberculosis treatment failure in the Central East Health region of Burkina Faso. Pan Afr Med J. 2018;30:293.
    1. Ruru Y, Matasik M, Oktavian A, Senyorita R, Mirino Y, Tarigan LH, et al. Factors associated with non-adherence during tuberculosis treatment among patients treated with DOTS strategy in Jayapura, Papua Province, Indonesia. Glob Health Action. 2018;11(1):1510592. doi: 10.1080/16549716.2018.1510592.
    1. Sharma SK, Jha S. Directly observed treatment is not the only solution for poor adherence and low cure of tuberculosis. Evid Based Med. 2015;20(5):180. doi: 10.1136/ebmed-2015-110247.
    1. Alipanah N, Jarlsberg L, Miller C, Linh NN, Falzon D, Jaramillo E, et al. Adherence interventions and outcomes of tuberculosis treatment: A systematic review and meta-analysis of trials and observational studies. PLoS Med. 2018;15(7):e1002595. doi: 10.1371/journal.pmed.1002595.
    1. DiStefano MJ, Schmidt H. mHealth for Tuberculosis Treatment Adherence: A Framework to Guide Ethical Planning, Implementation, and Evaluation. Glob Health Sci Pract. 2016;4(2):211–221. doi: 10.9745/GHSP-D-16-00018.
    1. Elangovan R, Arulchelvan S. A Study on the Role of Mobile Phone Communication in Tuberculosis DOTS Treatment. Indian J Community Med. 2013;38(4):229–233. doi: 10.4103/0970-0218.120158.
    1. Lei X, Liu Q, Wang H, Tang X, Li L, Wang Y. Is the short messaging service feasible to improve adherence to tuberculosis care? A cross-sectional study. Trans R Soc Trop Med Hyg. 2013;107(10):666–668. doi: 10.1093/trstmh/trt070.
    1. Nsengiyumva NP, Mappin-Kasirer B, Oxlade O, Bastos M, Trajman A, Falzon D, et al. Evaluating the potential costs and impact of digital health technologies for tuberculosis treatment support. Eur Respir J. 2018;52(5):1801363. doi: 10.1183/13993003.01363-2018.
    1. Subbaraman R, de Mondesert L, Musiimenta A, Pai M, Mayer KH, Thomas BE, et al. Digital adherence technologies for the management of tuberculosis therapy: mapping the landscape and research priorities. BMJ Glob Health. 2018;3(5):e001018. doi: 10.1136/bmjgh-2018-001018.
    1. Ngwatu BK, Nsengiyumva NP, Oxlade O, Mappin-Kasirer B, Nguyen NL, Jaramillo E, et al. The impact of digital health technologies on tuberculosis treatment: a systematic review. Eur Respir J. 2018;51(1):1701596. doi: 10.1183/13993003.01596-2017.
    1. Denkinger CM, Grenier J, Stratis AK, Akkihal A, Pant-Pai N, Pai M. Mobile health to improve tuberculosis care and control: a call worth making. Int J Tuberc Lung Dis. 2013;17(6):719–727. doi: 10.5588/ijtld.12.0638.
    1. Nglazi MD, Bekker LG, Wood R, Hussey GD, Wiysonge CS. Mobile phone text messaging for promoting adherence to anti-tuberculosis treatment: a systematic review. BMC Infect Dis. 2013;13:566. doi: 10.1186/1471-2334-13-566.
    1. World Health Organization (WHO) Handbook for the use of digital technologies to support tuberculosis medication adherence. Geneva: World Health Organization; 2017.
    1. Bediang G, Stoll B, Elia N, Abena JL, Geissbuhler A. SMS reminders to improve adherence and cure of tuberculosis patients in Cameroon (TB-SMS Cameroon): a randomized controlled trial. BMC Public Health. 2018;18(1):583. doi: 10.1186/s12889-018-5502-x.
    1. Fang XH, Guan SY, Tang L, Tao FB, Zou Z, Wang JX, et al. Effect of Short Message Service on Management of Pulmonary Tuberculosis Patients in Anhui Province, China: A Prospective, Randomized, Controlled Study. Med Sci Monit. 2017;23:2465–2469. doi: 10.12659/MSM.904957.
    1. Mohammed S, Glennerster R, Khan AJ. Impact of a daily SMS medication reminder system on tuberculosis treatment outcomes: a randomized controlled trial. PLoS One. 2016;11(11):e0162944. doi: 10.1371/journal.pone.0162944.
    1. Liu X, Lewis JJ, Zhang H, Lu W, Zhang S, Zheng G, et al. Effectiveness of electronic reminders to improve medication adherence in tuberculosis patients: a cluster-randomised trial. PLoS Med. 2015;12(9):e1001876. doi: 10.1371/journal.pmed.1001876.
    1. Iribarren S, Beck S, Pearce PF, Chirico C, Etchevarria M, Cardinale D, et al. TextTB: A Mixed Method Pilot Study Evaluating Acceptance, Feasibility, and Exploring Initial Efficacy of a Text Messaging Intervention to Support TB Treatment Adherence. Tuberc Res Treat. 2013;2013:349394.
    1. Onwubiko U, Wall K, Sales RM, Holland DP. Using Directly Observed Therapy (DOT) for latent tuberculosis treatment - A hit or a miss? A propensity score analysis of treatment completion among 274 homeless adults in Fulton County, GA. PLoS One. 2019;14(6):e0218373. doi: 10.1371/journal.pone.0218373.
    1. Park S, Sentissi I, Gil SJ, Park WS, Oh B, Son AR, et al. Medication Event Monitoring System for Infectious Tuberculosis Treatment in Morocco: A Retrospective Cohort Study. Int J Environ Res Public Health. 2019;16(3):E412. doi: 10.3390/ijerph16030412.
    1. Liu X, Blaschke T, Thomas B, De Geest S, Jiang S, Gao Y, et al. Usability of a Medication Event Reminder Monitor System (MERM) by Providers and Patients to Improve Adherence in the Management of Tuberculosis. Int J Environ Res Public Health. 2017;14(10):E1115. doi: 10.3390/ijerph14101115.
    1. Broomhead S, Mars M. Retrospective return on investment analysis of an electronic treatment adherence device piloted in the Northern Cape Province. Telemed J E Health. 2012;18(1):24–31. doi: 10.1089/tmj.2011.0143.
    1. Thakkar D, Piparva KG, Lakkad SG. A pilot project: 99DOTS information communication technology-based approach for tuberculosis treatment in Rajkot district. Lung India. 2019;36(2):108–111. doi: 10.4103/lungindia.lungindia_86_18.
    1. Lam CK, McGinnis Pilote K, Haque A, Burzynski J, Chuck C, Macaraig M. Using Video Technology to Increase Treatment Completion for Patients With Latent Tuberculosis Infection on 3-Month Isoniazid and Rifapentine: An Implementation Study. J Med Internet Res. 2018;20(11):e287. doi: 10.2196/jmir.9825.
    1. Garfein RS, Liu L, Cuevas-Mota J, Collins K, Muñoz F, Catanzaro DG, et al. Tuberculosis Treatment Monitoring by Video Directly Observed Therapy in 5 Health Districts, California, USA. Emerg Infect Dis. 2018;24(10):1806–1815. doi: 10.3201/eid2410.180459.
    1. Nguyen TA, Pham MT, Nguyen TL, Nguyen VN, Pham DC, Nguyen BH, et al. Video Directly Observed Therapy to support adherence with treatment for tuberculosis in Vietnam: A prospective cohort study. Int J Infect Dis. 2017;65:85–89. doi: 10.1016/j.ijid.2017.09.029.
    1. Chuck C, Robinson E, Macaraig M, Alexander M, Burzynski J. Enhancing management of tuberculosis treatment with video directly observed therapy in New York City. Int J Tuberc Lung Dis. 2016;20(5):588–593. doi: 10.5588/ijtld.15.0738.
    1. Garfein RS, Collins K, Muñoz F, Moser K, Cerecer-Callu P, Raab F, et al. Feasibility of tuberculosis treatment monitoring by video directly observed therapy: a binational pilot study. Int J Tuberc Lung Dis. 2015;19(9):1057–1064. doi: 10.5588/ijtld.14.0923.
    1. Pérez-Jover V, Sala-González M, Guilabert M, Mira JJ. Mobile Apps for Increasing Treatment Adherence: Systematic Review. J Med Internet Res. 2019;21(6):e12505. doi: 10.2196/12505.
    1. Schwartz JK. Pillbox use, satisfaction, and effectiveness among persons with chronic health conditions. Assist Technol. 2017;29(4):181–187. doi: 10.1080/10400435.2016.1219884.
    1. e Souza FR, da Silva Santana C. A descriptive study about the use of pillboxes by older adults. Health. 2013;05(12):103–109. doi: 10.4236/health.2013.512A014.
    1. Sanders MJ, van Oss T. Using daily routines to promote medication adherence in older adults. Am J Occup Ther. 2013;67(1):91–99. doi: 10.5014/ajot.2013.005033.
    1. Hayes TL, Hunt JM, Adami A, Kaye JA. An electronic pillbox for continuous monitoring of medication adherence. Conf Proc IEEE Eng Med Biol Soc. 2006;1:6400–6403. doi: 10.1109/IEMBS.2006.260367.
    1. Wisepill. Somerset West, South Africa. .
    1. Wisepill Technologies. evriMED500 medication monitoring and reminder system: introduction, Version: 1.333. Wisepill; South Africa, 2019. .
    1. Mhimbira F, Hella J, Maroa T, Kisandu S, Chiryamkubi M, Said K, et al. Home-Based and Facility-Based Directly Observed Therapy of Tuberculosis Treatment under Programmatic Conditions in Urban Tanzania. PLoS One. 2016;11(8):e0161171. doi: 10.1371/journal.pone.0161171.
    1. Mkopi A, Range N, Lwilla F, Egwaga S, Schulze A, Geubbels E, et al. Adherence to tuberculosis therapy among patients receiving home-based directly observed treatment: evidence from the United Republic of Tanzania. PLoS One. 2012;7(12):e51828. doi: 10.1371/journal.pone.0051828.
    1. Egwaga S, Mkopi A, Range N, Haag-Arbenz V, Baraka A, Grewal P. Patient-centred tuberculosis treatment delivery under programmatic conditions in Tanzania: a cohort study. BMC Med. 2009;7:80. doi: 10.1186/1741-7015-7-80.
    1. Oyieng'o D, Park P, Gardner A, Kisang G, Diero L, Sitienei J, et al. Community-based treatment of multidrug-resistant tuberculosis: early experience and results from Western Kenya. Public Health Action. 2012;2(2):38–42. doi: 10.5588/pha.12.0002.
    1. Nackers F, Huerga H, Espié E, Aloo AO, Bastard M, Etard JF, et al. Adherence to self-administered tuberculosis treatment in a high HIV-prevalence setting: a cross-sectional survey in Homa Bay, Kenya. PLoS One. 2012;7(3):e32140. doi: 10.1371/journal.pone.0032140.
    1. Cremers AL, Gerrets R, Kapata N, Kabika A, Birnie E, Klipstein-Grobusch K, et al. Tuberculosis patients' pre-hospital delay and non-compliance with a longstanding DOT programme: a mixed methods study in urban Zambia. BMC Public Health. 2016;16(1):1130. doi: 10.1186/s12889-016-3771-9.
    1. Serapelwane MG, Davhana-Maselesele M, Masilo GM. Experiences of patients having tuberculosis (TB) regarding the use of Directly Observed Treatment Short-Course (DOTS) in the North West Province, South Africa. Curationis. 2016;39(1):e1–e9. doi: 10.4102/curationis.v39i1.1629.
    1. Kaplan R, Caldwell J, Hermans S, Adriaanse S, Mtwisha L, Bekker LG, et al. An integrated community TB-HIV adherence model provides an alternative to DOT for tuberculosis patients in Cape Town. Int J Tuberc Lung Dis. 2016;20(9):1185–1191. doi: 10.5588/ijtld.15.0855.
    1. Gebreweld FH, Kifle MM, Gebremicheal FE, Simel LL, Gezae MM, Ghebreyesus SS, et al. Factors influencing adherence to tuberculosis treatment in Asmara, Eritrea: a qualitative study. J Health Popul Nutr. 2018;37(1):1. doi: 10.1186/s41043-017-0132-y.
    1. Collins D, Beyene D, Tedla Y, Mesfin H, Diro E. Can patients afford the cost of treatment for multidrug-resistant tuberculosis in Ethiopia? Int J Tuberc Lung Dis. 2018;22(8):905–911.
    1. Asres A, Jerene D, Deressa W. Pre- and post-diagnosis costs of tuberculosis to patients on Directly Observed Treatment Short course in districts of southwestern Ethiopia: a longitudinal study. J Health Popul Nutr. 2018;37(1):15. doi: 10.1186/s41043-018-0146-0.
    1. Woimo TT, Yimer WK, Bati T, Gesesew HA. The prevalence and factors associated for anti-tuberculosis treatment non-adherence among pulmonary tuberculosis patients in public health care facilities in South Ethiopia: a cross-sectional study. BMC Public Health. 2017;17(1):269. doi: 10.1186/s12889-017-4188-9.
    1. Getahun B, Wubie M, Dejenu G, Manyazewal T. Tuberculosis care strategies and their economic consequences for patients: the missing link to end tuberculosis. Infect Dis Poverty. 2016;5(1):93. doi: 10.1186/s40249-016-0187-9.
    1. Mesfin EA, Beyene D, Tesfaye A, Admasu A, Addise D, Amare M, et al. Drug-resistance patterns of Mycobacterium tuberculosis strains and associated risk factors among multi drug-resistant tuberculosis suspected patients from Ethiopia. PLoS One. 2018;13(6):e0197737. doi: 10.1371/journal.pone.0197737.
    1. Mussie KM, Yimer SA, Manyazewal T, et al. Exploring local realities: Perceptions and experiences of healthcare workers on the management and control of drug-resistant tuberculosis in Addis Ababa. Ethiopia. PLoS One. 2019;14(11):e0224277. doi: 10.1371/journal.pone.0224277.
    1. Fiseha D, Demissie M. Assessment of Directly Observed Therapy (DOT) following tuberculosis regimen change in Addis Ababa, Ethiopia: a qualitative study. BMC Infect Dis. 2015;15:405. doi: 10.1186/s12879-015-1142-2.
    1. Genet C, Melese A, Worede A. Effectiveness of directly observed treatment short course (DOTS) on treatment of tuberculosis patients in public health facilities of Debre Tabor Town, Ethiopia: retrospective study. BMC Res Notes. 2019;12(1):396. doi: 10.1186/s13104-019-4424-8.
    1. Getahun B, Nkosi ZZ. Is directly observed tuberculosis treatment strategy patient-centered? A mixed method study in Addis Ababa, Ethiopia. PLoS One. 2017;12(8):e0181205. doi: 10.1371/journal.pone.0181205.
    1. Sagbakken M, Frich JC, Bjune GA, Porter JD. Ethical aspects of directly observed treatment for tuberculosis: a cross-cultural comparison. BMC Med Ethics. 2013;14:25. doi: 10.1186/1472-6939-14-25.
    1. Getahun B, Nkosi ZZ. Satisfaction of patients with directly observed treatment strategy in Addis Ababa, Ethiopia: A mixed-methods study. PLoS One. 2017;12(2):e0171209. doi: 10.1371/journal.pone.0171209.
    1. Adenager GS, Alemseged F, Asefa H, Gebremedhin AT. Factors Associated with Treatment Delay among Pulmonary Tuberculosis Patients in Public and Private Health Facilities in Addis Ababa, Ethiopia. Tuberc Res Treat. 2017;2017:5120841.
    1. Tadesse S. Stigma against Tuberculosis Patients in Addis Ababa, Ethiopia. PLoS One. 2016;11(4):e0152900. doi: 10.1371/journal.pone.0152900.
    1. Tola HH, Holakouie-Naieni K, Tesfaye E, Mansournia MA, Yaseri M. Prevalence of tuberculosis treatment non-adherence in Ethiopia: a systematic review and meta-analysis. Int J Tuberc Lung Dis. 2019;23(6):741–749. doi: 10.5588/ijtld.18.0672.
    1. Tesfay K, Tesfay S, Nigus E, Gebreyesus A, Gebreegziabiher D, Adane K. More than half of presumptive multidrug-resistant cases referred to a tuberculosis referral laboratory in the Tigray region of Ethiopia are multidrug resistant. Int J Mycobacteriol. 2016;5(3):324–327. doi: 10.1016/j.ijmyco.2016.07.007.
    1. Tafess K, Beyen TK, Abera A, Tasew G, Mekit S, Sisay S, et al. Treatment Outcomes of Tuberculosis at Asella Teaching Hospital, Ethiopia: Ten Years’ Retrospective Aggregated Data. Front Med (Lausanne) 2018;5:38. doi: 10.3389/fmed.2018.00038.
    1. World Health Organization . WHO End TB Strategy. Geneva: WHO; 2015.
    1. Chan AW, Tetzlaff JM, Gøtzsche PC, et al. SPIRIT 2013 explanation and elaboration: guidance for protocols of clinical trials. BMJ. 2013;346:e7586. doi: 10.1136/bmj.e7586.
    1. Ethiopian Federal Ministry of Health . Health and health related indicators. Addis Ababa: FMoH; 2016.
    1. Kozma CM, Dickson M, Phillips AL, et al. Medication possession ratio: implications of using fixed and variable observation periods in assessing adherence with disease-modifying drugs in patients with multiple sclerosis. Patient Prefer Adherence. 2013;7:509–516. doi: 10.2147/PPA.S40736.
    1. GFC Diagnostics ltd. IsoScreen test. Oxfordshire, UK. .
    1. Morisky DE, DiMatteo MR. Improving the measurement of self-reported medication nonadherence: final response. J Clin Epidemio. 2011;64:258–263. doi: 10.1016/j.jclinepi.2010.02.023.
    1. World Health Organization . Adherence to long-term therapies: evidence for action. Geneva: WHO; 2003.
    1. Becton, Dickinson and Company. BD BACTEC™ MGIT™ automated mycobacterial detection system. Maryland, US. .
    1. Ethiopian Federal Ministry of Health (FMoH) National comprehensive tuberculosis, leprosy and TB/HIV training manual for health care workers. Addis Ababa: FMoH; 2016.
    1. EQ 5 D . EQ-5D-5 L User Guide: basic information on how to use the EQ-5D-5 L instrument, Version 2.1. Rotterdam: EQ. 5D; 2015.
    1. TB CAP . Tool to Estimate Patients Costs. Hague: TB CAP; 2008.
    1. Atkinson MJ, Sinha A, Hass SL, Colman SS, Kumar RN, Brod M, et al. Validation of a general measure of treatment satisfaction, the Treatment Satisfaction Questionnaire for Medication (TSQM), using a national panel study of chronic disease. Health Qual Life Outcomes. 2004;2:12.
    1. Brooke J. The System Usability Scale. USA: Hewlett-Packard; 1986.
    1. Wright A. REDCap: A tool for the electronic capture of research data. J Electron Resour Med Libr. 2016;13:197–201. doi: 10.1080/15424065.2016.1259026.

Source: PubMed

3
订阅