Association of human milk oligosaccharides and nutritional status of young infants among Bangladeshi mother-infant dyads

Sharika Nuzhat, Parag Palit, Mustafa Mahfuz, Md Ridwan Islam, S M Tafsir Hasan, M Munirul Islam, Shafiqul A Sarker, David J Kyle, Robin L Flannery, Anita Vinjamuri, Carlito B Lebrilla, Tahmeed Ahmed, Sharika Nuzhat, Parag Palit, Mustafa Mahfuz, Md Ridwan Islam, S M Tafsir Hasan, M Munirul Islam, Shafiqul A Sarker, David J Kyle, Robin L Flannery, Anita Vinjamuri, Carlito B Lebrilla, Tahmeed Ahmed

Abstract

Human milk oligosaccharides (HMOs) support the development of a healthy gut microbiome and the growth of infants. We aimed to determine the association of different HMOs with severe acute malnutrition (SAM) among Bangladeshi young infants. This study was nested within a single-blind, randomized, pilot clinical trial (NCT0366657). A total of 45 breastmilk samples from mothers of < 6 months old infants who had SAM (n = 26) or were non-malnourished (n = 19) and were analyzed for constituent HMOs. Of the infants with SAM, 14 (53.85%) had secretor mothers, and 11 (57.89%) of the non-malnourished infants had secretor mothers. A one-unit increase in the relative abundance of sialylated HMOs was associated with higher odds of SAM in age and sex adjusted model (aOR = 2.00, 90% CI 1.30, 3.06), in age, sex, and secretor status adjusted model (aOR = 1.96, 90% CI 1.29, 2.98), and also in age and sex adjusted model among non-secretor mothers (aOR = 2.86, 90% CI 1.07, 7.62). In adjusted models, there was no evidence of a statistically significant association between SAM and fucosylated or undecorated HMOs. Our study demonstrates that a higher relative abundance of sialylated HMOs in mothers' breastmilk may have a negative impact on young infants' nutritional status.

Trial registration: ClinicalTrials.gov NCT03666572.

Conflict of interest statement

The authors declare no competing interests.

© 2022. The Author(s).

Figures

Figure 1
Figure 1
Distribution of different HMOs in mothers of different secretor status and having infants with different nutritional status. [6′SL, 6′-Sialyllactose; 3′SL, 3′-Sialyllactose; 3′FL, 3′-Fucosyllactose; 2′FL, 2′-Fucosyllactose; LDFT, lactodifucosyllactose; LNT&LnNT, lacto-N-tetraose& lacto-N-neotetraose; LNFP II, Lacto-N-fucosylpentose-II; LNFP III, Lacto-N-fucosylpentose-III; LNFP I, Lacto-N-fucosylpentose-I; LNDFH I,lacto-N-difucosylhexose-I; LNDFH II, lacto-N-difucosylhexose-II; LNH, lacto-N-hexaose; LNnH, lacto-N-neohexaose; MFLNH I, monofucosyllacto-N-hexaose I; MFLNH III, monofucosyllacto-N-hexaose III; IFLNH III, isomer 3 fucosyl-paralacto-Nhexaose; IFLNH I, isomer 1 fucosyl-paralacto-N-hexaose; P-LNH, para-lacto-N-hexaose; SLNH, Monosialyllacto-N-hexaose; a+S-LNnH II, No literature name + sialyllacto-N-neohexaose II; MFpLNH IV, Monofucosyl-paralacto-N-hexaose; DFLNHb, Difucosyllacto-Nhexaose b; DFLNHa, Difucosyllacto-Nhexaose a; DFS-LNH, Difucosylmonosialyllacto-N-neohexaose; DFS-LNHnH, Difucosylmonosialyllacto-N-neohexaose; TFLNH, Trifucosyllacto-N-hexaose.]

References

    1. Organization, W. H. UNICEF/WHO/The World Bank Group joint child malnutrition estimates: Levels and trends in child malnutrition: Key findings of the 2020 edition. (2020).
    1. Grijalva-Eternod CS, et al. Admission profile and discharge outcomes for infants aged less than 6 months admitted to inpatient therapeutic care in 10 countries. A secondary data analysis. Matern. Child Nutr. 2017;13:e12345. doi: 10.1111/mcn.12345.
    1. Bhutta ZA, et al. Evidence-based interventions for improvement of maternal and child nutrition: What can be done and at what cost? Lancet. 2013;382:452–477. doi: 10.1016/S0140-6736(13)60996-4.
    1. Thurstan R, et al. Filling historical data gaps to foster solutions in marine conservation. Ocean Coast. Manag. 2015;115:31–40. doi: 10.1016/j.ocecoaman.2015.04.019.
    1. Prudhon C, Prinzo ZW, Briend A, Daelmans BM, Mason JB. Proceedings of the WHO, UNICEF, and SCN informal consultation on community-based management of severe malnutrition in children. Food Nutr. Bull. 2006;27:S99–S104. doi: 10.1177/15648265060273S307.
    1. Moore RE, Townsend SD. Temporal development of the infant gut microbiome. Open Biol. 2019;9:190128. doi: 10.1098/rsob.190128.
    1. Koenig JE, et al. Succession of microbial consortia in the developing infant gut microbiome. Proc. Natl. Acad. Sci. 2011;108:4578–4585. doi: 10.1073/pnas.1000081107.
    1. Mishra K, Kumar P, Basu S, Rai K, Aneja S. Risk factors for severe acute malnutrition in children below 5 y of age in India: a case-control study. Indian J. Pediatrics. 2014;81:762–765. doi: 10.1007/s12098-013-1127-3.
    1. Organization, W. H. Guideline: Updates on the management of severe acute malnutrition in infants and children. (World Health Organization, 2013).
    1. Subramanian S, et al. Persistent gut microbiota immaturity in malnourished Bangladeshi children. Nature. 2014;510:417–421. doi: 10.1038/nature13421.
    1. Bode L. Human milk oligosaccharides: Prebiotics and beyond. Nutr. Rev. 2009;67:S183–S191. doi: 10.1111/j.1753-4887.2009.00239.x.
    1. Urashima T, et al. The predominance of type I oligosaccharides is a feature specific to human breast milk. Adv. Nutr. 2012;3:473S–482S. doi: 10.3945/an.111.001412.
    1. Biddulph C, et al. Human milk oligosaccharide profiles and associations with maternal nutritional factors: A scoping review. Nutrients. 2021;13:965. doi: 10.3390/nu13030965.
    1. Stahl B, et al. Oligosaccharides from human milk as revealed by matrix-assisted laser desorption/ionization mass spectrometry. Anal. Biochem. 1994;223:218–226. doi: 10.1006/abio.1994.1577.
    1. Coppa GV, et al. Oligosaccharides in 4 different milk groups, Bifidobacteria, and Ruminococcus obeum. J. Pediatr. Gastroenterol. Nutr. 2011;53:80–87. doi: 10.1097/MPG.0b013e3182073103.
    1. Thongaram T, Hoeflinger JL, Chow J, Miller MJ. Human milk oligosaccharide consumption by probiotic and human-associated bifidobacteria and lactobacilli. J. Dairy Sci. 2017;100:7825–7833. doi: 10.3168/jds.2017-12753.
    1. Wang B. Sialic acid is an essential nutrient for brain development and cognition. Annu. Rev. Nutr. 2009;29:177–222. doi: 10.1146/annurev.nutr.28.061807.155515.
    1. Newburg DS, Ruiz-Palacios GM, Morrow AL. Human milk glycans protect infants against enteric pathogens. Annu. Rev. Nutr. 2005;25:37–58. doi: 10.1146/annurev.nutr.25.050304.092553.
    1. Chaturvedi P, et al. Fucosylated human milk oligosaccharides vary between individuals and over the course of lactation. Glycobiology. 2001;11:365–372. doi: 10.1093/glycob/11.5.365.
    1. Morrow AL, et al. Human milk oligosaccharides are associated with protection against diarrhea in breast-fed infants. J. Pediatr. 2004;145:297–303. doi: 10.1016/j.jpeds.2004.04.054.
    1. Thurl S, Henker J, Siegel M, Tovar K, Sawatzki G. Detection of four human milk groups with respect to Lewis blood group dependent oligosaccharides. Glycoconj. J. 1997;14:795–799. doi: 10.1023/A:1018529703106.
    1. Wacklin P, et al. Secretor genotype (FUT2 gene) is strongly associated with the composition of Bifidobacteria in the human intestine. PLoS ONE. 2011;6:e20113. doi: 10.1371/journal.pone.0020113.
    1. Wacklin P, et al. Faecal microbiota composition in adults is associated with the FUT2 gene determining the secretor status. PLoS ONE. 2014;9:e94863. doi: 10.1371/journal.pone.0094863.
    1. Kumar H, et al. Secretor status is strongly associated with microbial alterations observed during pregnancy. PLoS ONE. 2015;10:e0134623. doi: 10.1371/journal.pone.0134623.
    1. Charbonneau MR, et al. Sialylated milk oligosaccharides promote microbiota-dependent growth in models of infant undernutrition. Cell. 2016;164:859–871. doi: 10.1016/j.cell.2016.01.024.
    1. Puccio G, et al. Effects of infant formula with human milk oligosaccharides on growth and morbidity: a randomized multicenter trial. J. Pediatr. Gastroenterol. Nutr. 2017;64:624. doi: 10.1097/MPG.0000000000001520.
    1. Lagström H, et al. Associations between human milk oligosaccharides and growth in infancy and early childhood. Am. J. Clin. Nutr. 2020;111:769–778. doi: 10.1093/ajcn/nqaa010.
    1. Totten SM, et al. Rapid-throughput glycomics applied to human milk oligosaccharide profiling for large human studies. Anal. Bioanal. Chem. 2014;406:7925–7935. doi: 10.1007/s00216-014-8261-2.
    1. Davis JC, et al. Growth and morbidity of Gambian infants are influenced by maternal milk oligosaccharides and infant gut microbiota. Sci. Rep. 2017;7:40466. doi: 10.1038/srep40466.
    1. Wu S, Tao N, German JB, Grimm R, Lebrilla CB. Development of an annotated library of neutral human milk oligosaccharides. J. Proteome Res. 2010;9:4138–4151. doi: 10.1021/pr100362f.
    1. Wu S, Grimm R, German JB, Lebrilla CB. Annotation and structural analysis of sialylated human milk oligosaccharides. J. Proteome Res. 2011;10:856–868. doi: 10.1021/pr101006u.
    1. Porfirio S, et al. New strategies for profiling and characterization of human milk oligosaccharides. Glycobiology. 2020;30:774. doi: 10.1093/glycob/cwaa028.
    1. Totten SM, et al. Comprehensive profiles of human milk oligosaccharides yield highly sensitive and specific markers for determining secretor status in lactating mothers. J. Proteome Res. 2012;11:6124–6133. doi: 10.1021/pr300769g.
    1. Totten, S. M. et al. Rapid-throughput glycomics applied to human milk oligosaccharide profiling for large human studies. 406, 7925-7935 (2014).
    1. Mahfuz, M. et al. Bangladesh Environmental Enteric Dysfunction (BEED) study: Protocol for a community-based intervention study to validate non-invasive biomarkers of environmental enteric dysfunction. 7, e017768 (2017).
    1. Frese, S. A. et al. Persistence of supplemented Bifidobacterium longum subsp. infantis EVC001 in breastfed infants. MSphere2 (2017).
    1. Firth D. Bias reduction of maximum likelihood estimates. Biometrika. 1993;80:27–38. doi: 10.1093/biomet/80.1.27.
    1. Hasan S, Khan MA, Ahmed T. Institute of medicine recommendations on the rate of gestational weight gain and perinatal outcomes in rural Bangladesh. Int. J. Environ. Res. Public Health. 2021;18:6519. doi: 10.3390/ijerph18126519.
    1. Huebner M, Zhang Z, Therneau T, McGrath P, Pianosi P. Modeling trajectories of perceived leg exertion during maximal cycle ergometer exercise in children and adolescents. BMC Med. Res. Methodol. 2014;14:1–9. doi: 10.1186/1471-2288-14-4.
    1. De Leoz MLA, et al. Lacto-N-tetraose, fucosylation, and secretor status are highly variable in human milk oligosaccharides from women delivering preterm. J. Proteome Res. 2012;11:4662–4672. doi: 10.1021/pr3004979.
    1. Kunz C, Rudloff S, Baier W, Klein N, Strobel S. Oligosaccharides in human milk: Structural, functional, and metabolic aspects. Annu. Rev. Nutr. 2000;20:699–722. doi: 10.1146/annurev.nutr.20.1.699.
    1. Nordgren J, et al. Both Lewis and secretor status mediate susceptibility to rotavirus infections in a rotavirus genotype-dependent manner. Clin. Infect. Dis. 2014;59:1567–1573. doi: 10.1093/cid/ciu633.
    1. Ramani S, Giri S. Influence of histo blood group antigen expression on susceptibility to enteric viruses and vaccines. Curr. Opin. Infect. Dis. 2019;32:445–452. doi: 10.1097/QCO.0000000000000571.
    1. Koda Y, Soejima M, Kimura H. The polymorphisms of fucosyltransferases. Leg. Med. 2001;3:2–14. doi: 10.1016/S1344-6223(01)00005-0.
    1. Kunz C, et al. Influence of gestational age, secretor, and lewis blood group status on the oligosaccharide content of human milk. J. Pediatr. Gastroenterol. Nutr. 2017;64:789–798. doi: 10.1097/MPG.0000000000001402.
    1. Alderete TL, et al. Associations between human milk oligosaccharides and infant body composition in the first 6 mo of life. Am. J. Clin. Nutr. 2015;102:1381–1388. doi: 10.3945/ajcn.115.115451.
    1. Davidson, B., Meinzen-Derr, J. K., Wagner, C. L., Newburg, D. S. & Morrow, A. L. in Protecting Infants through Human Milk 427–430 (Springer, 2004).
    1. Yu Z-T, et al. The principal fucosylated oligosaccharides of human milk exhibit prebiotic properties on cultured infant microbiota. Glycobiology. 2013;23:169–177. doi: 10.1093/glycob/cws138.
    1. Davis, J. C. et al. Growth and morbidity of Gambian infants are influenced by maternal milk oligosaccharides and infant gut microbiota. 7, 1–16 (2017).
    1. Cowardin CA, et al. Mechanisms by which sialylated milk oligosaccharides impact bone biology in a gnotobiotic mouse model of infant undernutrition. Proc. Natl. Acad. Sci. 2019;116:11988–11996. doi: 10.1073/pnas.1821770116.
    1. Jorgensen, J. M. et al. Associations of human milk oligosaccharides and bioactive proteins with infant morbidity and inflammation among Malawian mother–infant dyads. Current Developments in Nutrition (2021).
    1. Sudarma V, Hegar B, Hidayat A, Agustina R. Human milk oligosaccharides as a missing piece in combating nutritional issues during exclusive breastfeeding. Pediatric Gastroenterol. Hepatol. Nutr. 2021;24:501. doi: 10.5223/pghn.2021.24.6.501.
    1. Garrido D, et al. A novel gene cluster allows preferential utilization of fucosylated milk oligosaccharides in Bifidobacterium longum subsp. longum SC596. Sci. Rep. 2016;6:35045. doi: 10.1038/srep35045.
    1. Tickell KD, et al. Impact of childhood nutritional status on pathogen prevalence and severity of acute diarrhea. Am. J. Trop. Med. Hyg. 2017;97:1337. doi: 10.4269/ajtmh.17-0139.
    1. Cabrera-Rubio R, et al. Association of maternal secretor status and human milk oligosaccharides with milk microbiota: An observational pilot study. J. Pediatr. Gastroenterol. Nutr. 2019;68:256–263. doi: 10.1097/MPG.0000000000002216.
    1. Asakuma S, et al. Physiology of consumption of human milk oligosaccharides by infant gut-associated bifidobacteria. J. Biol. Chem. 2011;286:34583–34592. doi: 10.1074/jbc.M111.248138.
    1. Ashida H, et al. Two distinct α-L-fucosidases from Bifidobacterium bifidum are essential for the utilization of fucosylated milk oligosaccharides and glycoconjugates. Glycobiology. 2009;19:1010–1017. doi: 10.1093/glycob/cwp082.
    1. Underwood MA, German JB, Lebrilla CB, Mills DA. Bifidobacterium longum subspecies infantis: Champion colonizer of the infant gut. Pediatr. Res. 2015;77:229–235. doi: 10.1038/pr.2014.156.
    1. Ruiz-Moyano S, et al. Variation in consumption of human milk oligosaccharides by infant gut-associated strains of Bifidobacterium breve. Appl. Environ. Microbiol. 2013;79:6040–6049. doi: 10.1128/AEM.01843-13.
    1. Sakanaka M, et al. Varied pathways of infant gut-associated Bifidobacterium to assimilate human milk oligosaccharides: Prevalence of the gene set and its correlation with bifidobacteria-rich microbiota formation. Nutrients. 2020;12:71. doi: 10.3390/nu12010071.
    1. Marshall BM, Levy SB. Food animals and antimicrobials: impacts on human health. Clin. Microbiol. Rev. 2011;24:718. doi: 10.1128/CMR.00002-11.
    1. Francino M. Antibiotics and the human gut microbiome: dysbioses and accumulation of resistances. Front. Microbiol. 2016;6:1543. doi: 10.3389/fmicb.2015.01543.
    1. Arboleya S, et al. Intestinal microbiota development in preterm neonates and effect of perinatal antibiotics. J. Pediatr. 2015;166:538–544. doi: 10.1016/j.jpeds.2014.09.041.
    1. Fouhy F, et al. High-throughput sequencing reveals the incomplete, short-term recovery of infant gut microbiota following parenteral antibiotic treatment with ampicillin and gentamicin. Antimicrob. Agents Chemother. 2012;56:5811. doi: 10.1128/AAC.00789-12.
    1. Kumar M, et al. Gut microbiota dysbiosis is associated with malnutrition and reduced plasma amino acid levels: lessons from genome-scale metabolic modeling. Metab. Eng. 2018;49:128–142. doi: 10.1016/j.ymben.2018.07.018.
    1. Million M, Diallo A, Raoult D. Gut microbiota and malnutrition. Microb. Pathogenesis. 2017;106:127–138. doi: 10.1016/j.micpath.2016.02.003.

Source: PubMed

3
订阅