Lucerastat, an iminosugar with potential as substrate reduction therapy for glycolipid storage disorders: safety, tolerability, and pharmacokinetics in healthy subjects

N Guérard, O Morand, J Dingemanse, N Guérard, O Morand, J Dingemanse

Abstract

Background: Lucerastat, an inhibitor of glucosylceramide synthase, has the potential to restore the balance between synthesis and degradation of glycosphingolipids in glycolipid storage disorders such as Gaucher disease and Fabry disease. The safety, tolerability, and pharmacokinetics of oral lucerastat were evaluated in two separate randomized, double-blind, placebo-controlled, single- and multiple-ascending dose studies (SAD and MAD, respectively) in healthy male subjects.

Methods: In the SAD study, 31 subjects received placebo or a single oral dose of 100, 300, 500, or 1000 mg lucerastat. Eight additional subjects received two doses of 1000 mg lucerastat or placebo separated by 12 h. In the MAD study, 37 subjects received placebo or 200, 500, or 1000 mg b.i.d. lucerastat for 7 consecutive days. Six subjects in the 500 mg cohort received lucerastat in both absence and presence of food.

Results: In the SAD study, 15 adverse events (AEs) were reported in ten subjects. Eighteen AEs were reported in 15 subjects in the MAD study, in which the 500 mg dose cohort was repeated because of elevated alanine aminotransferase (ALT) values in 4 subjects, not observed in other dose cohorts. No severe or serious AE was observed. No clinically relevant abnormalities regarding vital signs and 12-lead electrocardiograms were observed. Lucerastat Cmax values were comparable between studies, with geometric mean Cmax 10.5 (95% CI: 7.5, 14.7) and 11.1 (95% CI: 8.7, 14.2) μg/mL in the SAD and MAD study, respectively, after 1000 mg lucerastat b.i.d. tmax (0.5 - 4 h) and t1/2 (3.6 - 8.1 h) were also within the same range across dose groups in both studies. Using the Gough power model, dose proportionality was confirmed in the SAD study for Cmax and AUC0-∞, and for AUC0-12 in the MAD study. Fed-to-fasted geometric mean ratio for AUC0-12 was 0.93 (90% CI: 0.80, 1.07) and tmax was the same with or without food, indicating no food effect.

Conclusions: Incidence of drug-related AEs did not increase with dose. No serious AEs were reported for any subject. Overall, lucerastat was well tolerated. These results warrant further investigation of substrate reduction therapy with lucerastat in patients with glycolipid storage disorders. SAD study was registered on clinicaltrials.gov under the identifier NCT02944487 on the 24th of October 2016 (retrospectively registered). MAD study was registered on clinicaltrials.gov under the identifier NCT02944474 on the 25th of October 2016 (retrospectively registered).

Trial registration: A Study to Assess the Safety and Tolerability of Lucerastat in Subjects With Fabry Disease. Clinicaltrials.gov: NCT02930655 .

Keywords: Lucerastat; Pharmacokinetics; Safety; Tolerability.

Figures

Fig. 1
Fig. 1
Arithmetic mean plasma concentration–time profiles of lucerastat in healthy subjects after administration of a single oral dose of 100, 300, 500, and 1000 mg lucerastat, or two oral doses of 1000 mg lucerastat separated by 12 h (linear and semilogarithmic scales, 0–48 h). (Per–protocol set)
Fig. 2
Fig. 2
Arithmetic mean plasma concentration–time profiles of lucerastat in healthy subjects on Day 7 after multiple-dose administration of 200, 500, and 1000 mg lucerastat b.i.d. (intakes separated by 12 h, linear and semilogarithmic scales, 0–48 h). (Per–protocol set)

References

    1. Klein AD, Futerman AH. Lysosomal storage disorders: old diseases, present and future challenges. Pediatr Endocrinol Rev. 2013;11(Suppl 1):59–63.
    1. Schulze H, Sandhoff K. Lysosomal lipid storage diseases. Cold Spring Harbor perspectives in biology. 2011;3 (6) doi:10.1101/cshperspect.a004804
    1. Cox TM, Amato D, Hollak CE, Luzy C, Silkey M, Giorgino R, Steiner RD, Miglustat Maintenance Study G Evaluation of miglustat as maintenance therapy after enzyme therapy in adults with stable type 1 Gaucher disease: a prospective, open-label non-inferiority study. Orphanet J Rare Dis. 2012;7:102. doi: 10.1186/1750-1172-7-102.
    1. Elstein D, Hollak C, Aerts JM, van Weely S, Maas M, Cox TM, Lachmann RH, Hrebicek M, Platt FM, Butters TD, Dwek RA, Zimran A. Sustained therapeutic effects of oral miglustat (Zavesca, N-butyldeoxynojirimycin, OGT 918) in type I Gaucher disease. J Inherit Metab Dis. 2004;27(6):757–766. doi: 10.1023/B:BOLI.0000045756.54006.17.
    1. Lachmann RH, te Vruchte D, Lloyd-Evans E, Reinkensmeier G, Sillence DJ, Fernandez-Guillen L, Dwek RA, Butters TD, Cox TM, Platt FM. Treatment with miglustat reverses the lipid-trafficking defect in Niemann-Pick disease type C. Neurobiol Dis. 2004;16(3):654–658. doi: 10.1016/j.nbd.2004.05.002.
    1. Scott LJ. Eliglustat: a review in Gaucher disease type 1. Drugs. 2015;75(14):1669–1678. doi: 10.1007/s40265-015-0468-9.
    1. Butters TD, van den Broek LAGM, Fleet GWJ, Krulle TM, Wormald MR, Dwek RA, Platt FM. Molecular requirements of imino sugars for the selective control of N-linked glycosylation and glycosphingolipid biosynthesis. Tetrahedron Asymmetry. 2000;11(1):113–124. doi: 10.1016/S0957-4166(99)00468-1.
    1. Ridley CM, Thur KE, Shanahan J, Thillaiappan NB, Shen A, Uhl K, Walden CM, Rahim AA, Waddington SN, Platt FM, van der Spoel AC. beta-Glucosidase 2 (GBA2) activity and imino sugar pharmacology. J Biol Chem. 2013;288(36):26052–26066. doi: 10.1074/jbc.M113.463562.
    1. Platt FM, Neises GR, Karlsson GB, Dwek RA, Butters TD. N-butyldeoxygalactonojirimycin inhibits glycolipid biosynthesis but does not affect N-linked oligosaccharide processing. J Biol Chem. 1994;269(43):27108–27114.
    1. Andersson U, Butters TD, Dwek RA, Platt FM. N-butyldeoxygalactonojirimycin: a more selective inhibitor of glycosphingolipid biosynthesis than N-butyldeoxynojirimycin, in vitro and in vivo. Biochem Pharmacol. 2000;59(7):821–829. doi: 10.1016/S0006-2952(99)00384-6.
    1. Mellor HR, Platt FM, Dwek RA, Butters TD. Membrane disruption and cytotoxicity of hydrophobic N-alkylated imino sugars is independent of the inhibition of protein and lipid glycosylation. Biochem J. 2003;374(Pt 2):307–314. doi: 10.1042/bj20030348.
    1. Andersson U, Smith D, Jeyakumar M, Butters TD, Borja MC, Dwek RA, Platt FM. Improved outcome of N-butyldeoxygalactonojirimycin-mediated substrate reduction therapy in a mouse model of Sandhoff disease. Neurobiol Dis. 2004;16(3):506–515. doi: 10.1016/j.nbd.2004.04.012.
    1. Baek RC, Kasperzyk JL, Platt FM, Seyfried TN. N-butyldeoxygalactonojirimycin reduces brain ganglioside and GM2 content in neonatal Sandhoff disease mice. Neurochem Int. 2008;52(6):1125–1133. doi: 10.1016/j.neuint.2007.12.001.
    1. Administration UFaD . Guidance for industry: food-effect bioavailability and fed bioequivalence studies. 2002.
    1. Remenova T, Morand O, Amato D, Chadha-Boreham H, Tsurutani S, Marquardt T. A double-blind, randomized, placebo-controlled trial studying the effects of Saccharomyces boulardii on the gastrointestinal tolerability, safety, and pharmacokinetics of miglustat. Orphanet J Rare Dis. 2015;10:81. doi: 10.1186/s13023-015-0297-7.
    1. Gough K, Hutchison M, Keene O, Byrom B, Ellis S, Lacey L, McKellar J. Assessment of dose proportionality: report from the statisticians in the pharmaceutical industry/pharmacokinetics UK joint working party. Drug Inf J. 1995;29(3):1039–1048.
    1. Smith BP, Vandenhende FR, DeSante KA, Farid NA, Welch PA, Callaghan JT, Forgue ST. Confidence interval criteria for assessment of dose proportionality. Pharm Res. 2000;17(10):1278–1283. doi: 10.1023/A:1026451721686.
    1. Giannini EG, Testa R, Savarino V. Liver enzyme alteration: a guide for clinicians. CMAJ. 2005;172(3):367–379. doi: 10.1503/cmaj.1040752.
    1. Rosenzweig P, Miget N, Brohier S. Transaminase elevation on placebo during phase I trials: prevalence and significance. Br J Clin Pharmacol. 1999;48(1):19–23. doi: 10.1046/j.1365-2125.1999.00952.x.
    1. Treiber A, Morand O, Clozel M. The pharmacokinetics and tissue distribution of the glucosylceramide synthase inhibitor miglustat in the rat. Xenobiotica. 2007;37(3):298–314. doi: 10.1080/00498250601094543.
    1. Guérard N, Oder D, Nordbeck P, Zwingelstein C, Morand O, Welford R, Dingemanse J, Wanner C. Lucerastat, an iminosugar for substrate reduction therapy: safety, tolerability, pharmacodynamics, and pharmacokinetics in adult subjects with Fabry disease. WORLDSymposium, Abstract number 17-A-247. 2017.

Source: PubMed

3
订阅