Inflamm-Aging: A New Mechanism Affecting Premature Ovarian Insufficiency

Yaoqi Huang, Chuan Hu, Haifeng Ye, Ruichen Luo, Xinxin Fu, Xiaoyan Li, Jian Huang, Weiyun Chen, Yuehui Zheng, Yaoqi Huang, Chuan Hu, Haifeng Ye, Ruichen Luo, Xinxin Fu, Xiaoyan Li, Jian Huang, Weiyun Chen, Yuehui Zheng

Abstract

The normal function of ovaries, along with the secretion of sex hormones, is among the most important endocrine factors that maintain the female sexual characteristics and promote follicular development and ovulation. Premature ovarian insufficiency (POI) is a common cause in the etiology of female infertility. It is defined as the loss of ovarian function before the age of 40. The characteristics of POI are menstrual disorders, including amenorrhea and delayed menstruation, accompanied by a raised gonadotrophin level and decreased estradiol level. Inflammatory aging is a new concept in the research field of aging. It refers to a chronic and low-degree proinflammatory state which occurs with increasing age. Inflammatory aging is closely associated with multiple diseases, as excessive inflammation can induce the inflammatory lesions in certain organs of the body. In recent years, studies have shown that inflammatory aging plays a significant role in the pathogenesis of POI. This paper begins with the pathogenesis of inflammatory aging and summarizes the relationship between inflammatory aging and premature ovarian insufficiency in a comprehensive way, as well as discussing the new diagnostic and therapeutic methods of POI.

Figures

Figure 1
Figure 1
The mechanisms of inflamm-aging. In the process of aging, with the activation of inflammatory factors, the body appears to be in a chronic, progressively elevated proinflammatory state called inflammatory aging. ROS in the body is increased due to several factors. It causes oxidative stress and a series of inflammatory reactions activated by NLPR3 and NF-κB. It is now summarized as follows: oxidative stress inflammation, cytokines, DNA damage, autophagy, and nonenzymatic glycation.
Figure 2
Figure 2
Regulation of proinflammatory cytokines and anti-inflammatory cytokines on premature ovarian insufficiency. Proinflammatory cytokines and anti-inflammatory cytokines maintain a dynamic balance in the normal body. Pathological inflammation in premature ovarian insufficiency is caused by an imbalance of the inflammatory cytokine network.

References

    1. Qin C., Chen Y., Lin Q., Yao J., Wu W., Xie J. The significance of polymorphism and expression of oestrogen metabolism-related genes in Chinese women with premature ovarian insufficiency. Reproductive Biomedicine Online. 2017;35(5):609–615. doi: 10.1016/j.rbmo.2017.07.007.
    1. Laml T., Schulz-Lobmeyr I., Obruca A., Huber J. C., Hartmann B. W. Premature ovarian failure: etiology and prospects. Gynecological Endocrinology. 2000;14(4):292–302. doi: 10.3109/09513590009167696.
    1. Webber L., Davies M., Anderson R., et al. ESHRE guideline: management of women with premature ovarian insufficiency. Human Reproduction. 2016;31(5):926–937. doi: 10.1093/humrep/dew027.
    1. Sen A., Kushnir V. A., Barad D. H., Gleicher N. Endocrine autoimmune diseases and female infertility. Nature Reviews Endocrinology. 2014;10(1):37–50. doi: 10.1038/nrendo.2013.212.
    1. Sammaritano L. R. Menopause in patients with autoimmune diseases. Autoimmunity Reviews. 2012;11(6-7):A430–A436. doi: 10.1016/j.autrev.2011.11.006.
    1. Petrikova J., Lazurova I. Ovarian failure and polycystic ovary syndrome. Autoimmunity Reviews. 2012;11(6-7):A471–A478. doi: 10.1016/j.autrev.2011.11.010.
    1. Carp H. J. A., Selmi C., Shoenfeld Y. The autoimmune bases of infertility and pregnancy loss. Journal of Autoimmunity. 2012;38(2-3):J266–J274. doi: 10.1016/j.jaut.2011.11.016.
    1. Reato G., Morlin L., Chen S., et al. Premature ovarian failure in patients with autoimmune Addison's disease: clinical, genetic, and immunological evaluation. The Journal of Clinical Endocrinology and Metabolism. 2011;96(8):E1255–E1261. doi: 10.1210/jc.2011-0414.
    1. Vohra B. P., Sharma S. P., Kansal V. K. Age-dependent variations in mitochondrial and cytosolic antioxidant enzymes and lipid peroxidation in different regions of central nervous system of guinea pigs. Indian Journal of Biochemistry & Biophysics. 2001;38(5):321–326.
    1. Prattichizzo F., Micolucci L., Cricca M., et al. Exosome-based immunomodulation during aging: a nano-perspective on inflamm-aging. Mechanisms of Ageing and Development. 2017;168:44–53. doi: 10.1016/j.mad.2017.02.008.
    1. Thevaranjan N., Puchta A., Schulz C., et al. Age-associated microbial dysbiosis promotes intestinal permeability, systemic inflammation, and macrophage dysfunction. Cell Host & Microbe. 2017;21(4):455–466.e4. doi: 10.1016/j.chom.2017.03.002.
    1. Salminen A., Huuskonen J., Ojala J., Kauppinen A., Kaarniranta K., Suuronen T. Activation of innate immunity system during aging: NF-κB signaling is the molecular culprit of inflamm-aging. Ageing Research Reviews. 2008;7(2):83–105. doi: 10.1016/j.arr.2007.09.002.
    1. Franceschi C., Bonafè M., Valensin S., et al. Inflamm-aging: an evolutionary perspective on immunosenescence. Annals of the New York Academy of Sciences. 2000;908(1):244–254. doi: 10.1111/j.1749-6632.2000.tb06651.x.
    1. Vida C., de Toda I. M., Cruces J., Garrido A., Gonzalez-Sanchez M., de la Fuente M. Role of macrophages in age-related oxidative stress and lipofuscin accumulation in mice. Redox Biology. 2017;12:423–437. doi: 10.1016/j.redox.2017.03.005.
    1. Picca A., Lezza A. M. S., Leeuwenburgh C., et al. Fueling inflamm-aging through mitochondrial dysfunction: mechanisms and molecular targets. International Journal of Molecular Sciences. 2017;18(5) doi: 10.3390/ijms18050933.
    1. Sohal R. S., Weindruch R. Oxidative stress, caloric restriction, and aging. Science. 1996;273(5271):59–63. doi: 10.1126/science.273.5271.59.
    1. Ottaviani E., Franceschi C. The neuroimmunology of stress from invertebrates to man. Progress in Neurobiology. 1996;48(4-5):421–440. doi: 10.1016/0301-0082(95)00049-6.
    1. Xia S., Zhang X., Zheng S., et al. An update on inflamm-aging: mechanisms, prevention, and treatment. Journal of Immunology Research. 2016;2016:12. doi: 10.1155/2016/8426874.8426874
    1. Pangrazzi L., Meryk A., Naismith E., et al. “Inflamm-aging” influences immune cell survival factors in human bone marrow. European Journal of Immunology. 2017;47(3):481–492. doi: 10.1002/eji.201646570.
    1. Mei C., Zheng F. Chronic inflammation potentiates kidney aging. Seminars in Nephrology. 2009;29(6):555–568. doi: 10.1016/j.semnephrol.2009.07.002.
    1. Freund A., Orjalo A. V., Desprez P. Y., Campisi J. Inflammatory networks during cellular senescence: causes and consequences. Trends in Molecular Medicine. 2010;16(5):238–246. doi: 10.1016/j.molmed.2010.03.003.
    1. Bruunsgaard H., Andersen-Ranberg K., Hjelmborg J. . B., Pedersen B. K., Jeune B. Elevated levels of tumor necrosis factor alpha and mortality in centenarians. The American Journal of Medicine. 2003;115(4):278–283. doi: 10.1016/S0002-9343(03)00329-2.
    1. Salvioli S., Capri M., Valensin S., et al. Inflamm-aging, cytokines and aging: state of the art, new hypotheses on the role of mitochondria and new perspectives from systems biology. Current Pharmaceutical Design. 2006;12(24):3161–3171. doi: 10.2174/138161206777947470.
    1. Bonafe M., Storci G., Franceschi C. Inflamm-aging of the stem cell niche: breast cancer as a paradigmatic example: breakdown of the multi-shell cytokine network fuels cancer in aged people. BioEssays. 2012;34(1):40–49. doi: 10.1002/bies.201100104.
    1. Nakatogawa H., Ohsumi Y. Autophagy: close contact keeps out the uninvited. Current Biology. 2014;24(12):R560–R562. doi: 10.1016/j.cub.2014.05.013.
    1. Mizushima N., Yoshimori T., Ohsumi Y. The role of Atg proteins in autophagosome formation. Annual Review of Cell and Developmental Biology. 2011;27(1):107–132. doi: 10.1146/annurev-cellbio-092910-154005.
    1. Salminen A., Kaarniranta K., Kauppinen A. Inflammaging: disturbed interplay between autophagy and inflammasomes. Aging. 2012;4(3):166–175. doi: 10.18632/aging.100444.
    1. Rippo M. R., Olivieri F., Monsurrò V., Prattichizzo F., Albertini M. C., Procopio A. D. MitomiRs in human inflamm-aging: a hypothesis involving miR-181a, miR-34a and miR-146a. Experimental Gerontology. 2014;56:154–163. doi: 10.1016/j.exger.2014.03.002.
    1. Schmidt F. N., Zimmermann E. A., Campbell G. M., et al. Assessment of collagen quality associated with non-enzymatic cross-links in human bone using Fourier-transform infrared imaging. Bone. 2017;97:243–251. doi: 10.1016/j.bone.2017.01.015.
    1. Roca F., Grossin N., Chassagne P., Puisieux F., Boulanger E. Glycation: the angiogenic paradox in aging and age-related disorders and diseases. Ageing Research Reviews. 2014;15:146–160. doi: 10.1016/j.arr.2014.03.009.
    1. Watanabe M., Toyomura T., Wake H., et al. Advanced glycation end products attenuate the function of tumor necrosis factor-like weak inducer of apoptosis to regulate the inflammatory response. Molecular and Cellular Biochemistry. 2017;434(1-2):153–162. doi: 10.1007/s11010-017-3045-6.
    1. Nakashima K., Nishizaki O., Andoh Y. Acceleration of hemoglobin glycation with aging. Clinica Chimica Acta. 1993;215(1):111–118. doi: 10.1016/0009-8981(93)90254-2.
    1. Kumar R., Alwani M., Kosta S., Kaur R., Agarwal S. BMP15 and GDF9 gene mutations in premature ovarian failure. Journal of Reproduction & Infertility. 2017;18(1):185–189.
    1. Komorowska B. Autoimmune premature ovarian failure. Menopausal Review. 2016;4(4):210–214. doi: 10.5114/pm.2016.65666.
    1. Bricaire L., Laroche E., Bourcigaux N., Donadille B., Christin-Maitre S. Insuffisances ovariennes prématurées. Presse Médicale. 2013;42(11):1500–1507. doi: 10.1016/j.lpm.2013.04.018.
    1. Ghaddhab C., Morin C., Brunel-Guitton C., Mitchell G. A., van Vliet G., Huot C. Premature ovarian failure in French Canadian Leigh syndrome. The Journal of Pediatrics. 2017;184:227–229.e1. doi: 10.1016/j.jpeds.2017.02.008.
    1. Kovanci E., Schutt A. K. Premature ovarian failure: clinical presentation and treatment. Obstetrics and Gynecology Clinics of North America. 2015;42(1):153–161. doi: 10.1016/j.ogc.2014.10.004.
    1. Rossetti R., Ferrari I., Bonomi M., Persani L. Genetics of primary ovarian insufficiency. Clinical Genetics. 2017;91(2):183–198. doi: 10.1111/cge.12921.
    1. Chapman C., Cree L., Shelling A. N. The genetics of premature ovarian failure: current perspectives. International Journal of Women's Health. 2015;7:799–810. doi: 10.2147/IJWH.S64024.
    1. Conway G. S. Clinical manifestations of genetic defects affecting gonadotrophins and their receptors. Clinical Endocrinology. 1996;45(6):657–663. doi: 10.1046/j.1365-2265.1996.8680879.x.
    1. Ye H., Li X., Zheng T., et al. The effect of the immune system on ovarian function and features of ovarian germline stem cells. Springerplus. 2016;5(1):p. 990. doi: 10.1186/s40064-016-2390-3.
    1. Wang X. F., Zhang L., Wu Q. H., Min J. X., Ma N., Luo L. C. Biological mechanisms of premature ovarian failure caused by psychological stress based on support vector regression. International Journal of Clinical and Experimental Medicine. 2015;8(11):21393–21399.
    1. Bouali N., Francou B., Bouligand J., et al. New MCM8 mutation associated with premature ovarian insufficiency and chromosomal instability in a highly consanguineous Tunisian family. Fertility and Sterility. 2017;108(4):694–702. doi: 10.1016/j.fertnstert.2017.07.015.
    1. Naz R. K., Thurston D., Santoro N. Circulating tumor necrosis factor (TNF)-α in normally cycling women and patients with premature ovarian failure and polycystic ovaries. American Journal of Reproductive Immunology. 1995;34(3):170–175. doi: 10.1111/j.1600-0897.1995.tb00934.x.
    1. RVS V., Téllez V. S., CJC H., RMJ O., OME C., Reyes F. A. Serum levels of IL-1beta, IL-6 and TNF-alpha in infertile patients with ovarian dysfunction. Ginecologia y obstetricia de Mexico. 2005;73:604–610.
    1. Singh N., Dadhwal V., Sharma K. A., Mittal S. Xanthogranulomatous inflammation: a rare cause of premature ovarian failure. Archives of Gynecology and Obstetrics. 2009;279(5):729–731. doi: 10.1007/s00404-008-0791-4.
    1. Altuntas C. Z., Johnson J. M., Tuohy V. K. Autoimmune targeted disruption of the pituitary-ovarian axis causes premature ovarian failure. Journal of Immunology. 2006;177(3):1988–1996. doi: 10.4049/jimmunol.177.3.1988.
    1. Said R. S., el-Demerdash E., Nada A. S., Kamal M. M. Resveratrol inhibits inflammatory signaling implicated in ionizing radiation-induced premature ovarian failure through antagonistic crosstalk between silencing information regulator 1 (SIRT1) and poly(ADP-ribose) polymerase 1 (PARP-1) Biochemical Pharmacology. 2016;103:140–150. doi: 10.1016/j.bcp.2016.01.019.
    1. Wang Y. F., Han L. Y., Ou R. Q. Analysis of anti-zona pellucida antibody and tumor necrosis factor-α, γ-interferon and interleukin-2 in sera from patients with premature ovarian failure. Journal of Reproductive Medicine. 2003;12:47–50.
    1. Sundaresan N. R., Saxena V. K., Sastry K. V. H., et al. Cytokines and chemokines in postovulatory follicle regression of domestic chicken (Gallus gallus domesticus) Developmental & Comparative Immunology. 2008;32(3):253–264. doi: 10.1016/j.dci.2007.05.011.
    1. Lai D., Wang F., Dong Z., Zhang Q. Skin-derived mesenchymal stem cells help restore function to ovaries in a premature ovarian failure mouse model. PLoS One. 2014;9(5, article e98749) doi: 10.1371/journal.pone.0098749.
    1. Zhang G., Li J., Purkayastha S., et al. Hypothalamic programming of systemic ageing involving IKK-β, NF-κB and GnRH. Nature. 2013;497(7448):211–216. doi: 10.1038/nature12143.
    1. He L., Ling L., Wei T., Wang Y., Xiong Z. Ginsenoside Rg1 improves fertility and reduces ovarian pathological damages in premature ovarian failure model of mice. Experimental Biology and Medicine. 2017;242(7):683–691. doi: 10.1177/1535370217693323.

Source: PubMed

3
订阅