Ketogenic diets as an adjuvant cancer therapy: History and potential mechanism

Bryan G Allen, Sudershan K Bhatia, Carryn M Anderson, Julie M Eichenberger-Gilmore, Zita A Sibenaller, Kranti A Mapuskar, Joshua D Schoenfeld, John M Buatti, Douglas R Spitz, Melissa A Fath, Bryan G Allen, Sudershan K Bhatia, Carryn M Anderson, Julie M Eichenberger-Gilmore, Zita A Sibenaller, Kranti A Mapuskar, Joshua D Schoenfeld, John M Buatti, Douglas R Spitz, Melissa A Fath

Abstract

Cancer cells, relative to normal cells, demonstrate significant alterations in metabolism that are proposed to result in increased steady-state levels of mitochondrial-derived reactive oxygen species (ROS) such as O2(•-)and H2O2. It has also been proposed that cancer cells increase glucose and hydroperoxide metabolism to compensate for increased levels of ROS. Given this theoretical construct, it is reasonable to propose that forcing cancer cells to use mitochondrial oxidative metabolism by feeding ketogenic diets that are high in fats and low in glucose and other carbohydrates, would selectively cause metabolic oxidative stress in cancer versus normal cells. Increased metabolic oxidative stress in cancer cells would in turn be predicted to selectively sensitize cancer cells to conventional radiation and chemotherapies. This review summarizes the evidence supporting the hypothesis that ketogenic diets may be safely used as an adjuvant therapy to conventional radiation and chemotherapies and discusses the proposed mechanisms by which ketogenic diets may enhance cancer cell therapeutic responses.

Keywords: Cancer therapy; Ketogenic diet; Oxidative stress.

© 2014 Published by Elsevier Ltd.

Figures

Fig. 1
Fig. 1
Comparison of the caloric composition of the ketogenic diet, Atkins diet, and American diet. On any given day Americans consume an average of 265 g of carbohydrates (50% of total calories), 78.3 g of total fat (35% of total calories), and 78.1 g of protein (15% of total calories). Using percentage of total calories, these values are consistent with current 2010 United States Department of Agriculture recommendations that call for 45–65% of total calories from carbohydrate, 20–35% of total calories from fat, and 10–15% of total calories from protein (80).
Fig. 2
Fig. 2
Comparison of normal cell and tumor cell metabolism on an American diet and a ketogenic diet. Relative to normal cells, tumor cells have been hypothesized to have increased mitochondrial DNA mutations as well as alterations in the expression of nuclear encoded mitochondrial proteins, resulting in increased production of reactive oxygen species (ROS) during mitochondrial respiration. Increased tumor cell ROS increases tumor cell dependence upon glucose metabolism, resulting in generation of NADPH and pyruvate via the pentose phosphate shunt and pyruvate from glycolysis. NADPH and pyruvate reduce hydroperoxides. Ketogenic diets decrease the capability of tumor cells to produce NADPH because, in most tissues, fat metabolism is unable to undergo gluconeogenesis to form glucose-6-phosphate (G-6-P) necessary to enter the pentose phosphate shunt. Thus, ketogenic diets should further increase the oxidative stress in tumor cells relative to normal cells by limiting NADPH regeneration.
Fig. 3
Fig. 3
Possible acute and chronic side effects associated with the ketogenic diet.
Fig. 4
Fig. 4
(A) Ketogenic diet phase I clinical trial schema and (B) sample ketogenic diet meal with a similar 4:1 ratio of fat to carbohydrate+protein as provided in the nutritionally complete KetoCal©. Ketosis is confirmed by laboratory measurement prior to beginning radiation therapy.

References

    1. Warburg O. On the origin of cancer cells. Science. 1956;123(3191):309–314.
    1. Ahmad I.M., Aykin-Burns N., Sim J.E., Walsh S.A., Higashikubo R., Buettner G.R., Venkataraman S., Mackey M.A., Flanagan S.W., Oberley L.W., Spitz D.R. Mitochondrial O2•− and H2O2 mediate glucose deprivation-induced stress in human cancer cells. Journal of Biological Chemistry. 2005;280(6):4254–4263.
    1. Aykin-Burns N., Ahmad I.M., Zhu Y., Oberley L.W., Spitz D.R. Increased levels of superoxide and H2O2 mediate the differential susceptibility of cancer cells versus normal cells to glucose deprivation. Biochemical Journal. 2009;418(1):29–37.
    1. Spitz D.R., Sim J.E., Ridnour L.A., Galoforo S.S., Lee Y.J. Glucose deprivation-induced oxidative stress in human tumor cells. A fundamental defect in metabolism? Annals of the New York Academy of Sciences. 2000;899:349–362.
    1. Allen B.G., Bhatia S.K., Buatti J.M., Brandt K.E., Lindholm K.E., Button A.M., Szweda L.I., Smith B.J., Spitz D.R., Fath M.A. Ketogenic diets enhance oxidative stress and radio-chemo-therapy responses in lung cancer xenografts. Clinical Cancer Research: 2013;19(14):3905–3913.
    1. Bize I.B., Oberley L.W., Morris H.P. Superoxide dismutase and superoxide radical in Morris hepatomas. Cancer Research. 1980;40(10):3686–3693.
    1. Coleman M.C., Asbury C.R., Daniels D., Du J., Aykin-Burns N., Smith B.J., Li L., Spitz D.R., Cullen J.J. 2-deoxy-d-glucose causes cytotoxicity, oxidative stress, and radiosensitization in pancreatic cancer. Free Radical Biology & Medicine. 2008;44(3):322–331.
    1. Dixon S.J., Stockwell B.R. The role of iron and reactive oxygen species in cell death. Nature Chemical Biology. 2013;10(1):9–17.
    1. Fath M.A., Ahmad I.M., Smith C.J., Spence J., Spitz D.R. Enhancement of carboplatin-mediated lung cancer cell killing by simultaneous disruption of glutathione and thioredoxin metabolism. Clinical Cancer Research: 2011;17(19):6206–6217.
    1. Fath M.A., Diers A.R., Aykin-Burns N., Simons A.L., Hua L., Spitz D.R. Mitochondrial electron transport chain blockers enhance 2-deoxy-d-glucose induced oxidative stress and cell killing in human colon carcinoma cells. Cancer Biology & Therapy. 2009;8(13):1228–1236.
    1. Hadzic T., Aykin-Burns N., Zhu Y., Coleman M.C., Leick K., Jacobson G.M., Spitz D.R. Paclitaxel combined with inhibitors of glucose and hydroperoxide metabolism enhances breast cancer cell killing via H2O2-mediated oxidative stress. Free Radical Biology & Medicine. 2010;48(8):1024–1033.
    1. Ishikawa K., Takenaga K., Akimoto M., Koshikawa N., Yamaguchi A., Imanishi H., Nakada K., Honma Y., Hayashi J. ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis. Science. 2008;320(5876):661–664.
    1. Oberley L.W. Anticancer therapy by overexpression of superoxide dismutase. Antioxidants & Redox Signaling. 2001;3(3):461–472.
    1. Oberley L.W. Mechanism of the tumor suppressive effect of MnSOD overexpression. Biomedicine & Pharmacotherapy. 2005;59(4):143–148.
    1. Springer E.L. Comparative study of the cytoplasmic organelles of epithelial cell lines derived from human carcinomas and nonmalignant tissues. Cancer Research. 1980;40(3):803–817.
    1. Wen S., Zhu D., Huang P. Targeting cancer cell mitochondria as a therapeutic approach. Future Medicinal Chemistry. 2013;5(1):53–67.
    1. Wondrak G.T. Redox-directed cancer therapeutics: molecular mechanisms and opportunities. Antioxidants & Redox Signaling. 2009;11(12):3013–3069.
    1. Westman E.C., Yancy W.S., Jr., Mavropoulos J.C., Marquart M., McDuffie J.R. The effect of a low-carbohydrate, ketogenic diet versus a low-glycemic index diet on glycemic control in type 2 diabetes mellitus. Nutrition & Metabolism. 2008;5:36.
    1. Valayannopoulos V., Bajolle F., Arnoux J.B., Dubois S., Sannier N., Baussan C., Petit F., Labrune P., Rabier D., Ottolenghi C., Vassault A., Broissand C., Bonnet D., de Lonlay P. Successful treatment of severe cardiomyopathy in glycogen storage disease type III with D,l-3-hydroxybutyrate, ketogenic and high-protein diet. Pediatric Research. 2011;70(6):638–641.
    1. Gilbert D.L., Pyzik P.L., Freeman J.M. The ketogenic diet: seizure control correlates better with serum beta-hydroxybutyrate than with urine ketones. Journal of Child Neurology. 2000;15(12):787–790.
    1. Wheless J.W. History and origin of the ketogenic diet. In: Stafstrom C.E., Rho J.M., editors. Epilepsy and the Ketogenic Diet. Humana Press; Totowa, NJ: 2004. pp. 31–50.
    1. Neal E.G., Chaffe H., Schwartz R.H., Lawson M.S., Edwards N., Fitzsimmons G., Whitney A., Cross J.H. The ketogenic diet for the treatment of childhood epilepsy: a randomised controlled trial. Lancet Neurology. 2008;7(6):500–506.
    1. Lambrechts D.A., Bovens M.J., de la Parra N.M., Hendriksen J.G., Aldenkamp A.P., Majoie M.J. Ketogenic diet effects on cognition, mood, and psychosocial adjustment in children. Acta Neurologica Scandinavica. 2013;127(2):103–108.
    1. Klepper J., Diefenbach S., Kohlschütter A., Voit T. Effects of the ketogenic diet in the glucose transporter 1 deficiency syndrome. Prostaglandins, Leukotrienes, and Essential Fatty Acids. 2004;70(3):321–327.
    1. Zhao Z., Lange D.J., Voustianiouk A., MacGrogan D., Ho L., Suh J., Humala N., Thiyagarajan M., Wang J., Pasinetti G.M. A ketogenic diet as a potential novel therapeutic intervention in amyotrophic lateral sclerosis. BMC Neuroscience. 2006;7:29.
    1. Barañano K.W., Hartman A.L. The ketogenic diet: uses in epilepsy and other neurologic illnesses. Current Treatment Options in Neurology. 2008;10(6):410–419.
    1. Evangeliou A., Vlachonikolis I., Mihailidou H., Spilioti M., Skarpalezou A., Makaronas N., Prokopiou A., Christodoulou P., Liapi-Adamidou G., Helidonis E., Sbyrakis S., Smeitink J. Application of a ketogenic diet in children with autistic behavior: pilot study. Journal of Child Neurology. 2003;18(2):113–118.
    1. Murphy P., Likhodii S., Nylen K., Burnham W.M. The antidepressant properties of the ketogenic diet. Biological Psychiatry. 2004;56(12):981–983.
    1. Mavropoulos J.C., Yancy W.S., Hepburn J., Westman E.C. The effects of a low-carbohydrate, ketogenic diet on the polycystic ovary syndrome: a pilot study. Nutrition & Metabolism. 2005;2:35.
    1. Tisdale M.J., Brennan R.A., Fearon K.C. Reduction of weight loss and tumour size in a cachexia model by a high fat diet. British Journal of Cancer. 1987;56(1):39–43.
    1. Maurer G.D., Brucker D.P., Bähr O., Harter P.N., Hattingen E., Walenta S., Mueller-Klieser W., Steinbach J.P., Rieger J. Differential utilization of ketone bodies by neurons and glioma cell lines: a rationale for ketogenic diet as experimental glioma therapy. BMC Cancer. 2011;11:315.
    1. Seyfried T.N., Sanderson T.M., El-Abbadi M.M., McGowan R., Mukherjee P. Role of glucose and ketone bodies in the metabolic control of experimental brain cancer. British Journal of Cancer. 2003;89(7):1375–1382.
    1. Stafford P., Abdelwahab M.G., Kim Y., Preul M.C., Rho J.M., Scheck A.C. The ketogenic diet reverses gene expression patterns and reduces reactive oxygen species levels when used as an adjuvant therapy for glioma. Nutrition & Metabolism. 2010;7:74.
    1. Beck S.A., Tisdale M.J. Nitrogen excretion in cancer cachexia and its modification by a high fat diet in mice. Cancer Research. 1989;49(14):3800–3804.
    1. Otto C., Kaemmerer U., Illert B., Muehling B., Pfetzer N., Wittig R., Voelker H.U., Thiede A., Coy J.F. Growth of human gastric cancer cells in nude mice is delayed by a ketogenic diet supplemented with omega-3 fatty acids and medium-chain triglycerides. BMC Cancer. 2008;8:122.
    1. Freedland S.J., Mavropoulos J., Wang A., Darshan M., Demark-Wahnefried W., Aronson W.J., Cohen P., Hwang D., Peterson B., Fields T., Pizzo S.V., Isaacs W.B. Carbohydrate restriction, prostate cancer growth, and the insulin-like growth factor axis. Prostate. 2008;68(1):11–19.
    1. Masko E.M., Thomas J.A., 2nd, Antonelli J.A., Lloyd J.C., Phillips T.E., Poulton S.H., Dewhirst M.W., Pizzo S.V., Freedland S.J. Low-carbohydrate diets and prostate cancer: How low is “low enough”? Cancer Prevention Research. 2010;3(9):1124–1131.
    1. Mavropoulos J.C., Buschemeyer W.C., 3rd, Tewari A.K., Rokhfeld D., Pollak M., Zhao Y., Febbo P.G., Cohen P., Hwang D., Devi G., Demark-Wahnefried W., Westman E.C., Peterson B.L., Pizzo S.V., Freedland S.J. The effects of varying dietary carbohydrate and fat content on survival in a murine LNCaP prostate cancer xenograft model. Cancer Prevention Research. 2009;2(6):557–565.
    1. Abdelwahab M.G., Fenton K.E., Preul M.C., Rho J.M., Lynch A., Stafford P., Scheck A.C. The ketogenic diet is an effective adjuvant to radiation therapy for the treatment of malignant glioma. PloS One. 2012;7(5):e36197.
    1. Lee C., Raffaghello L., Brandhorst S., Safdie F.M., Bianchi G., Martin-Montalvo A., Pistoia V., Wei M., Hwang S., Merlino A., Emionite L., de Cabo R., Longo V.D. Fasting cycles retard growth of tumors and sensitize a range of cancer cell types to chemotherapy. Science Translational Medicine. 2012;4(124)
    1. Safdie F.M., Dorff T., Quinn D., Fontana L., Wei M., Lee C., Cohen P., Longo V.D. Fasting and cancer treatment in humans: a case series report. Aging. 2009;1(12):988–1007.
    1. Nebeling L.C., Miraldi F., Shurin S.B., Lerner E. Effects of a ketogenic diet on tumor metabolism and nutritional status in pediatric oncology patients: two case reports. Journal of the American College of Nutrition. 1995;14(2):202–208.
    1. Zuccoli G., Marcello N., Pisanello A., Servadei F., Vaccaro S., Mukherjee P., Seyfried T.N. Metabolic management of glioblastoma multiforme using standard therapy together with a restricted ketogenic diet: case report. Nutrition & Metabolism. 2010;7:33.
    1. Schmidt M., Pfetzer N., Schwab M., Strauss I., Kämmerer U. Effects of a ketogenic diet on the quality of life in 16 patients with advanced cancer: a pilot trial. Nutrition & Metabolism. 2011;8(1):54.
    1. Kroemer G., Pouyssegur J. Tumor cell metabolism: cancer’s Achilles’ heel. Cancer Cell. 2008;13(6):472–482.
    1. Attardi G., Schatz G. Biogenesis of mitochondria. Annual Review of Cell. Biology. 1988;4:289–333.
    1. Carew J.S., Huang P. Mitochondrial defects in cancer. Molecular Cancer. 2002;1:9.
    1. Fliss M.S., Usadel H., Caballero O.L., Wu L., Buta M.R., Eleff S.M., Jen J., Sidransky D. Facile detection of mitochondrial DNA mutations in tumors and bodily fluids. Science. 2000;287(5460):2017–2019.
    1. Polyak K., Li Y., Zhu H., Lengauer C., Willson J.K., Markowitz S.D., Trush M.A., Kinzler K.W., Vogelstein B. Somatic mutations of the mitochondrial genome in human colorectal tumours. Nature Genetics. 1998;20(3):291–293.
    1. Zhou S., Kachhap S., Sun W., Wu G., Chuang A., Poeta L., Grumbine L., Mithani S.K., Chatterjee A., Koch W., Westra W.H., Maitra A., Glazer C., Carducci M., Sidransky D., McFate T., Verma A., Califano J.A. Frequency and phenotypic implications of mitochondrial DNA mutations in human squamous cell cancers of the head and neck. Proceedings of the National Academy of Sciences of the United States of America. 2007;104(18):7540–7545.
    1. Petros J.A., Baumann A.K., Ruiz-Pesini E., Amin M.B., Sun C.Q., Hall J., Lim S., Issa M.M., Flanders W.D., Hosseini S.H., Marshall F.F., Wallace D.C. mtDNA mutations increase tumorigenicity in prostate cancer. Proceedings of the National Academy of Sciences of the United States of America. 2005;102(3):719–724.
    1. Liu V.W., Shi H.H., Cheung A.N., Chiu P.M., Leung T.W., Nagley P., Wong L.C., Ngan H.Y. High incidence of somatic mitochondrial DNA mutations in human ovarian carcinomas. Cancer Research. 2001;61(16):5998–6001.
    1. Nishikawa M., Nishiguchi S., Shiomi S., Tamori A., Koh N., Takeda T., Kubo S., Hirohashi K., Kinoshita H., Sato E., Inoue M. Somatic mutation of mitochondrial DNA in cancerous and noncancerous liver tissue in individuals with hepatocellular carcinoma. Cancer Research. 2001;61(5):1843–1845.
    1. Esposito L.A., Melov S., Panov A., Cottrell B.A., Wallace D.C. Mitochondrial disease in mouse results in increased oxidative stress. Proceedings of the National Academy of Sciences of the United States of America. 1999;96(9):4820–4825.
    1. Szatrowski T.P., Nathan C.F. Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Research. 1991;51(3):794–798.
    1. Brandon M., Baldi P., Wallace D.C. Mitochondrial mutations in cancer. Oncogene. 2006;25(34):4647–4662.
    1. Wallace D.C., Fan W. The pathophysiology of mitochondrial disease as modeled in the mouse. Genes & Development. 2009;23(15):1714–1736.
    1. Rigo P., Paulus P., Kaschten B.J., Hustinx R., Bury T., Jerusalem G., Benoit T., Foidart-Willems J. Oncological applications of positron emission tomography with fluorine-18 fluorodeoxyglucose. European Journal of Nuclear Medicine. 1996;23(12):1641–1674.
    1. Boros L.G., Lee P.W., Brandes J.L., Cascante M., Muscarella P., Schirmer W.J., Melvin W.S., Ellison E.C. Nonoxidative pentose phosphate pathways and their direct role in ribose synthesis in tumors: Is cancer a disease of cellular glucose metabolism? Medical Hypotheses. 1998;50(1):55–59.
    1. Buettner G.R. Superoxide dismutase in redox biology: the roles of superoxide and hydrogen peroxide. Anti-Cancer Agents in Medicinal Chemistry. 2011;11(4):341–346.
    1. Geschwind J.F., Ko Y.H., Torbenson M.S., Magee C., Pedersen P.L. Novel therapy for liver cancer: direct intraarterial injection of a potent inhibitor of ATP production. Cancer Research. 2002;62(14):3909–3913.
    1. Le A., Cooper C.R., Gouw A.M., Dinavahi R., Maitra A., Deck L.M., Royer R.E., Vander Jagt D.L., Semenza G.L., Dang C.V. Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proceedings of the National Academy of Sciences of the United States of America. 2010;107(5):2037–2042.
    1. Lin X., Zhang F., Bradbury C.M., Kaushal A., Li L., Spitz D.R., Aft R.L., Gius D. 2-Deoxy-d-glucose-induced cytotoxicity and radiosensitization in tumor cells is mediated via disruptions in thiol metabolism. Cancer Research. 2003;63(12):3413–3417.
    1. Simons A.L., Ahmad I.M., Mattson D.M., Dornfeld K.J., Spitz D.R. 2-deoxy-d-glucose combined with cisplatin enhances cytotoxicity via metabolic oxidative stress in human head and neck cancer cells. Cancer Research. 2007;67(7):3364–3370.
    1. Trachootham D., Alexandre J., Huang P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nature Reviews. Drug Discovery. 2009;8(7):579–591.
    1. Jain S.K., Kannan K., Lim G. Ketosis (acetoacetate) can generate oxygen radicals and cause increased lipid peroxidation and growth inhibition in human endothelial cells. Free Radical Biology & Medicine. 1998;25(9):1083–1088.
    1. Abdelmegeed M.A., Kim S.K., Woodcroft K.J., Novak R.F. Acetoacetate activation of extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase in primary cultured rat hepatocytes: role of oxidative stress. Journal of Pharmacology and Experimental Therapeutics. 2004;310(2):728–736.
    1. Pelletier A., Coderre L. Ketone bodies alter dinitrophenol-induced glucose uptake through AMPK inhibition and oxidative stress generation in adult cardiomyocytes. American Journal of Physiology: Endocrinology and Metabolism. 2007;292(5):E1325–E1332.
    1. Poff A.M., Ari C., Seyfried T.N., D’Agostino D.P. The ketogenic diet and hyperbaric oxygen therapy prolong survival in mice with systemic metastatic cancer. PloS One. 2013;8(6):e65522.
    1. Dhamija R., Eckert S., Wirrell E. Ketogenic diet. Canadian Journal of Neurological Sciences. 2013;40(2):158–167.
    1. Nangia S., Caraballo R.H., Kang H.C., Nordli D.R., Scheffer I.E. Is the ketogenic diet effective in specific epilepsy syndromes? Epilepsy Research. 2012;100(3):252–257.
    1. Mosek A., Natour H., Neufeld M.Y., Shiff Y., Vaisman N. Ketogenic diet treatment in adults with refractory epilepsy: a prospective pilot study. Seizure: The Journal of the British Epilepsy Association. 2009;18(1):30–33.
    1. Hayashi A., Kumada T., Nozaki F., Hiejima I., Miyajima T., Fujii T. Changes in serum levels of selenium, zinc and copper in patients on a ketogenic diet using Keton formula. No to Hattatsu. Brain and Development. 2013;45(4):288–293.
    1. Westerterp-Plantenga M.S., Nieuwenhuizen A., Tomé D., Soenen S., Westerterp K.R. Dietary protein, weight loss, and weight maintenance. Annual Review of Nutrition. 2009;29:21–41.
    1. McNally M.A., Pyzik P.L., Rubenstein J.E., Hamdy R.F., Kossoff E.H. Empiric use of potassium citrate reduces kidney-stone incidence with the ketogenic diet. Pediatrics. 2009;124(2):e300–e304.
    1. Sampath A., Kossoff E.H., Furth S.L., Pyzik P.L., Vining E.P. Kidney stones and the ketogenic diet: risk factors and prevention. Journal of Child Neurology. 2007;22(4):375–378.
    1. Bergqvist A.G., Schall J.I., Stallings V.A., Zemel B.S. Progressive bone mineral content loss in children with intractable epilepsy treated with the ketogenic diet. American Journal of Clinical Nutrition. 2008;88(6):1678–1684.
    1. Yancy W.S., Jr., Olsen M.K., Guyton J.R., Bakst R.P., Westman E.C. A low-carbohydrate, ketogenic diet versus a low-fat diet to treat obesity and hyperlipidemia: a randomized, controlled trial. Annals of Internal Medicine. 2004;140(10):769–777.
    1. Yancy W.S., Jr., Westman E.C., McDuffie J.R., Grambow S.C., Jeffreys A.S., Bolton J., Chalecki A., Oddone E.Z. A randomized trial of a low-carbohydrate diet vs orlistat plus a low-fat diet for weight loss. Archives of Internal Medicine. 2010;170(2):136–145.

Source: PubMed

3
订阅