Application of continuous positive airway pressure in the delivery room: a multicenter randomized clinical trial

W A Gonçalves-Ferri, F E Martinez, J P S Caldas, S T M Marba, S Fekete, L Rugolo, C Tanuri, C Leone, G A Sancho, M F B Almeida, R Guinsburg, W A Gonçalves-Ferri, F E Martinez, J P S Caldas, S T M Marba, S Fekete, L Rugolo, C Tanuri, C Leone, G A Sancho, M F B Almeida, R Guinsburg

Abstract

This study evaluated whether the use of continuous positive airway pressure (CPAP) in the delivery room alters the need for mechanical ventilation and surfactant during the first 5 days of life and modifies the incidence of respiratory morbidity and mortality during the hospital stay. The study was a multicenter randomized clinical trial conducted in five public university hospitals in Brazil, from June 2008 to December 2009. Participants were 197 infants with birth weight of 1000-1500 g and without major birth defects. They were treated according to the guidelines of the American Academy of Pediatrics (APP). Infants not intubated or extubated less than 15 min after birth were randomized for two treatments, routine or CPAP, and were followed until hospital discharge. The routine (n=99) and CPAP (n=98) infants studied presented no statistically significant differences regarding birth characteristics, complications during the prenatal period, the need for mechanical ventilation during the first 5 days of life (19.2 vs 23.4%, P=0.50), use of surfactant (18.2 vs 17.3% P=0.92), or respiratory morbidity and mortality until discharge. The CPAP group required a greater number of doses of surfactant (1.5 vs 1.0, P=0.02). When CPAP was applied to the routine group, it was installed within a median time of 30 min. We found that CPAP applied less than 15 min after birth was not able to reduce the need for ventilator support and was associated with a higher number of doses of surfactant when compared to CPAP applied as clinically indicated within a median time of 30 min.

References

    1. Brazil.
    1. Wallace MJ, Probyn ME, Zahra VA, Crossley K, Cole TJ, Davis PG, et al. Early biomarkers and potential mediators of ventilation-induced lung injury in very preterm lambs. Respir Res. 2009;10:19–19. doi: 10.1186/1465-9921-10-19.
    1. Wiswell TE. Resuscitation in the delivery room: lung protection from the first breath. Respir Care. 2011;56:1360–1367. doi: 10.4187/respcare.01433.
    1. Jobe AH, Kramer BW, Moss TJ, Newnham JP, Ikegami M. Decreased indicators of lung injury with continuous positive expiratory pressure in preterm lambs. Pediatr Res. 2002;52:387–392. doi: 10.1203/00006450-200209000-00014.
    1. Wung JT. Respiratory management for low-birth-weight infants. Crit Care Med. 1993;21:S364–S365. doi: 10.1097/00003246-199309001-00040.
    1. Rojas-Reyes MX, Morley CJ, Soll R. Prophylactic versus selective use of surfactant in preventing morbidity and mortality in preterm infants. Cochrane Database Syst Rev. 2012;3:
    1. Finer NN, Carlo WA, Duara S, Fanaroff AA, Donovan EF, Wright LL, et al. Delivery room continuous positive airway pressure/positive end-expiratory pressure in extremely low birth weight infants: a feasibility trial. Pediatrics. 2004;114:651–657. doi: 10.1542/peds.2004-0394.
    1. Sandri F, Ancora G, Lanzoni A, Tagliabue P, Colnaghi M, Ventura ML, et al. Prophylactic nasal continuous positive airways pressure in newborns of 28-31 weeks gestation: multicentre randomised controlled clinical trial. Arch Dis Child Fetal Neonatal Ed. 2004;89:F394–F398. doi: 10.1136/adc.2003.037010.
    1. Sandri F, Plavka R, Ancora G, Simeoni U, Stranak Z, Martinelli S, et al. Prophylactic or early selective surfactant combined with nCPAP in very preterm infants. Pediatrics. 2010;125:e1402–e1409. doi: 10.1542/peds.2009-2131.
    1. Finer NN, Carlo WA, Walsh MC, Rich W, Gantz MG, Laptook AR, et al. Early CPAP versus surfactant in extremely preterm infants. N Engl J Med. 2010;362:1970–1979. doi: 10.1056/NEJMoa0911783.
    1. Aly H, Milner JD, Patel K, El-Mohandes AA. Does the experience with the use of nasal continuous positive airway pressure improve over time in extremely low birth weight infants? Pediatrics. 2004;114:697–702. doi: 10.1542/peds.2003-0572-L.
    1. Kirchner L, Weninger M, Unterasinger L, Birnbacher R, Hayde M, Krepler R, et al. Is the use of early nasal CPAP associated with lower rates of chronic lung disease and retinopathy of prematurity? Nine years of experience with the Vermont Oxford Neonatal Network. J Perinat Med. 2005;33:60–66. doi: 10.1515/JPM.2005.010.
    1. 2005 American Heart Association (AHA) guidelines for cardiopulmonary resuscitation (CPR) and emergency cardiovascular care (ECC) of pediatric and neonatal patients: neonatal resuscitation guidelines. Pediatrics. 2006;117:e1029–e1038. doi: 10.1542/peds.2006-0349.
    1. Alexander GR, Himes JH, Kaufman RB, Mor J, Kogan M. A United States national reference for fetal growth. Obstet Gynecol. 1996;87:163–168. doi: 10.1016/0029-7844(95)00386-X.
    1. Richardson DK, Corcoran JD, Escobar GJ, Lee SK. SNAP-II and SNAPPE-II: Simplified newborn illness severity and mortality risk scores. J Pediatr. 2001;138:92–100. doi: 10.1067/mpd.2001.109608.
    1. Avery ME, Tooley WH, Keller JB, Hurd SS, Bryan MH, Cotton RB, et al. Is chronic lung disease in low birth weight infants preventable? A survey of eight centers. Pediatrics. 1987;79:26–30.
    1. Chaim S OS, Kimura A. Pregnancy-induced hypertension and the neonatal outcome. Acta Paul Enferm. 2008;21:6–6. doi: 10.1590/S0103-21002008000100008.
    1. Almeida MF, Guinsburg R, Martinez FE, Procianoy RS, Leone CR, Marba ST, et al. Perinatal factors associated with early deaths of preterm infants born in Brazilian Network on Neonatal Research centers. J Pediatr. 2008;84:300–307.
    1. Crowley P, Chalmers I, Keirse MJ. The effects of corticosteroid administration before preterm delivery: an overview of the evidence from controlled trials. Br J Obstet Gynaecol. 1990;97:11–25. doi: 10.1111/j.1471-0528.1990.tb01711.x.
    1. Koti J, Murki S, Gaddam P, Reddy A, Reddy MD. Bubble CPAP for respiratory distress syndrome in preterm infants. Indian Pediatr. 2010;47:139–143. doi: 10.1007/s13312-010-0021-6.
    1. Boo NY, Zuraidah AL, Lim NL, Zulfiqar MA. Predictors of failure of nasal continuous positive airway pressure in treatment of preterm infants with respiratory distress syndrome. J Trop Pediatr. 2000;46:172–175. doi: 10.1093/tropej/46.3.172.
    1. Yost CC, Soll RF. Early versus delayed selective surfactant treatment for neonatal respiratory distress syndrome. Cochrane Database Syst Rev. 2000.
    1. Perlman JM, Wyllie J, Kattwinkel J, Atkins DL, Chameides L, Goldsmith JP, et al. Part 11: Neonatal resuscitation: 2010 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations. Circulation. 2010;122:S516–S538. doi: 10.1161/CIRCULATIONAHA.110.971127.

Source: PubMed

3
订阅