Ulcerative colitis and irritable bowel patients exhibit distinct abnormalities of the gut microbiota

Samah O Noor, Karyn Ridgway, Louise Scovell, E Katherine Kemsley, Elizabeth K Lund, Crawford Jamieson, Ian T Johnson, Arjan Narbad, Samah O Noor, Karyn Ridgway, Louise Scovell, E Katherine Kemsley, Elizabeth K Lund, Crawford Jamieson, Ian T Johnson, Arjan Narbad

Abstract

Background: Previous studies suggest a link between gut microbiota and the development of ulcerative colitis (UC) and irritable bowel syndrome (IBS). Our aim was to investigate any quantitative differences in faecal bacterial compositions in UC and IBS patients compared to healthy controls, and to identify individual bacterial species that contribute to these differences.

Methods: Faecal microbiota of 13 UC patients, 11 IBS patients and 22 healthy volunteers were analysed by PCR-Denaturing Gradient Gel Electrophoresis (DGGE) using universal and Bacteroides specific primers. The data obtained were normalized using in-house developed statistical method and interrogated by multivariate approaches. The differentiated bands were excised and identified by sequencing the V3 region of the 16S rRNA genes.

Results: Band profiles revealed that number of predominant faecal bacteria were significantly different between UC, IBS and control group (p < 10-4). By assessing the mean band numbers in UC (37 ± 5) and IBS (39 ± 6), compared to the controls (45 ± 3), a significant decrease in bacterial species is suggested (p = 0.01). There were no significant differences between IBS and UC. Biodiversity of the bacterial species was significantly lower in UC (μ = 2.94, σ = 0.29) and IBS patients (μ = 2.90, σ = 0.38) than controls (μ = 3.25, σ = 0.16; p = 0.01). Moreover, similarity indices revealed greater biological variability of predominant bacteria in UC and IBS compared to the controls (median Dice coefficients 76.1% (IQR 70.9 - 83.1), 73.8% (IQR 67.0 - 77.5) and 82.9% (IQR 79.1 - 86.7) respectively). DNA sequencing of discriminating bands suggest that the presence of Bacteroides vulgatus, B. ovatus, B. uniformis, and Parabacteroides sp. in healthy volunteers distinguishes them from IBS and UC patients. DGGE profiles of Bacteroides species revealed a decrease of Bacteroides community in UC relative to IBS and controls.

Conclusion: Molecular profiling of faecal bacteria revealed abnormalities of intestinal microbiota in UC and IBS patients, while different patterns of Bacteroides species loss in particular, were associated with UC and IBS.

Figures

Figure 1
Figure 1
DGGE profiles and band numbers. (a) DGGE profiles of faecal samples obtained from IBS, UC and control subjects showing the number of bands corresponding to amplicons of the V3 region of 16S rRNA of faecal bacteria. (b) Box plots presenting the median and range of band counts of all faecal samples taken from UC, IBS, and controls. (Boxes have lines at the lower quartile, median, and upper quartile values; whiskers show extent of the rest of the data. Notches display the variability of the median between samples; notches that do not overlap have different medians at the 5% significance level).
Figure 2
Figure 2
Synthetic Standards (SS) alignment. SS lanes from a single typical gel, (a) before alignment and (b) after alignment, showing relative stretching and shrinking of piecewise regions in the bespoke alignment routine. Images of all SS lanes from all gels: (c) before, and (d) after the complete alignment procedure.
Figure 3
Figure 3
Statistical analysis of DGGE profiles. (a) Classification success rate (cross-validated) versus number of PLS dimensions used. A local maximum of ~64% was obtained from a 4-factor model. Also shown are compact boxplots summarizing the results of PLS-DA permutation tests (using y-scrambling, 10,000 re-samples). (b) CVA scores plot derived from PLS scores (4 dimensions) of the DGGE data of faecal bacteria showing the relative positions of the UC, IBS, and control groups. (NB: fully-leave-sample-out cross-validated.)
Figure 4
Figure 4
Bands analysis of DGGE profiles. (a) Absolute values of first PLS loading, peak-picked to show bands that are most responsible for distinguishing between the groups. Greyed area indicates range of this loading across the training segments. (b) Greyscale image view of complete aligned dataset, on the same Rf axis.
Figure 5
Figure 5
Top-ranked discriminating bands. Boxplots summarizing the normalized intensities of the four top-ranked discriminating bands, measured separately for each of the three groups.
Figure 6
Figure 6
Bacteroides specific DGGE profiles. (a) Example of DGGE profiles obtained with Bacteroides specific primes in faecal samples obtained from IBS, UC and control subjects. (b) Boxplots showing band numbers in DGGE profiles of faecal samples taken from UC, IBS, and control.

References

    1. Hentges DJ, Marsh WW, Petschow BW, Thal WR, Carter MK. Influence of Infant Diets on the Ecology of the Intestinal-Tract of Human Flora Associated Mice. Journal of Pediatric Gastroenterology and Nutrition. 1992;14(2):146–152. doi: 10.1097/00005176-199202000-00005.
    1. Hotoleanu C, Popp R, Trifa AP, Nedelcu L, Dumitrascu DL. Genetic determination of irritable bowel syndrome. World Journal of Gastroenterology. 2008;14(43):6636–6640. doi: 10.3748/wjg.14.6636.
    1. Mathew CG, Lewis CM. Genetics of inflammatory bowel disease: progress and prospects. Human Molecular Genetics. 2004;13:R161–R168. doi: 10.1093/hmg/ddh079.
    1. Alonso C, Guilarte M, Vicario M, Ramos L, Ramadan Z, Antolin M, Martinez C, Rezzi S, Saperas E, Kochhar S, Santos J, Malagelada JR. Maladaptive intestinal epithelial responses to life stress may predispose healthy women to gut mucosal inflammation. Gastroenterology. 2008;135(1):163–172. doi: 10.1053/j.gastro.2008.03.036.
    1. Loftus EV, Sandborn WJ. Epidemiology of inflammatory bowel disease. Gastroenterology Clinics of North America. 2002;31(1):1–40. doi: 10.1016/S0889-8553(01)00002-4.
    1. Andoh A, Yagi Y, Shioya M, Nishida A, Tsujikawa T, Fujiyama Y. Mucosal cytokine network in inflammatory bowel disease. World Journal of Gastroenterology. 2008;14(33):5154–5161. doi: 10.3748/wjg.14.5154.
    1. Chadwick VS, Chen WX, Shu DR, Paulus B, Bethwaite P, Tie A, Wilson I. Activation of the mucosal immune system in irritable bowel syndrome. Gastroenterology. 2002;122(7):1778–1783. doi: 10.1053/gast.2002.33579.
    1. Taurog JD, Richardson JA, Croft JT, Simmons WA, Zhou M, Fernandezsueiro JL, Balish E, Hammer RE. The Germ-Free State Prevents Development of Gut and Joint Inflammatory Disease in Hla-B27 Transgenic Rats. Journal of Experimental Medicine. 1994;180(6):2359–2364. doi: 10.1084/jem.180.6.2359.
    1. Rath HC, Herfarth HH, Ikeda JS, Grenther WB, Hamm TE, Balish E, Taurog JD, Hammer RE, Wilson KH, Sartor RB. Normal luminal bacteria, especially bacteroides species, mediate chronic colitis, gastritis, and arthritis in HLA-B27/human beta(2) microglobulin transgenic rats. Journal of Clinical Investigation. 1996;98(4):945–953. doi: 10.1172/JCI118878.
    1. Camilleri M. Pathophysiology in irritable bowel syndrome. Drug News & Perspectives. 2001;14(5):268–278.
    1. Gwee KA. Postinfectious irritable bowel syndrome. Current Treatment Options in Gastroenterology. 2001;4(4):287–291. doi: 10.1007/s11938-001-0053-z.
    1. Matto J, Maunuksela L, Kajander K, Palva A, Korpela R, Kassinen A, Saarela M. Composition and temporal stability of gastrointestinal microbiota in irritable bowel syndrome - a longitudinal study in IBS and control subjects. Fems Immunology and Medical Microbiology. 2005;43(2):213–222. doi: 10.1016/j.femsim.2004.08.009.
    1. King TS, Elia M, Hunter JO. Abnormal colonic fermentation in irritable bowel syndrome. Lancet. 1998;352(9135):1187–1189. doi: 10.1016/S0140-6736(98)02146-1.
    1. Attar A, Flourie B, Rambaud JC, Franchisseur C, Ruszniewski P, Bouhnik Y. Antibiotic efficacy in small intestinal bacterial overgrowth-related chronic diarrhea: A crossover, randomized trial. Gastroenterology. 1999;117(4):794–797. doi: 10.1016/S0016-5085(99)70336-7.
    1. Pimentel M, Chow EJ, Bonorris G, Hallegua D, Wallace D, Lin HC. Eradication of small intestinal bacterial overgrowth decreases the gastrointestinal symptoms in fibromyalgia. Gastroenterology. 2000;118(4):A413–A413.
    1. Furrie E, Macfarlane S, Kennedy A, Cummings JH, Walsh SV, O'Neil DA, Macfarlane GT. Synbiotic therapy (Bifidobacterium longum/Synergy 1) initiates resolution of inflammation in patients with active ulcerative colitis: a randomised controlled pilot trial. Gut. 2005;54(2):242–249. doi: 10.1136/gut.2004.044834.
    1. Hoveyda N, Heneghan C, Mahtani KR, Perera R, Roberts N, Glasziou P. A systematic review and meta-analysis: probiotics in the treatment of irritable bowel syndrome. Bmc Gastroenterology. 2009;9(15):1–11.
    1. Frank DN, St Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proceedings of the National Academy of Sciences. 2007;104(34):13780–13785. doi: 10.1073/pnas.0706625104.
    1. Manichanh C, Rigottier-Gois L, Bonnaud E, Gloux K, Pelletier E, Frangeul L, Nalin R, Jarrin C, Chardon P, Marteau P, Roca J, Dore J. Reduced diversity of faecal microbiota in Crohn's disease revealed by a metagenomic approach. Gut. 2006;55(2):205–211. doi: 10.1136/gut.2005.073817.
    1. Sartor RB. Microbial influences in inflammatory bowel diseases. Gastroenterology. 2008;134(2):577–594. doi: 10.1053/j.gastro.2007.11.059.
    1. Sokol H, Pigneur Bnd, Watterlot L, Lakhdari O, Bermúdez-Humarán LG, Gratadoux JJ, Blugeon Sb, Bridonneau C, Furet JP, Corthier Gr, Grangette C, Vasquez N, Pochart P, Trugnan G, Thomas G, Blottière HM, Doré Jl, Marteau P, Seksik P, Langella P. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proceedings of the National Academy of Sciences. 2008;105(43):16731–16736. doi: 10.1073/pnas.0804812105.
    1. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA. Diversity of the human intestinal microbial flora. Science. 2005;308(5728):1635–1638. doi: 10.1126/science.1110591.
    1. Saarela M, Maukonen J, von Wright A, Vilpponen-Salmela T, Patterson AJ, Scott KP, Hamynen H, Matto J. Tetracycline susceptibility of the ingested Lactobacillus acidophilus LaCH-5 and Bifidobacterium animalis subsp lactis Bb-12 strains during antibiotic/probiotic intervention. International Journal of Antimicrobial Agents. 2007;29(3):271–280. doi: 10.1016/j.ijantimicag.2006.09.020.
    1. Schroeder KW, Tremaine WJ, Ilstrup DM. Coated Oral 5-Aminosalicylic Acid Therapy for Mildly to Moderately Active Ulcerative-Colitis - a Randomized Study. New England Journal of Medicine. 1987;317(26):1625–1629. doi: 10.1056/NEJM198712243172603.
    1. Muyzer G, Hottentra¨ger S, Teske A, Wawer C. In: Molecular microbial ecology manual. Akkermans JDvEADL, de Bruijn FJ, editor. Kluwer acadimic publishers: Dordrecht, The Netherlands; 1995. Denaturing gradient gel electrophoresis of PCR-amplified 16S rDNA-a new molecular approach to analyse the genetic diversity of mixed microbial communities.
    1. Tourlomousis P, Kemsley EK, Ridgway KP, Toscano MJ, Humphrey TJ, Narbad A. PCR-Denaturing Gradient Gel Electrophoresis of complex microbial communities: a two step approach to address the effect of gel-to-gel variation and allow valid comparisons across a large data set. Microbial Ecology. 2010;59(4):776–862. doi: 10.1007/s00248-009-9613-x.
    1. Kemsley EK, Le Gall G, Dainty JR, Watson AD, Harvey LJ, Tapp HS, Colquhoun IJ. Multivariate techniques and their application in nutrition: a metabolomics case study. British Journal of Nutrition. 2007;98(1):1–14. doi: 10.1017/S0007114507685365.
    1. Ott SJ, Musfeldt M, Wenderoth DF, Hampe J, Brant O, Folsch UR, Timmins KN, Schreiber S. Reduction in diversity of the colonic mucosa associated bacterial microflora in patients with active inflammatory bowel disease. Gut. 2004;53(5):685–693. doi: 10.1136/gut.2003.025403.
    1. Shannon C, Weaver W. In: The mathematical theory of communication. 5, illustrated. Shannon C, Weaver W, editor. University of Illinois Press; 1963.
    1. Malinen E, Rinttila T, Kajander K, Matto J, Kassinen A, Krogius L, Saarela M, Korpela R, Palva A. Analysis of the fecal microbiota of irritable bowel syndrome patients and healthy controls with real-time PCR. American Journal of Gastroenterology. 2005;100(2):373–382. doi: 10.1111/j.1572-0241.2005.40312.x.
    1. Sokol H, Lay C, Seksik P, Tannock GW. Analysis of bacterial bowel communities of IBD patients: What has it revealed? Inflammatory Bowel Diseases. 2008;14(6):858–867. doi: 10.1002/ibd.20392.
    1. Scanlan PD, Shanahan F, O'Mahony C, Marchesi JR. Culture-independent analyses of temporal variation of the dominant fecal microbiota and targeted bacterial subgroups in Crohn's disease. Journal of Clinical Microbiology. 2006;44(11):3980–3988. doi: 10.1128/JCM.00312-06.
    1. Hume ME, Kubena LF, Edrington TS, Donskey CJ, Moore RW, Ricke SC, Nisbet DJ. Poultry digestive microflora biodiversity as indicated by denaturing gradient gel electrophoresis. Poultry Science. 2003;82(7):1100–1107.
    1. Simpson JM, McCracken VJ, Gaskins HR, Mackie RI. Denaturing gradient gel electrophoresis analysis of 16S ribosomal DNA amplicons to monitor changes in fecal bacterial populations of weaning pigs after introduction of Lactobacillus reuteri strain MM53. Applied and Environmental Microbiology. 2000;66(11):4705–4714. doi: 10.1128/AEM.66.11.4705-4714.2000.
    1. Yu ZT, Morrison M. Comparisons of different hypervariable regions of rrs genes for use in fingerprinting of microbial communities by PCR-denaturing gradient gel electrophoresis. Applied and Environmental Microbiology. 2004;70(8):4800–4806. doi: 10.1128/AEM.70.8.4800-4806.2004.
    1. Nielsen DS, Honholt S, Tano-Debrah K, Jespersen L. Yeast populations associated with Ghanaian cocoa fermentations analysed using denaturing gradient gel electrophoresis (DGGE) Yeast. 2005;22(4):271–28. doi: 10.1002/yea.1207.
    1. Fiocchi C. Inflammatory bowel disease: Etiology and pathogenesis. Gastroenterology. 1998;115(1):182–205. doi: 10.1016/S0016-5085(98)70381-6.
    1. Sokol H, Lepage P, Seksik P, Dore J, Marteau P. Temperature gradient gel electrophoresis of fecal 16S rRNA reveals active Escherichia coli in the microbiota of patients with ulcerative colitis. Journal of Clinical Microbiology. 2006;44(9):3172–3177. doi: 10.1128/JCM.02600-05.
    1. Martinez C, Antolin M, Santos J, Torrejon A, Casellas F, Borruel N, Guarner F, Malagelada JR. Unstable Composition of the Fecal Microbiota in Ulcerative Colitis During Clinical Remission. American Journal of Gastroenterology. 2008;103(3):643–648. doi: 10.1111/j.1572-0241.2007.01592.x.
    1. Zoetendal EG, Ben-Amor K, Akkermans ADL, Abee T, de Vos WM. DNA isolation Protocols affect the detection limit of PCR approaches of bacteria in samples from the human gastrointestinal tract. Systematic and Applied Microbiology. 2001;24(3):405–410. doi: 10.1078/0723-2020-00060.
    1. Balsari A, Ceccarelli A, Dubini F, Fesce E, Poli G. The Fecal Microbial-Population in the Irritable Bowel Syndrome. Microbiologica. 1982;5(3):185–194.
    1. Mylonaki M, Langmead L, Pantes A, Johnson F, Rampton DS. Enteric infection in relapse of inflammatory bowel disease: importance of microbiological examination of stool. European Journal of Gastroenterology & Hepatology. 2004;16(8):775–778.
    1. Spiller R, Garsed K. Postinfectious Irritable Bowel Syndrome. Gastroenterology. 2009;136(6):1979–1988. doi: 10.1053/j.gastro.2009.02.074.
    1. Salyers AA. Bacteroides of the Human Lower Intestinal-Tract. Annual Review of Microbiology. 1984;38:293–313. doi: 10.1146/annurev.mi.38.100184.001453.
    1. Kishi D, Takahashi I, Kai Y, Tamagawa H, Iijima H, Obunai S, Nezu R, Ito T, Matsuda H, Kiyono H. Alteration of V beta usage and cytokine production of CD4(+) TCR beta beta homodimer T cells by elimination of Bacteroides vulgatus prevents colitis in TCR alpha-chain-deficient mice. Journal of Immunology. 2000;165(10):5891–5899.
    1. Rath HC, Wilson KH, Sartor RB. Differential induction of colitis and gastritis in HLA-B27 transgenic rats selectively colonized with Bacteroides vulgatus or Escherichia coli. Infection and Immunity. 1999;67(6):2969–2974.
    1. Neut C, Bulois P, Desreumaux P, Membre JM, Lederman E, Gambiez L, Cortot A, Quandalle P, van Kruiningen H, Colombel JF. Changes in the bacterial flora of the neoterminal ileum after ileocolonic resection for Crohn's disease. American Journal of Gastroenterology. 2002;97(4):939–946. doi: 10.1111/j.1572-0241.2002.05613.x.
    1. Waidmann M, Bechtold O, Frick JS, Lehr HA, Schubert S, Dobrindt U, Loffler J, Bohn E, Autenrieth IB. Bacteroides vulgatus protects against Escherichia coli-induced colitis in gnotobiotic interleukin-2-deficient mice. Gastroenterology. 2003;125(1):162–177. doi: 10.1016/S0016-5085(03)00672-3.
    1. Sydora BC, Tavernini MM, Doyle JSG, Fedorak RN. Association with selected bacteria does not cause enterocolitis in IL-10 gene-deficient mice despite a systemic immune response. Digestive Diseases and Sciences. 2005;50(5):905–913. doi: 10.1007/s10620-005-2663-0.
    1. Conte MP, Schippa S, Zamboni I, Penta M, Chiarini F, Seganti L, Osborn J, Falconieri P, Borrelli O, Cucchiara S. Gut-associated bacterial microbiota in paediatric patients with inflammatory bowel disease. Gut. 2006;55(12):1760–1767. doi: 10.1136/gut.2005.078824.
    1. Takaishi H, Matsuki T, Nakazawa A, Takada T, Kado S, Asahara T, Kamada N, Sakuraba A, Yajima T, Higuchi H, Nagamu I, Ogata H, Iwao Y, Nomoto K, Tanaka R, Hibi T. Imbalance in intestinal microflora constitution could be involved in the pathogenesis of inflammatory bowel disease. International Journal of Medical Microbiology. 2008;298(5-6):463–472. doi: 10.1016/j.ijmm.2007.07.016.
    1. Hudcovic T, Kozakova H, Kolinska J, Stepankova R, Hrncir T, Tlaskalova-Hogenova H. Monocolonization with Bacteroides ovatus Protects Immunodeficient SCID Mice from Mortality in Chronic Intestinal Inflammation Caused by Long-Lasting Dextran Sodium Sulfate Treatment. Physiological Research. 2009;58(1):101–110.

Source: PubMed

3
订阅