Association between Serum Soluble Klotho Levels and Mortality in Chronic Hemodialysis Patients

Naoko Otani-Takei, Takahiro Masuda, Tetsu Akimoto, Sumiko Honma, Yuko Watanabe, Kazuhiro Shiizaki, Takuya Miki, Eiji Kusano, Yasushi Asano, Makoto Kuro-O, Daisuke Nagata, Naoko Otani-Takei, Takahiro Masuda, Tetsu Akimoto, Sumiko Honma, Yuko Watanabe, Kazuhiro Shiizaki, Takuya Miki, Eiji Kusano, Yasushi Asano, Makoto Kuro-O, Daisuke Nagata

Abstract

Klotho is a single-pass transmembrane protein predominantly expressed in the kidney. The extracellular domain of Klotho is subject to ectodomain shedding and is released into the circulation as a soluble form. Soluble Klotho is also generated from alternative splicing of the Klotho gene. In mice, defects in Klotho expression lead to complex phenotypes resembling those observed in dialysis patients. However, the relationship between the level of serum soluble Klotho and overall survival in hemodialysis patients, who exhibit a state of Klotho deficiency, remains to be delineated. Here we prospectively followed a cohort of 63 patients with a mean duration of chronic hemodialysis of 6.7 ± 5.4 years for a median of 65 months. Serum soluble Klotho was detectable in all patients (median 371 pg/mL, interquartile range 309-449). Patients with serum soluble Klotho levels below the lower quartile (<309 pg/mL) had significantly higher cardiovascular and all-cause mortality rates. Furthermore, the higher all-cause mortality persisted even after adjustment for confounders (hazard ratio 4.14, confidence interval 1.29-13.48). We conclude that there may be a threshold for the serum soluble Klotho level associated with a higher risk of mortality.

Figures

Figure 1
Figure 1
Kaplan-Meier plots of cardiovascular event-free survival (a), cardiovascular mortality (b), and cumulative survival (c). The patients were categorized into low-KL (

Figure 2

Cardiovascular event-free survival (a), cardiovascular…

Figure 2

Cardiovascular event-free survival (a), cardiovascular mortality (b), and cumulative survival (c) by the…

Figure 2
Cardiovascular event-free survival (a), cardiovascular mortality (b), and cumulative survival (c) by the 25th percentile of serum soluble Klotho. Note that the patients categorized into the low-KL (p = 0.047) and cumulative survival (p = 0.005) rates.

Figure 3

Significance of the serum FGF23…

Figure 3

Significance of the serum FGF23 levels with respect to cardiovascular event-free survival (a),…

Figure 3
Significance of the serum FGF23 levels with respect to cardiovascular event-free survival (a), cardiovascular mortality (b), and cumulative survival (c). The patients were categorized into low-FGF23 (
Similar articles
Cited by
References
    1. Hu M. C., Shiizaki K., Kuro-O M., Moe O. W. Fibroblast growth factor 23 and Klotho: physiology and pathophysiology of an endocrine network of mineral metabolism. Annual Review of Physiology. 2013;75:503–533. doi: 10.1146/annurev-physiol-030212-183727. - DOI - PMC - PubMed
    1. Kuro-o M., Matsumura Y., Aizawa H., et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature. 1997;390(6655):45–51. doi: 10.1038/36285. - DOI - PubMed
    1. Imura A., Iwano A., Tohyama O., et al. Secreted Klotho protein in sera and CSF: implication for post-translational cleavage in release of Klotho protein from cell membrane. FEBS Letters. 2004;565(1–3):143–147. doi: 10.1016/j.febslet.2004.03.090. - DOI - PubMed
    1. Hu M. C., Shi M., Zhang J., et al. Klotho deficiency causes vascular calcification in chronic kidney disease. Journal of the American Society of Nephrology. 2011;22(1):124–136. doi: 10.1681/asn.2009121311. - DOI - PMC - PubMed
    1. Akimoto T., Yoshizawa H., Watanabe Y., et al. Characteristics of urinary and serum soluble Klotho protein in patients with different degrees of chronic kidney disease. BMC Nephrology. 2012;13, article 155 doi: 10.1186/1471-2369-13-155. - DOI - PMC - PubMed
Show all 53 references
LinkOut - more resources
[x]
Cite
Copy Download .nbib
Format: AMA APA MLA NLM
Figure 2
Figure 2
Cardiovascular event-free survival (a), cardiovascular mortality (b), and cumulative survival (c) by the 25th percentile of serum soluble Klotho. Note that the patients categorized into the low-KL (p = 0.047) and cumulative survival (p = 0.005) rates.
Figure 3
Figure 3
Significance of the serum FGF23 levels with respect to cardiovascular event-free survival (a), cardiovascular mortality (b), and cumulative survival (c). The patients were categorized into low-FGF23 (

References

    1. Hu M. C., Shiizaki K., Kuro-O M., Moe O. W. Fibroblast growth factor 23 and Klotho: physiology and pathophysiology of an endocrine network of mineral metabolism. Annual Review of Physiology. 2013;75:503–533. doi: 10.1146/annurev-physiol-030212-183727.
    1. Kuro-o M., Matsumura Y., Aizawa H., et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature. 1997;390(6655):45–51. doi: 10.1038/36285.
    1. Imura A., Iwano A., Tohyama O., et al. Secreted Klotho protein in sera and CSF: implication for post-translational cleavage in release of Klotho protein from cell membrane. FEBS Letters. 2004;565(1–3):143–147. doi: 10.1016/j.febslet.2004.03.090.
    1. Hu M. C., Shi M., Zhang J., et al. Klotho deficiency causes vascular calcification in chronic kidney disease. Journal of the American Society of Nephrology. 2011;22(1):124–136. doi: 10.1681/asn.2009121311.
    1. Akimoto T., Yoshizawa H., Watanabe Y., et al. Characteristics of urinary and serum soluble Klotho protein in patients with different degrees of chronic kidney disease. BMC Nephrology. 2012;13, article 155 doi: 10.1186/1471-2369-13-155.
    1. Akimoto T., Shiizaki K., Sugase T., et al. The relationship between the soluble Klotho protein and the residual renal function among peritoneal dialysis patients. Clinical and Experimental Nephrology. 2012;16(3):442–447. doi: 10.1007/s10157-011-0582-2.
    1. Akimoto T., Kimura T., Watanabe Y., et al. The impact of nephrectomy and renal transplantation on serum levels of soluble Klotho protein. Transplantation Proceedings. 2013;45(1):134–136. doi: 10.1016/j.transproceed.2012.07.150.
    1. Kurosu H., Yamamoto M., Clark J. D., et al. Suppression of aging in mice by the hormone Klotho. Science. 2005;309(5742):1829–1833. doi: 10.1126/science.1112766.
    1. Arking D. E., Becker D. M., Yanek L. R., et al. KLOTHO allele status and the risk of early-onset occult coronary artery disease. The American Journal of Human Genetics. 2003;72(5):1154–1161. doi: 10.1086/375035.
    1. Arking D. E., Atzmon G., Arking A., Barzilai N., Dietz H. C. Association between a functional variant of the KLOTHO gene and high-density lipoprotein cholesterol, blood pressure, stroke, and longevity. Circulation Research. 2005;96(4):412–418. doi: 10.1161/01.res.0000157171.04054.30.
    1. Yamada Y., Ando F., Niino N., Shimokata H. Association of polymorphisms of the androgen receptor and klotho genes with bone mineral density in Japanese women. Journal of Molecular Medicine. 2005;83(1):50–57. doi: 10.1007/s00109-004-0578-4.
    1. Friedman D. J., Afkarian M., Tamez H., et al. Klotho variants and chronic hemodialysis mortality. Journal of Bone and Mineral Research. 2009;24(11):1847–1855. doi: 10.1359/jbmr.090516.
    1. Ko G. J., Lee Y. M., Lee E. A., et al. The association of Klotho gene polymorphism with the mortality of patients on maintenance dialysis. Clinical Nephrology. 2013;80(4):263–269. doi: 10.5414/cn107800.
    1. Semba R. D., Cappola A. R., Sun K., et al. Plasma klotho and cardiovascular disease in adults. Journal of the American Geriatrics Society. 2011;59(9):1596–1601. doi: 10.1111/j.1532-5415.2011.03558.x.
    1. Semba R. D., Cappola A. R., Sun K., et al. Plasma klotho and mortality risk in older community-dwelling adults. Journals of Gerontology—Series A: Biological Sciences and Medical Sciences. 2011;66(7):794–800. doi: 10.1093/gerona/glr058.
    1. Nowak A., Friedrich B., Artunc F., et al. Prognostic value and link to atrial fibrillation of soluble klotho and FGF23 in hemodialysis patients. PLoS ONE. 2014;9(7) doi: 10.1371/journal.pone.0100688.e100688
    1. Hu M. C., Shi M., Cho H. J., et al. Klotho and phosphate are modulators of pathologic uremic cardiac remodeling. Journal of the American Society of Nephrology. 2015;26(6):1290–1302. doi: 10.1681/asn.2014050465.
    1. Xie J., Yoon J., An S. W., Kuro O. M., Huang C. L. Soluble klotho protects against uremic cardiomyopathy independently of fibroblast growth factor 23 and phosphate. Journal of the American Society of Nephrology. 2015;26(5):1150–1160. doi: 10.1681/ASN.2014040325.
    1. Masuda T., Murata M., Honma S., et al. Sleep-disordered breathing predicts cardiovascular events and mortality in hemodialysis patients. Nephrology Dialysis Transplantation. 2011;26(7):2289–2295. doi: 10.1093/ndt/gfq756.
    1. Shinzato T., Nakai S., Fujita Y., et al. Determination of Kt/V and protein catabolic rate using pre- and postdialysis blood urea nitrogen concentrations. Nephron. 1994;67(3):280–290. doi: 10.1159/000187980.
    1. Thygesen K., Alpert J. S., Jaffe A. S., et al. Third universal definition of myocardial infarction. Journal of the American College of Cardiology. 2012;60(16):1581–1598.
    1. Mcmurray J. J. V., Adamopoulos S., Anker S. D., et al. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: the Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. European Journal of Heart Failure. 2012;14(8):803–869. doi: 10.1093/eurjhf/hfs105.
    1. Easton J. D., Saver J. L., Albers G. W., et al. Definition and evaluation of transient ischemic attack: a scientific statement for healthcare professionals from the American heart association/American stroke association stroke council; council on cardiovascular surgery and anesthesia; council on cardiovascular radiology and intervention; council on cardiovascular nursing; and the interdisciplinary council on peripheral vascular disease. Stroke. 2009;40(6):2276–2293. doi: 10.1161/strokeaha.108.192218.
    1. Sacco R. L., Kasner S. E., Broderick J. P., et al. An updated definition of stroke for the 21st century: a statement for healthcare professionals from the American heart association/American stroke association. Stroke. 2013;44(7):2064–2089. doi: 10.1161/str.0b013e318296aeca.
    1. Kitagawa M., Sugiyama H., Morinaga H., et al. A decreased level of serum soluble Klotho is an independent biomarker associated with arterial stiffness in patients with chronic kidney disease. PLoS ONE. 2013;8(2) doi: 10.1371/journal.pone.0056695.e56695
    1. Kim H. R., Nam B. Y., Kim D. W., et al. Circulating alpha-klotho levels in CKD and relationship to progression. American Journal of Kidney Diseases. 2013;61(6):899–909. doi: 10.1053/j.ajkd.2013.01.024.
    1. Komaba H., Koizumi M., Tanaka H., et al. Effects of cinacalcet treatment on serum soluble Klotho levels in haemodialysis patients with secondary hyperparathyroidism. Nephrology, Dialysis, Transplantation. 2012;27(5):1967–1969. doi: 10.1093/ndt/gfr645.
    1. Fliser D., Seiler S., Heine G. H., Ketteler M. Measurement of serum soluble Klotho levels in CKD 5D patients: useful tool or dispensable biomarker? Nephrology, Dialysis, Transplantation. 2012;27(5):1702–1703. doi: 10.1093/ndt/gfs076.
    1. Seiler S., Wen M., Roth H. J., et al. Plasma Klotho is not related to kidney function and does not predict adverse outcome in patients with chronic kidney disease. Kidney International. 2013;83(1):121–128. doi: 10.1038/ki.2012.288.
    1. Seiler S., Rogacev K. S., Roth H. J., et al. Associations of FGF-23 and sKlotho with cardiovascular outcomes among patients with CKD stages 2–4. Clinical Journal of the American Society of Nephrology. 2014;9(6):1049–1058. doi: 10.2215/cjn.07870713.
    1. Buiten M. S., de Bie M. K., Bouma-de Krijger A., et al. Soluble Klotho is not independently associated with cardiovascular disease in a population of dialysis patients. BMC Nephrology. 2014;15, article 197 doi: 10.1186/1471-2369-15-197.
    1. Hu M. C., Shi M., Zhang J., et al. Renal production, uptake, and handling of circulating αKlotho. Journal of the American Society of Nephrology. 2015 doi: 10.1681/asn.2014101030.
    1. Lindberg K., Amin R., Moe O. W., et al. The kidney is the principal organ mediating klotho effects. Journal of the American Society of Nephrology. 2014;25(10):2169–2175. doi: 10.1681/asn.2013111209.
    1. Lim K., Lu T.-S., Molostvov G., et al. Vascular klotho deficiency potentiates the development of human artery calcification and mediates resistance to fibroblast growth factor 23. Circulation. 2012;125(18):2243–2255. doi: 10.1161/circulationaha.111.053405.
    1. Rotondi S., Pasquali M., Tartaglione L., et al. Soluble α-Klotho serum levels in chronic kidney disease. International Journal of Endocrinology. 2015;2015:8. doi: 10.1155/2015/872193.872193
    1. Komaba H., Goto S., Fujii H., et al. Depressed expression of Klotho and FGF receptor 1 in hyperplastic parathyroid glands from uremic patients. Kidney International. 2010;77(3):232–238. doi: 10.1038/ki.2009.414.
    1. Koh N., Fujimori T., Nishiguchi S., et al. Severely reduced production of klotho in human chronic renal failure kidney. Biochemical and Biophysical Research Communications. 2001;280(4):1015–1020. doi: 10.1006/bbrc.2000.4226.
    1. Yokoyama K., Imura A., Ohkido I., et al. Serum soluble α-klotho in hemodialysis patients. Clinical Nephrology. 2012;77(5):347–351. doi: 10.5414/cn107204.
    1. Shimamura Y., Hamada K., Inoue K., et al. Serum levels of soluble secreted a-Klotho are decreased in the early stages of chronic kidney disease, making it a probable novel biomarker for early diagnosis. Clinical and Experimental Nephrology. 2012;16(5):722–729. doi: 10.1007/s10157-012-0621-7.
    1. Takahashi H., Komaba H., Takahashi Y., et al. Impact of parathyroidectomy on serum FGF23 and soluble klotho in hemodialysis patients with severe secondary hyperparathyroidism. Journal of Clinical Endocrinology and Metabolism. 2014;99(4):E652–E658. doi: 10.1210/jc.2013-4050.
    1. Drüeke T. B., Massy Z. A. Circulating Klotho levels: clinical relevance and relationship with tissue Klotho expression. Kidney International. 2013;83(1):13–15. doi: 10.1038/ki.2012.370.
    1. Hu M. C., Kuro-o M., Moe O. W. Secreted klotho and chronic kidney disease. Advances in Experimental Medicine and Biology. 2012;728:126–157.
    1. Yamamoto M., Clark J. D., Pastor J. V., et al. Regulation of oxidative stress by the anti-aging hormone klotho. Journal of Biological Chemistry. 2005;280(45):38029–38034. doi: 10.1074/jbc.m509039200.
    1. Akimoto T., Morishita Y., Ito C., et al. Febuxostat for hyperuricemia in patients with advanced chronic kidney disease. Drug Target Insights. 2014;8:39–43. doi: 10.4137/dti.s16524.
    1. Finkel T., Holbrook N. J. Oxidants, oxidative stress and the biology of ageing. Nature. 2000;408(6809):239–247. doi: 10.1038/35041687.
    1. Saito Y., Yamagishi T., Nakamura T., et al. Klotho protein protects against endothelial dysfunction. Biochemical and Biophysical Research Communications. 1998;248(2):324–329. doi: 10.1006/bbrc.1998.8943.
    1. Saito Y., Nakamura T., Ohyama Y., et al. In vivo klotho gene delivery protects against endothelial dysfunction in multiple risk factor syndrome. Biochemical and Biophysical Research Communications. 2000;276(2):767–772. doi: 10.1006/bbrc.2000.3470.
    1. Goldsmith D. Negative outcome studies in end-stage renal disease. Blood Purification. 2008;26(1):63–66. doi: 10.1159/000110567.
    1. Neovius M., Jacobson S. H., Eriksson J. K., Elinder C.-G., Hylander B. Mortality in chronic kidney disease and renal replacement therapy: a population-based cohort study. BMJ Open. 2014;4(2) doi: 10.1136/bmjopen-2013-004251.e004251
    1. Scialla J. J., Xie H., Rahman M., et al. Fibroblast growth factor-23 and cardiovascular events in CKD. Journal of the American Society of Nephrology. 2014;25(2):349–360. doi: 10.1681/asn.2013050465.
    1. Gutiérrez O. M., Mannstadt M., Isakova T., et al. Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis. The New England Journal of Medicine. 2008;359(6):584–592. doi: 10.1056/nejmoa0706130.
    1. Faul C., Amaral A. P., Oskouei B., et al. FGF23 induces left ventricular hypertrophy. Journal of Clinical Investigation. 2011;121(11):4393–4408. doi: 10.1172/jci46122.
    1. Ix J. H., Katz R., Kestenbaum B. R., et al. Fibroblast growth factor-23 and death, heart failure, and cardiovascular events in community-living individuals: CHS (Cardiovascular Health Study) Journal of the American College of Cardiology. 2012;60(3):200–207. doi: 10.1016/j.jacc.2012.03.040.

Source: PubMed

3
订阅