Critical closing pressure of the pharyngeal airway during routine drug-induced sleep endoscopy: feasibility and protocol

Elahe Kazemeini, Eli Van de Perck, Marijke Dieltjens, Marc Willemen, Johan Verbraecken, Scott A Sands, Olivier M Vanderveken, Sara Op de Beeck, Elahe Kazemeini, Eli Van de Perck, Marijke Dieltjens, Marc Willemen, Johan Verbraecken, Scott A Sands, Olivier M Vanderveken, Sara Op de Beeck

Abstract

In obstructive sleep apnea (OSA), there are various pathophysiological factors affecting the upper airway during sleep. Two prominent factors contributing to OSA are site and pattern of upper airway collapse and degree of pharyngeal collapsibility. In a clinical setting, drug-induced sleep endoscopy (DISE) is used to visualize the structures of the upper airway. Critical closing pressure (Pcrit) is the gold standard measure of pharyngeal collapsibility. This prospective clinical study aimed to investigate the feasibility and protocol of Pcrit measurements during DISE. Thirteen patients with OSA were included. Pcrit was calculated using peak inspiratory airflow and inspiratory ventilation. The proposed protocol was successful in Pcrit measurement during DISE in all subjects [median[Q1;Q3] Pcrit for "peak inspiratory method" (n = 12): -0.84[-2.07;0.69] cmH2O, "ventilation method" (n = 13): -1.32[2.32;0.47] cmH2O], highlighting the feasibility of the approach. There was no significant difference (P = 0.67) between calculated Pcrit with either of the calculation methods, indicating high reliability. Correlation analysis showed Pcrit as an independent parameter of any of the anthropometric or polysomnographic parameters. The ventilation method proved to be more successful in assessment of Pcrit in subjects with epiglottic collapse (e.g., with high negative effort dependence). Subjects with palatal complete concentric collapse during DISE had a wide Pcrit range ([-2.86;2.51]cmH2O), suggesting no close correlation between Pcrit and this DISE pattern (P = 0.38). Incorporation of Pcrit measurements into DISE assessments is feasible and may yield valuable additional information for OSA management. Combining Pcrit and DISE provides information on both the site and degree of upper airway collapse and the degree of pharyngeal collapsibility.NEW & NOTEWORTHY The protocol of this study was successful in concomitant measurement of Pcrit during routine clinical endoscopy. Comparison of two calculation methods for Pcrit showed that the inspiratory ventilation method was more successful in assessment of Pcrit in subjects with epiglottic collapse who have high negative effort dependence. Subjects with palatal complete concentric collapse during DISE had a wide Pcrit range and did not have a greater Pcrit than patients in other site of collapse categories.

Trial registration: ClinicalTrials.gov NCT04232410.

Keywords: DISE; collapsibility; endotyping; obstructive sleep apnea; upper airway.

Conflict of interest statement

J.V. reports grants from SomnoMed, AirLiquide, Vivisol, Mediq Tefa, Medidis, OSG, Bioprojet, Desitin, Philips, and ResMed outside the submitted work. S.A.S. reports consulting fees from Apnimed, Nox Medical, Merck, and Eli Lilly unrelated to the current work, plus unrelated grant support from Apnimed, Prosomnus, and Dynaflex; his outside activities are actively monitored by his institution. O.M.V. reports grants from Philips and Somnomed at Antwerp University Hospital and others from Inspire Medical Systems, Nightbalance, GSK, and Liva Nova at Antwerp University Hospital outside the submitted work. No conflicts of interest, financial or otherwise, are declared by the other authors.

Figures

Graphical abstract
Graphical abstract
Figure 1.
Figure 1.
Schematic model of the pressure-flow relationship. Pin, inflow pressure; Pout, Outflow pressure; Psur, surrounding pressure.
Figure 2.
Figure 2.
Schematic overview of set-up for measurement of critical closing pressure (Pcrit) of the pharyngeal airway during drug-induced sleep endoscopy (DISE).
Figure 3.
Figure 3.
Sample representatives of flow with a pressure drop for five breaths. A: start and endpoints of each 5-breath pressure drop (run) were determined by expert visual analysis. B: sample of an apneic event as a result of a pressure drop. C: breaths 3 to 5 of the pressure drop were used in the analysis. D: maximum inspiratory airflow (arrows) was used in the calculations with peak inspiratory method. E: inspiratory ventilation for flow-limited breaths 3 to 5 was used in calculations with the ventilation method. F: sample breaths with airflow pattern pointing to the presence of high negative effort dependence (NED), reflected by the high peak at the start of inspiration (arrows) followed by a low plateau inspiration. Mask pressure (Pmask), pressure recorded via balloon esophageal catheter (Pesophageal).
Figure 4.
Figure 4.
Sample representatives of pressure-flow linear regression of subject 10 for both calculation methods. A: peak inspiratory method sample: Pcrit was determined as the zero-flow intercept from the linear regression of flow vs. pressure of the isolated segment between Peff and near Pcrit points (Pcrit = 2.36 cmH2O). B: V̇e, minute ventilation converted to l/s, ventilation method sample (Pcrit = 3.01 cmH2O). Pcrit, critical closing pressure; Peff, upper inflection point.
Figure 5.
Figure 5.
Flow chart of subjects for critical closing pressure (Pcrit) measurement and calculation.
Figure 6.
Figure 6.
Critical closing pressure (Pcrit) as calculated with both methods [using peak inspiratory (PcritPeak) and inspiratory ventilation (PcritVent)]. Note that patient 7 gave unrealistic results using the peak inspiratory method and was therefore excluded for further analysis with this method. A color is assigned to each subject.
Figure 7.
Figure 7.
Bland–Altman plot for comparison of PcritPeak and PcritVent methods showing within-pair means on x-axis and between-pair differences on y-axis (bias = −0.10, upper limit of agreement = 1.48, lower limit of agreement = −1.68, confidence interval = 95%). PcritPeak, critical closing pressure using peak inspiratory; PcritVent, critical closing pressure using inspiratory ventilation.
Figure 8.
Figure 8.
Representatives of pressure-flow linear regression of subject 7 for all three calculation methods. A: peak inspiratory method (Pcrit = −7.36 cmH2O). B: V̇e, minute ventilation converted to l/s, ventilation method (Pcrit = −2.72 cmH2O). C: mid inspiratory method (Pcrit = −0.59 cmH2O)
Figure 9.
Figure 9.
Drug-induced sleep endoscopy (DISE) findings and critical closing pressure (Pcrit) values. A: palatal complete concentric collapse (CCCp), palatal complete anteroposterior collapse (CAPp), collapse at the level of oropharynx, tongue base, hypopharynx, and epiglottis. B: CCCp in combination with collapse at the level of oropharynx or tongue base. A color is assigned to each subject.

References

    1. Jennum P, Riha RL. Epidemiology of sleep apnoea/hypopnoea syndrome and sleep-disordered breathing. Eur Respir J 33: 907–914, 2009. doi:10.1183/09031936.00180108.
    1. Eckert DJ, Malhotra A. Pathophysiology of adult obstructive sleep apnea. Proc Am Thorac Soc 5: 144–153, 2008. doi:10.1513/pats.200707-114MG.
    1. Epstein LJ, Kristo D, Strollo PJ Jr, Friedman N, Malhotra A, Patil SP, Ramar K, Schwab RJ, Weaver EM, Weinstein MD; Adult Obstructive Sleep Apnea Task Force of the American Academy of Sleep Medicine. Clinical guideline for the evaluation, management and long-term care of obstructive sleep apnea in adults. J Clin Sleep Med 5: 263–276, 2009.
    1. Weaver TE, Grunstein RR. Adherence to continuous positive airway pressure therapy: the challenge to effective treatment. Proc Am Thorac Soc 5: 173–178, 2008. doi:10.1513/pats.200708-119MG.
    1. Alves C, Caminha JM, da Silva AM, Mendonça D. Compliance to continuous positive airway pressure therapy in a group of Portuguese patients with obstructive sleep apnea syndrome. Sleep Breath 16: 555–562, 2012. doi:10.1007/s11325-011-0542-9.
    1. Rotenberg BW, Murariu D, Pang KP. Trends in CPAP adherence over twenty years of data collection: a flattened curve. J Otolaryngol Head Neck Surg 45: 43, 2016. doi:10.1186/s40463-016-0156-0.
    1. Bamagoos AA, Cistulli PA, Sutherland K, Ngiam J, Burke PGR, Bilston LE, Butler JE, Eckert DJ. Dose-dependent effects of mandibular advancement on upper airway collapsibility and muscle function in obstructive sleep apnea. Sleep 42: zsz049, 2019. doi:10.1093/sleep/zsz049.
    1. Op de Beeck S, Dieltjens M, Verbruggen AE, Vroegop AV, Wouters K, Hamans E, Willemen M, Verbraecken J, De Backer WA, Van de Heyning PH, Braem MJ, Vanderveken OM. Phenotypic labelling using drug-induced sleep endoscopy improves patient selection for mandibular advancement device outcome: a prospective study. J Clin Sleep Med 15: 1089–1099, 2019. doi:10.5664/jcsm.7796.
    1. Marques M, Genta PR, Azarbarzin A, Taranto-Montemurro L, Messineo L, Hess LB, Demko G, White DP, Sands SA, Wellman A. Structure and severity of pharyngeal obstruction determine oral appliance efficacy in sleep apnoea. J Physiol 597: 5399–5410, 2019. doi:10.1113/JP278164.
    1. Bosi M, De Vito A, Kotecha B, Viglietta L, Braghiroli A, Steier J, Pengo M, Sorrenti G, Gobbi R, Vicini C, Poletti V. Phenotyping the pathophysiology of obstructive sleep apnea using polygraphy/polysomnography: a review of the literature. Sleep Breath 22: 579–592, 2018. doi:10.1007/s11325-017-1613-3.
    1. Eckert DJ, White DP, Jordan AS, Malhotra A, Wellman A. Defining phenotypic causes of obstructive sleep apnea. Identification of novel therapeutic targets. Am J Respir Crit Care Med 188: 996–1004, 2013. doi:10.1164/rccm.201303-0448OC.
    1. Borowiecki B, Pollak CP, Weitzman ED, Rakoff S, Imperato J. Fibro-optic study of pharyngeal airway during sleep in patients with hypersomnia obstructive sleep-apnea syndrome. Laryngoscope 88: 1310–1313, 1978. doi:10.1288/00005537-197808000-00012.
    1. De Vito A, Carrasco Llatas M, Ravesloot MJ, Kotecha B, De Vries N, Hamans E, Maurer J, Bosi M, Blumen M, Heiser C, Herzog M, Montevecchi F, Corso RM, Braghiroli A, Gobbi R, Vroegop A, Vonk PE, Hohenhorst W, Piccin O, Sorrenti G, Vanderveken OM, Vicini C. European position paper on drug-induced sleep endoscopy: 2017 Update. Clin Otolaryngol 43: 1541–1552, 2018. doi:10.1111/coa.13213.
    1. Van Den Bossche K, Van De Perck E, Kazemeini E, Willemen M, Van De Heyning PH, Verbraecken J, Op De Beeck S, Vanderveken OM. Natural sleep endoscopy in obstructive sleep apnea: a systematic review. Sleep Med Rev 60: 101534, 2021. doi:10.1016/j.smrv.2021.101534.
    1. Van de Heyning PH, Badr MS, Baskin JZ, Cramer Bornemann MA, De Backer WA, Dotan Y, Hohenhorst W, Knaack L, Lin HS, Maurer JT, Netzer A, Odland RM, Oliven A, Strohl KP, Vanderveken OM, Verbraecken J, Woodson BT. Implanted upper airway stimulation device for obstructive sleep apnea. Laryngoscope 122: 1626–1633, 2012. doi:10.1002/lary.23301.
    1. Vanderveken OM, Maurer JT, Hohenhorst W, Hamans E, Lin HS, Vroegop AV, Anders C, de Vries N, Van de Heyning PH. Evaluation of drug-induced sleep endoscopy as a patient selection tool for implanted upper airway stimulation for obstructive sleep apnea. J Clin Sleep Med 9: 433–438, 2013. doi:10.5664/jcsm.2658.
    1. Vroegop AV, Vanderveken OM, Dieltjens M, Wouters K, Saldien V, Braem MJ, Van de Heyning PH. Sleep endoscopy with simulation bite for prediction of oral appliance treatment outcome. J Sleep Res 22: 348–355, 2013. doi:10.1111/jsr.12008.
    1. Gold AR, Schwartz AR. The pharyngeal critical pressure. The whys and hows of using nasal continuous positive airway pressure diagnostically. Chest 110: 1077–1088, 1996. doi:10.1378/chest.110.4.1077.
    1. Genta PR, Schorr F, Eckert DJ, Gebrim E, Kayamori F, Moriya HT, Malhotra A, Lorenzi-Filho G. Upper airway collapsibility is associated with obesity and hyoid position. Sleep 37: 1673–1678, 2014. doi:10.5665/sleep.4078.
    1. Schwartz AR, Smith PL, Wise RA, Gold AR, Permutt S. Induction of upper airway occlusion in sleeping individuals with subatmospheric nasal pressure. J Appl Physiol (1985) 64: 535–542, 1988. doi:10.1152/jappl.1988.64.2.535.
    1. Boudewyns A, Punjabi N, Van de Heyning PH, De Backer WA, O'Donnell CP, Schneider H, Smith PL, Schwartz AR. Abbreviated method for assessing upper airway function in obstructive sleep apnea. Chest 118: 1031–1041, 2000. doi:10.1378/chest.118.4.1031.
    1. Patil SP, Punjabi NM, Schneider H, O'Donnell CP, Smith PL, Schwartz AR. A simplified method for measuring critical pressures during sleep in the clinical setting. Am J Respir Crit Care Med 170: 86–93, 2004. doi:10.1164/rccm.200309-1239OC.
    1. Patil SP, Schneider H, Marx JJ, Gladmon E, Schwartz AR, Smith PL. Neuromechanical control of upper airway patency during sleep. J Appl Physiol (1985) 102: 547–556, 2007. doi:10.1152/japplphysiol.00282.2006.
    1. Malhotra A, Pillar G, Fogel R, Beauregard J, Edwards J, White DP. Upper-airway collapsibility: measurements and sleep effects. Chest 120: 156–161, 2001. doi:10.1378/chest.120.1.156.
    1. Osman AM, Carberry JC, Burke PGR, Toson B, Grunstein RR, Eckert DJ. Upper airway collapsibility measured using a simple wakefulness test closely relates to the pharyngeal critical closing pressure during sleep in obstructive sleep apnea. Sleep 42: zsz080, 2019. doi:10.1093/sleep/zsz080.
    1. Hirata RP, Schorr F, Kayamori F, Moriya HT, Romano S, Insalaco G, Gebrim EM, de Oliveira LV, Genta PR, Lorenzi-Filho G. Upper airway collapsibility assessed by negative expiratory pressure while awake is associated with upper airway anatomy. J Clin Sleep Med 12: 1339–1346, 2016. doi:10.5664/jcsm.6184.
    1. Azarbarzin A, Sands SA, Taranto-Montemurro L, Oliveira Marques MD, Genta PR, Edwards BA, Butler J, White DP, Wellman A. Estimation of pharyngeal collapsibility during sleep by peak inspiratory airflow. Sleep 40: zsw005, 2017. doi:10.1093/sleep/zsw005.
    1. Genta PR, Eckert DJ, Gregorio MG, Danzi NJ, Moriya HT, Malhotra A, Lorenzi-Filho G. Critical closing pressure during midazolam-induced sleep. J Appl Physiol (1985) 111: 1315–1322, 2011. doi:10.1152/japplphysiol.00508.2011.
    1. Inazawa T, Ayuse T, Kurata S, Okayasu I, Sakamoto E, Oi K, Schneider H, Schwartz AR. Effect of mandibular position on upper airway collapsibility and resistance. J Dent Res 84: 554–558, 2005. doi:10.1177/154405910508400613.
    1. Oliven A, Kaufman E, Kaynan R, Oliven R, Steinfeld U, Tov N, Odeh M, Gaitini L, Schwartz AR, Kimmel E. Mechanical parameters determining pharyngeal collapsibility in patients with sleep apnea. J Appl Physiol (1985) 109: 1037–1044, 2010. doi:10.1152/japplphysiol.00019.2010.
    1. Op de Beeck S, Van de Perck E, Vena D, Kazemeini E, Dieltjens M, Willemen M, Wellman A, Verbraecken J, Sands SA, Vanderveken OM. Flow-identified site of collapse during drug-induced sleep endoscopy: feasibility and preliminary results. Chest 159: 828–832, 2021. doi:10.1016/j.chest.2020.09.079.
    1. Genta PR, Sands SA, Butler JP, Loring SH, Katz ES, Demko BG, Kezirian EJ, White DP, Wellman A. Airflow shape is associated with the pharyngeal structure causing OSA. Chest 152: 537–546, 2017.doi:10.1016/j.chest.2017.06.017.
    1. Azarbarzin A, Marques M, Sands SA, Op de Beeck S, Genta PR, Taranto-Montemurro L, de Melo CM, Messineo L, Vanderveken OM, White DP, Wellman A. Predicting epiglottic collapse in patients with obstructive sleep apnoea. Eur Respir J 50: 1700345, 2017. doi:10.1183/13993003.00345-2017.
    1. Genta PR, Eckert DJ, Gregorio MG, Danzi NJ, Moriya HT, Malhotra A, Lorenzi-Filho G. Critical closing pressure during midazolam-induced sleep. J Appl Physiol (1985) 111: 1315–1322, 2011. doi:10.1152/japplphysiol.00508.2011.
    1. Carberry JC, Jordan AS, White DP, Wellman A, Eckert DJ. Upper airway collapsibility (Pcrit) and pharyngeal dilator muscle activity are sleep stage dependent. Sleep 39: 511–521, 2016. doi:10.5665/sleep.5516.
    1. Schwartz AR, Smith PL, Wise RA, Gold AR, Permutt S. Induction of upper airway occlusion in sleeping individuals with subatmospheric nasal pressure. J Appl Physiol (1985) 64: 535–542, 1988. doi:10.1152/jappl.1988.64.2.535.
    1. Smith PL, Wise RA, Gold AR, Schwartz AR, Permutt S. Upper airway pressure-flow relationships in obstructive sleep apnea. J Appl Physiol (1985) 64: 789–795, 1988. doi:10.1152/jappl.1988.64.2.789.
    1. Gleadhill IC, Schwartz AR, Schubert N, Wise RA, Permutt S, Smith PL. Upper airway collapsibility in snorers and in patients with obstructive hypopnea and apnea. Am Rev Respir Dis 143: 1300–1303, 1991. doi:10.1164/ajrccm/143.6.1300.
    1. Ayuse T, Hoshino Y, Kurata S, Ayuse T, Schneider H, Kirkness JP, Patil SP, Schwartz AR, Oi K. The effect of gender on compensatory neuromuscular response to upper airway obstruction in normal subjects under midazolam general anesthesia. Anesth Analg 109: 1209–1218, 2009. doi:10.1213/ane.0b013e3181b0fc70.
    1. Ayuse T, Inazawa T, Kurata S, Okayasu I, Sakamoto E, Oi K, Schneider H, Schwartz AR. Mouth-opening increases upper-airway collapsibility without changing resistance during midazolam sedation. J Dent Res 83: 718–722, 2004. doi:10.1177/154405910408300912.
    1. Ikeda H, Ayuse T, Oi K. The effects of head and body positioning on upper airway collapsibility in normal subjects who received midazolam sedation. J Clin Anesth 18: 185–193, 2006. doi:10.1016/j.jclinane.2005.08.010.
    1. Litman RS, Hayes JL, Basco MG, Schwartz AR, Bailey PL, Ward DS. Use of dynamic negative airway pressure (DNAP) to assess sedative-induced upper airway obstruction. Anesthesiology 96: 342–345, 2002. doi:10.1097/00000542-200202000-00019.
    1. Ayuse T, Hoshino Y, Inazawa T, Oi K, Schneider H, Schwartz AR. A pilot study of quantitative assessment of mandible advancement using pressure-flow relationship during midazolam sedation. J Oral Rehabil 33: 813–819, 2006. doi:10.1111/j.1365-2842.2006.01627b.x.
    1. Op de Beeck S, Wellman A, Dieltjens M, Strohl KP, Willemen M, Van de Heyning PH, Verbraecken JA, Vanderveken OM, Sands SA; STAR Trial Investigators. Endotypic mechanisms of successful hypoglossal nerve stimulation for obstructive sleep apnea. Am J Respir Crit Care Med 203: 746–755, 2021. doi:10.1164/rccm.202006-2176OC.
    1. Huang Y, White DP, Malhotra A. The impact of anatomic manipulations on pharyngeal collapse: results from a computational model of the normal human upper airway. Chest 128: 1324–1330, 2005. doi:10.1378/chest.128.3.1324.
    1. Isono S, Shimada A, Utsugi M, Konno A, Nishino T. Comparison of static mechanical properties of the passive pharynx between normal children and children with sleep-disordered breathing. Am J Respir Crit Care Med 157: 1204–1212, 1998. doi:10.1164/ajrccm.157.4.9702042.
    1. Smith PL, Schwartz AR, Gauda E, Wise R, Brower R, Permutt S. The modulation of upper airway critical pressures during sleep. Prog Clin Biol Res 345: 253–258, 1990.
    1. Andrade RG, Piccin VS, Nascimento JA, Viana FM, Genta PR, Lorenzi-Filho G. Impact of the type of mask on the effectiveness of and adherence to continuous positive airway pressure treatment for obstructive sleep apnea. J Bras Pneumol 40: 658–668, 2014. doi:10.1590/S1806-37132014000600010.
    1. Sullivan CE, Issa FG, Berthon-Jones M, Eves L. Reversal of obstructive sleep apnoea by continuous positive airway pressure applied through the nares. Lancet 317: 862–865, 1981. doi:10.1016/S0140-6736(81)92140-1.
    1. Borel JC, Gakwaya S, Masse JF, Melo-Silva CA, Sériès F. Impact of CPAP interface and mandibular advancement device on upper airway mechanical properties assessed with phrenic nerve stimulation in sleep apnea patients. Respir Physiol Neurobiol 183: 170–176, 2012. doi:10.1016/j.resp.2012.06.018.
    1. Fleck RJ Jr, Mahmoud M, McConnell K, Shott SR, Gutmark E, Amin RS. An adverse effect of positive airway pressure on the upper airway documented with magnetic resonance imaging. JAMA Otolaryngol Head Neck Surg 139: 636–638, 2013. doi:10.1001/jamaoto.2013.3279.
    1. Schwartz AR, Gold AR, Schubert N, Stryzak A, Wise RA, Permutt S, Smith PL. Effect of weight loss on upper airway collapsibility in obstructive sleep apnea. Am Rev Respir Dis 144: 494–498, 1991. doi:10.1164/ajrccm/144.3_Pt_1.494.
    1. Oliven A, Aspandiarov E, Gankin I, Gaitini L, Tov N. Collapsibility of the relaxed pharynx and risk of sleep apnoea. Eur Res J 32: 1309–1315, 2008. doi:10.1183/09031936.00139407.
    1. Steffen A, Frenzel H, Wollenberg B, König IR. Patient selection for upper airway stimulation: is concentric collapse in sleep endoscopy predictable? Sleep Breath 19: 1373–1376, 2015. doi:10.1007/s11325-015-1277-9.
    1. Wong SJ, Luitje ME, Karelsky S. Patterns of obstruction on DISE in adults with obstructive sleep apnea change with BMI. Laryngoscope 131: 224–229, 2021. doi:10.1002/lary.28777.
    1. Woo HJ, Lim JH, Ahn JC, Lee YJ, Kim DY, Kim HJ, Rhee CS, Won TB. Characteristics of obstructive sleep apnea patients with a low body mass index: emphasis on the obstruction site determined by drug-induced sleep endoscopy. Clin Exp Otorhinolaryngol 13: 415–421, 2020. doi:10.21053/ceo.2019.00794.
    1. Hoshino Y, Ayuse T, Kurata S, Ayuse T, Schneider H, Kirkness JP, Patil SP, Schwartz AR, Oi K. The compensatory responses to upper airway obstruction in normal subjects under propofol anesthesia. Respir Physiol Neurobiol 166: 24–31, 2009. doi:10.1016/j.resp.2009.01.001.
    1. Rabelo FA, Braga A, Küpper DS, De Oliveira JA, Lopes FM, de Lima Mattos PL, Barreto SG, Sander HH, Fernandes RM, Valera FCP. Propofol-induced sleep: polysomnographic evaluation of patients with obstructive sleep apnea and controls. Otolaryngol Head Neck Surg 142: 218–224, 2010. doi:10.1016/j.otohns.2009.11.002.
    1. Heiser C, Fthenakis P, Hapfelmeier A, Berger S, Hofauer B, Hohenhorst W, Kochs EF, Wagner KJ, Edenharter GM. Drug-induced sleep endoscopy with target-controlled infusion using propofol and monitored depth of sedation to determine treatment strategies in obstructive sleep apnea. Sleep Breath 21: 737–744, 2017. doi:10.1007/s11325-017-1491-8.
    1. Dalmau J, Carrasco Llatas M, Amorós LI, López C, Pla A, López Martínez R, López R, Viñoles J. [Video fiber endoscopy during induced sleep]. Acta Otorrinolaringol Esp 53: 502–504, 2002. doi:10.1016/S0001-6519(02)78342-8.
    1. Eastwood PR, Platt PR, Shepherd K, Maddison K, Hillman DR. Collapsibility of the upper airway at different concentrations of propofol anesthesia. Anesthesiology 103: 470–477, 2005. doi:10.1097/00000542-200509000-00007.
    1. Hillman DR, Walsh JH, Maddison KJ, Platt PR, Kirkness JP, Noffsinger WJ, Eastwood PR. Evolution of changes in upper airway collapsibility during slow induction of anesthesia with propofol. Anesthesiology 111: 63–71, 2009. doi:10.1097/ALN.0b013e3181a7ec68.

Source: PubMed

3
订阅