Molecular mechanisms of retinal ganglion cell degeneration in glaucoma and future prospects for cell body and axonal protection

Yasunari Munemasa, Yasushi Kitaoka, Yasunari Munemasa, Yasushi Kitaoka

Abstract

Glaucoma, which affects more than 70 million people worldwide, is a heterogeneous group of disorders with a resultant common denominator; optic neuropathy, eventually leading to irreversible blindness. The clinical manifestations of primary open-angle glaucoma (POAG), the most common subtype of glaucoma, include excavation of the optic disc and progressive loss of visual field. Axonal degeneration of retinal ganglion cells (RGCs) and apoptotic death of their cell bodies are observed in glaucoma, in which the reduction of intraocular pressure (IOP) is known to slow progression of the disease. A pattern of localized retinal nerve fiber layer (RNFL) defects in glaucoma patients indicates that axonal degeneration may precede RGC body death in this condition. The mechanisms of degeneration of neuronal cell bodies and their axons may differ. In this review, we addressed the molecular mechanisms of cell body death and axonal degeneration in glaucoma and proposed axonal protection in addition to cell body protection. The concept of axonal protection may become a new therapeutic strategy to prevent further axonal degeneration or revive dying axons in patients with preperimetric glaucoma. Further study will be needed to clarify whether the combination therapy of axonal protection and cell body protection will have greater protective effects in early or progressive glaucomatous optic neuropathy (GON).

Keywords: axonal degeneration; axonal protection; glaucoma; optic nerve; retinal ganglion cell.

Figures

Figure 1
Figure 1
Localization of Trx1 in the optic nerve. (A) and (B) Double staining for Trx1 (green) and neurofilament (red). Substantial co-localization of Trx1 and NF is observed in the PBS-treated optic nerve. (C) Double staining for trx1 (green) and vimentin (red). No colocalization of Trx1 and Vimentin is observed in the PBS-treated optic nerve. Scale bar, 25 μm. Trx1, trioredoxin1; NF, neurofilament.
Figure 2
Figure 2
Multiple pathogenic and biological mechanisms for glaucomatous neurodegeneration. Increased IOP induces several molecular changes, such as glial activation and release of TNF, mitochondrial dysfunction, degradation of Trx1, NAD, and nmnat1, and obstruction of BDNF transport at lamina area. Molecular changes in the axon cause death signal activation in RGC body, including release of ROS from mitochondria, autoimmune dysregulation, and avtivation of glutamate transporter. TNF, Tumor Necrosis Factor; Trx1, thioredoxin1; NAD, nicotinamide adenine dinucleotide; BDNF, Brain-derived neurotrophic factor; NMDAR, N-methyl-D-aspartate receptor; ER, endoplasmic reticulum.

References

    1. Acland G. M., Aguirre G. D., Ray J., Zhang Q., Aleman T. S., Cideciyan A. V., et al. (2001). Gene therapy restores vision in a canine model of childhood blindness. Nat. Genet. 28, 92–95 10.1038/88327
    1. Akagi T., Hangai M., Takayama K., Nonaka A., Ooto S., Yoshimura N. (2012). In vivo imaging of lamina cribrosa pores by adaptive optics scanning laser ophthalmoscopy. Invest. Ophthalmol. Vis. Sci. 53, 4111–4119 10.1167/iovs.11-7536
    1. Aktas Z., Gurelik G., Göçün P. U., Akyürek N., Onol M., Hasanreisoğlu B. (2010). Matrix metalloproteinase-9 expression in retinal ganglion cell layer and effect of topically applied brimonidine tartrate 0.2% therapy on this expression in an endothelin-1-induced optic nerve ischemia model. Int. Ophthalmol. 30, 253–259 10.1007/s10792-009-9316-9
    1. Ali R. R., Sarra G. M., Stephens C., Alwis M. D., Bainbridge J. W., Munro P. M., et al. (2000). Restoration of photoreceptor ultrastructure and function in retinal degeneration slow mice by gene therapy. Nat. Genet. 25, 306–310 10.1038/77068
    1. Almasieh M., Lieven C. J., Levin L. A., Di Polo A. (2011). A cell-permeable phosphine-borane complex delays retinal ganglion cell death after axonal injury through activation of the pro-survival extracellular signal-regulated kinases 1/2 pathway. J. Neurochem. 118, 1075–1086 10.1111/j.1471-4159.2011.07382.x
    1. Anderson D. R. (1969). Ultrastructure of human and monkey lamina cribrosa and optic nerve head. Arch. Ophthalmol. 82, 800–814 10.1001/archopht.1969.00990020792015
    1. Anderson D. R. (1970). Ultrastructure of the optic nerve head. Arch. Ophthalmol. 83, 63–73 10.1001/archopht.1970.00990030065013
    1. Araki T., Sasaki Y., Milbrandt J. (2004). Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration. Science 305, 1010–1013 10.1126/science.1098014
    1. Atlante A., Calissano P., Bobba A., Giannattasio S., Marra E., Passarella S. (2001). Glutamate neurotoxicity, oxidative stress and mitochondria. FEBS Lett. 497, 1–5 10.1016/S0014-5793(01)02437-1
    1. Awai M., Koga T., Inomata Y., Oyadomari S., Gotoh T., Mori M., et al. (2006). NMDA-induced retinal injury is mediated by an endoplasmic reticulum stress-related protein, CHOP/GADD153. J. Neurochem. 96, 43–52 10.1111/j.1471-4159.2005.03502.x
    1. Bagayogo I. P., Dreyfus C. F. (2009). Regulated release of BDNF by cortical oligodendrocytes is mediated through metabotropic glutamate receptors and the PLC pathway. ASN Neuro 1, e00001 10.1042/AN20090006
    1. Bai J., Nakamura H., Kwon Y. W., Hattori I., Yamaguchi Y., Kim Y. C., et al. (2003). Critical roles of thioredoxin in nerve growth factor-mediated signal transduction and neurite outgrowth in PC12 cells. J. Neurosci. 23, 503–509
    1. Barber S. C., Mead R. J., Shaw P. J. (2006). Oxidative stress in ALS: a mechanism of neurodegeneration and a therapeutic target. Biochim. Biophys. Acta 1762, 1051–1067 10.1016/j.bbadis.2006.03.008
    1. Bonni A., Brunet A., West A. E., Datta S. R., Takasu M. A., Greenberg M. E. (1999). Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and -independent mechanisms. Science 286, 1358–1362 10.1126/science.286.5443.1358
    1. Bosley T. M., Hellani A., Spaeth G. L., Myers J., Katz L. J., Moster M. R., et al. (2011). Down-regulation of OPA1 in patients with primary open angle glaucoma. Mol. Vis. 27, 1074–1079
    1. Bretscher P. (1992). The two-signal model of lymphocyte activation twenty-one years later. Immunol. Today 13, 74–76 10.1016/0167-5699(92)90138-W
    1. Browne S. E., Beal M. F. (2006). Oxidative damage in Huntington's disease pathogenesis. Antioxid. Redox Signal. 8, 2061–2073 10.1089/ars.2006.8.2061
    1. Caprioli J. (1997). Neuroprotection of the optic nerve in glaucoma. Acta Ophthalmol. Scand. 75, 364–367
    1. Carter-Dawson L., Shen F., Harwerth R. S., Smith E. L., 3rd., Crawford M. L., Chuang A. (1998). Glutamine immunoreactivity in Müller cells of monkey eyes with experimental glaucoma. Exp. Eye Res. 66, 537–545 10.1006/exer.1997.0447
    1. Cellerino A., Carroll P., Thoenen H., Barde Y. A. (1997). Reduced size of retinal ganglion cell axons and hypomyelination in mice lacking brain-derived neurotrophic factor. Mol. Cell. Neurosci. 9, 397–408 10.1006/mcne.1997.0641
    1. Chauhan B. C. (2008). Endothelin and its potential role in glaucoma. Can. J. Ophthalmol. 43, 356–360 10.3129/i08-060
    1. Chen Y. Q., Pan W. H., Liu J. H., Chen M. M., Liu C. M., Yeh M. Y., et al. (2012). The effects and underlying mechanisms of S-allyl l-cysteine treatment of the retina after ischemia/reperfusion. J. Ocul. Pharmacol. Ther. 28, 110–117 10.1089/jop.2011.0099
    1. Chiu K., Lam T. T., Ying Li W. W., Caprioli J., Kwong J. M. (2005). Calpain and N-methyl-d aspartate (NMDA)-induced excitotoxicity in rat retinas. Brain Res. 1046, 207–215 10.1016/j.brainres.2005.04.016
    1. Chun M. H., Ju W. K., Kim K. Y., Lee M. Y., Hofmann H. D., Kirsch M., et al. (2000). Upregulation of ciliary neurotrophic factor in reactive Müller cells in the rat retina following optic nerve transection. Brain Res. 868, 358–362 10.1016/S0006-8993(00)02305-2
    1. Cipolat S., Martins de Brito O., Dal Zilio B., Scorrano L. (2004). OPA1 requires mitofusin 1 to promote mitochondrial fusion. Proc. Natl. Acad. Sci. U.S.A. 101, 15927–15932 10.1073/pnas.0407043101
    1. Conforti L., Fang G., Beirowski B., Wang M. S., Sorci L., Asress S., et al. (2007). NAD(+) and axon degeneration revisited: Nmnat1 cannot substitute for Wld(S) to delay Wallerian degeneration. Cell Death Differ. 14, 116–127 10.1038/sj.cdd.4401944
    1. Conforti L., Janeckova L., Wagner D., Mazzola F., Cialabrini L., Di Stefano M., et al. (2011). Reducing expression of NAD+ synthesizing enzyme NMNAT1 does not affect the rate of Wallerian degeneration. FEBS J. 278, 2666–2679 10.1111/j.1742-4658.2011.08193.x
    1. Dai X., Lercher L. D., Clinton P. M., Du Y., Livingston D. L., Vieira C., et al. (2003). The trophic role of oligodendrocytes in the basal forebrain. J. Neurosci. 23, 5846–5853
    1. Dai Y., Weinreb R. N., Kim K. Y., Nguyen D., Park S., Sun X., et al. (2011). Inducible nitric oxide synthase-mediated alteration of mitochondrial OPA1 expression in ocular hypertensive rats. Invest. Ophthalmol. Vis. Sci. 52, 2468–2476 10.1167/iovs.10-5873
    1. Danbolt N. C. (2001). Glutamate uptake. Prog. Neurobiol. 65, 1–105 10.1016/S0301-0082(00)00067-8
    1. Delettre C., Lenaers G., Griffoin J. M., Gigarel N., Lorenzo C., Belenguer P., et al. (2000). Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy. Nat. Genet. 26, 207–210 10.1038/79936
    1. DePina A. S., Langford G. M. (1999). Vesicle transport: the role of actin filaments and myosin motors. Microsc. Res. Tech. 15, 93–106 10.1002/(SICI)1097-0029(19991015)47:2<93::AID-JEMT2>;2-P
    1. Di Matteo V., Esposito E. (2003). Biochemical and therapeutic effects of antioxidants in the treatment of Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Curr. Drug Targets CNS Neurol. Disord. 2, 95–107
    1. Dingledine R., Borges K., Bowie D., Traynelis S. F. (1999). The glutamate receptor ion channels. Pharmacol. Rev. 51, 7–61
    1. DiStefano P. S., Friedman B., Radziejewski C., Alexander C., Boland P., Schick C. M., et al. (1992). The neurotrophins BDNF, NT-3, and NGF display distinct patterns of retrograde axonal transport in peripheral and central neurons. Neuron 8, 983–993 10.1016/0896-6273(92)90213-W
    1. Doh S. H., Kim J. H., Lee K. M., Park H. Y., Park C. K. (2010). Retinal ganglion cell death induced by endoplasmic reticulum stress in a chronic glaucoma model. Brain Res. 13, 158–166 10.1016/j.brainres.2009.10.025
    1. Dong C. J., Guo Y., Agey P., Wheeler L., Hare W. A. (2008). Alpha2 adrenergic modulation of NMDA receptor function as a major mechanism of RGC protection in experimental glaucoma and retinal excitotoxicity. Invest. Ophthalmol. Vis. Sci. 49, 4515–4522 10.1167/iovs.08-2078
    1. Dougherty K. D., Dreyfus C. F., Black I. B. (2000). Brain-derived neurotrophic factor in astrocytes, oligodendrocytes and microglial macrophages after spinal cord injury. Neurobiol. Dis. 7, 574–585 10.1006/nbdi.2000.0318
    1. Dusart I., Schwab M. E. (1994). Secondary cell death and the inflammatory reaction after dorsal hemisection of the rat spinal cord. Eur. J. Neurosci. 6, 712–724
    1. Faden A. I. (1996). Pharmacological treatment of central nervous system trauma. Pharmacol. Toxicol. 78, 12–17
    1. Finkbeiner S., Tavazoie S. F., Maloratsky A., Jacobs K. M., Harris K. M., Greenberg M. E. (1997). CREB: a major mediator of neuronal neurotrophin responses. Neuron 19, 1031–1047 10.1016/S0896-6273(00)80395-5
    1. Fischer A. J., Reh T. A. (2001). Müller glia are a potential source of neural regeneration in the postnatal chicken retina. Nat. Neurosci. 4, 247–252 10.1038/85090
    1. Fischer D., Heiduschka P., Thanos S. (2001). Lens-injury-stimulated axonal regeneration throughout the optic pathway of adult rats. Exp. Neurol. 172, 257–272 10.1006/exnr.2001.7822
    1. Freeland K., Boxer L. M., Latchman D. S. (2001). The cyclic AMP respose element in the Bcl-2 promoter confers inducibility by hypoxia in neuronal cells. Brain Res. Mol. Brain Res. 92, 98–106 10.1016/S0169-328X(01)00158-9
    1. Fujino H., Kitaoka Y., Hayashi Y., Munemasa Y., Takeda H., Kumai T., et al. (2009). Axonal protection by brain-derived neurotrophic factor associated with CREB phosphorylation in tumor necrosis factor-α-induced optic nerve degeneration. Acta Neuropathol. 117, 75–84 10.1007/s00401-008-0440-9
    1. Gao H., Qiao X., Cantor L. B., WuDunn D. (2002). Up-regulation of brain-derived neurotrophic factor expression by brimonidine in rat retinal ganglion cells. Arch. Ophthalmol. 120, 797–803 10.1001/archopht.120.6.797
    1. Gao Y., Deng K., Hou J., Bryson J. B., Barco A., Nikulina E., et al. (2004). Activated CREB is sufficient to overcome inhibitors in myelin and promote spinal axon regeneration in vivo. Neuron 44, 609–621 10.1016/j.neuron.2004.10.030
    1. Georgopoulos G., Andreanos D., Liokis N., Papakonstantinou D., Vergados J., Theodossiadis G. (1997). Risk factors in ocular hypertension. Eur. J. Ophthalmol. 7, 357–363
    1. Gilley J., Coleman M. P. (2010). Endogenous Nmnat2 is an essential survival factor for maintenance of healthy axons. PLoS Biol. 8:e1000300 10.1371/journal.pbio.1000300
    1. Gordon M. O., Beiser J. A., Brandt J. D., Heuer D. K., Higginbotham E. J., Johnson C. A., et al. (2002). The Ocular Hypertension Treatment Study: baseline factors that predict the onset of primary open-angle glaucoma. Arch. Ophthalmol. 120, 714–720 discussion: 829–830. 10.1001/archopht.120.6.714
    1. Görlach A., Klappa P., Kietzmann T. (2006). The endoplasmic reticulum: folding, calcium homeostasis, signaling, and redox control. Antioxid. Redox Signal. 8, 1391–1418 10.1089/ars.2006.8.1391
    1. Gregerson D. S. (1998). Immune privilege in the retina. Ocul. Immunol. Inflamm. 6, 257–267
    1. Guo Y., Chen X., Zhang H., Li N., Yang X., Cheng W., et al. (2012). Association of OPA1 polymorphisms with NTG and HTG: a meta-analysis. PLoS ONE 7:e42387 10.1371/journal.pone.0042387
    1. Harada T., Harada C., Nakamura K., Quah H. M., Okumura A., Namekata K., et al. (2007). The potential role of glutamate transporters in the pathogenesis of normal tension glaucoma. J. Clin. Invest. 117, 1763–1770 10.1172/JCI30178
    1. Harada T., Harada C., Watanabe M., Inoue Y., Sakagawa T., Nakayama N., et al. (1998). Functions of the two glutamate transporters GLAST and GLT-1 in the retina. Proc. Natl. Acad. Sci. U.S.A. 95, 4663–4666
    1. Harbin T. S., Podos S. M., Kolker A. E., Becker B. (1976). Visual field progression in open-angle glaucoma patients presenting with monocular field loss. Trans. Sect. Ophthalmol. Am. Acad. Ophthalmol. Otolaryngol. 8, 253–257
    1. Harman A., Abrahams B., Moore S., Hoskins R. (2000). Neuronal density in the human retinal ganglion cell layer from 16–77 years. Anat. Rec. 260, 124–131 10.1002/1097-0185(20001001)260:2<124::AID-AR20>;2-D
    1. Harper M. M., Grozdanic S. D., Bilts B., Kuehn M. H., Zamzow D., Buss J. E., et al. (2011). Transplantation of BDNF-secreting mesenchymal stem cells provides neuroprotection in chronically hypertensive rat eyes. Invest. Ophthalmol. Vis. Sci. 52, 4506–4515 10.1167/iovs.11-7346
    1. Hauben E., Butovsky O., Nevo U., Yoles E., Moalem G., Agranov E., et al. (2000). Passive or active immunization with myelin basic protein promotes recovery from spinal cord contusion. J. Neurosci. 20, 6421–6430
    1. Hauk T. G., Leibinger M., Müller A., Andreadaki A., Knippschild U., Fischer D. (2010). Stimulation of axon regeneration in the mature optic nerve by intravitreal application of the toll-like receptor 2 agonist Pam3Cys. Invest. Ophthalmol. Vis. Sci. 51, 459–564 10.1167/iovs.09-4203
    1. He S., Prasanna G., Yorio T. (2007). Endothelin-1-mediated signaling in the expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases in astrocytes. Invest. Ophthalmol. Vis. Sci. 48, 3737–3745 10.1167/iovs.06-1138
    1. Honjo M., Tanihara H., Kido N., Inatani M., Okazaki K., Honda Y. (2000). Expression of ciliary neurotrophic factor activated by retinal Müller cells in eyes with NMDA- and kainic acid-induced neuronal death. Invest. Ophthalmol. Vis. Sci. 41, 552–560
    1. Inokuchi Y., Nakajima Y., Shimazawa M., Kurita T., Kubo M., Saito A., et al. (2009). Effect of an inducer of BiP, a molecular chaperone, on endoplasmic reticulum (ER) stress-induced retinal cell death. Invest. Ophthalmol. Vis. Sci. 50, 334–344 10.1167/iovs.08-2123
    1. Iyer N. V., Kotch L. E., Agani F., Leung S. W., Laughner E., Wenger R. H., et al. (1998). Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1 alpha. Genes Dev. 12, 149–162 10.1101/gad.12.2.149
    1. Ju W. K., Kim K. Y., Angert M., Duong-Polk K. X., Lindsey J. D., Ellisman M. H., et al. (2009). Memantine blocks mitochondrial OPA1 and cytochrome c release and subsequent apoptotic cell death in glaucomatous retina. Invest. Ophthalmol. Vis. Sci. 50, 707–716 10.1167/iovs.08-2499
    1. Ju W. K., Kim K. Y., Lindsey J. D., Angert M., Duong-Polk K. X., Scott R. T., et al. (2008). Intraocular pressure elevation induces mitochondrial fission and triggers OPA1 release in glaucomatous optic nerve. Invest. Ophthalmol. Vis. Sci. 49, 4903–4911 10.1167/iovs.07-1661
    1. Ju W. K., Lee M. Y., Hofmann H. D., Kirsch M., Chun M. H. (1999). Expression of CNTF in Müller cells of the rat retina after pressure-induced ischemia. Neuroreport 10, 419–422
    1. Kamalden T. A., Ji D., Osborne N. N. (2012). Rotenone-induced death of RGC-5 cells is caspase independent, involves the JNK and p38 pathways and is attenuated by specific green tea flavonoids. Neurochem. Res. 37, 1091–1101 10.1007/s11064-012-0713-5
    1. Kanamori A., Catrinescu M. M., Kanamori N., Mears K. A., Beaubien R., Levin L. A. (2010). Superoxide is an associated signal for apoptosis in axonal injury. Brain 33, 2612–2625 10.1093/brain/awq105
    1. Kaneko S., Wang J., Kaneko M., Yiu G., Hurrell J. M., Chitnis T., et al. (2006). Protecting axonal degeneration by increasing nicotinamide adenine dinucleotide levels in experimental autoimmune encephalomyelitis models. J. Neurosci. 26, 9794–9804 10.1523/JNEUROSCI.2116-06.2006
    1. Kawasaki A., Otori Y., Barnstable C. J. (2000). Müller cell protection of rat retinal ganglion cells from glutamate and nitric oxide neurotoxicity. Invest. Ophthalmol. Vis. Sci. 41, 3444–3450
    1. Kikuchi M., Tenneti L., Lipton S. A. (2000). Role of p38 mitogen-activated protein kinase in axotomy-induced apoptosis of rat retinal ganglion cells. J. Neurosci. 20, 5037–5044
    1. Kim J. H., Lee N. Y., Jung S. W., Park C. K. (2007). Expression of N-methyl-d-aspartate receptor 1 in rats with chronic ocular hypertension. Neuroscience 149, 908–916 10.1016/j.neuroscience.2007.07.056
    1. Kipnis J., Mizrahi T., Yoles E., Ben-Nun A., Schwartz M. (2002). Myelin specific Th1 cells are necessary for post-traumatic protective autoimmunity. J. Neuroimmunol. 130, 78–85
    1. Kitaoka Y., Hayashi Y., Kumai T., Takeda H., Munemasa Y., Fujino H., et al. (2009). Axonal and cell body protection by nicotinamide adenine dinucleotide in tumor necrosis factor-induced optic neuropathy. J. Neuropathol. Exp. Neurol. 68, 915–927 10.1097/NEN.0b013e3181afecfa
    1. Kitaoka Y., Kitaoka Y., Kwong J. M., Ross-Cisneros F. N., Wang J., Tsai R. K., et al. (2006). TNF-α-induced optic nerve degeneration and nuclear factor-κ B p65. Invest. Ophthalmol. Vis. Sci. 47, 1448–1457 10.1167/iovs.05-0299
    1. Kitaoka Y., Kumai T., Kitaoka Y., Lam T. T., Munemasa Y., Isenoumi K., et al. (2004). Nuclear factor-kappa B p65 in NMDA-induced retinal neurotoxicity. Brain Res. Mol. Brain Res. 131, 8–16 10.1016/j.molbrainres.2004.07.021
    1. Kitaoka Y., Munemasa Y., Hayashi Y., Kuribayashi J., Koseki N., Kojima K., et al. (2011). Axonal protection by 17β-estradiol through thioredoxin-1 in tumor necrosis factor-induced optic neuropathy. Endocrinology 152, 2775–2785 10.1210/en.2011-0046
    1. Kitaoka Y., Munemasa Y., Nakazawa T., Ueno S. (2007). NMDA-induced interleukin-1beta expression is mediated by nuclear factor-kappa B p65 in the retina. Brain Res. 20, 247–255 10.1016/j.brainres.2007.01.097
    1. Kuribayashi J., Kitaoka Y., Munemasa Y., Ueno S. (2010). Kinesin-1 and degenerative changes in optic nerve axons in NMDA-induced neurotoxicity. Brain Res. 1362, 133–140 10.1016/j.brainres.2010.09.053
    1. Laabich A., Li G., Cooper N. G. (2001). Characterization of apoptosis-genes associated with NMDA mediated cell death in the adult rat retina. Brain Res. Mol. Brain Res. 91, 34–42 10.1016/S0169-328X(01)00116-4
    1. Lam T. T., Abler A. S., Kwong J. M., Tso M. O. (1999). N-methyl-D-aspartate (NMDA)–induced apoptosis in rat retina. Invest. Ophthalmol. Vis. Sci. 40, 2391–2397
    1. Lam T. T., Siew E., Chu R., Tso M. O. (1997). Ameliorative effect of MK-801 on retinal ischemia. J. Ocul. Pharmacol. Ther. 13, 129–137
    1. Lambert W. S., Ruiz L., Crish S. D., Wheeler L. A., Calkins D. J. (2011). Brimonidine prevents axonal and somatic degeneration of retinal ganglion cell neurons. Mol. Neurodegener. 6:4 10.1186/1750-1326-6-4
    1. Laties A. M., Nichols C. W. (1971). Demonstration of a nonspecific cholinesterase in retinal Müller cell. Am. J. Ophthalmol. 71, 1093–1098
    1. Lau J., Dang M., Hockmann K., Ball A. K. (2006). Effects of acute delivery of endothelin-1 on retinal ganglion cell loss in the rat. Exp. Eye Res. 82, 132–145 10.1016/j.exer.2005.06.002
    1. Lee S. Y., Andoh T., Murphy D. L., Chiueh C. C. (2003). 17β-estradiol activates ICI182, 780-sensitive estrogen receptors and cyclic GMP-dependent thioredoxin expression for neuroprotection. FASEB J. 17, 947–948 10.1096/fj.02-0807fje
    1. Leske M. C., Heijl A., Hussein M., Bengtsson B., Hyman L., Komaroff E. (2003). For the Early Manifest Glaucoma Trial Group, Factors for glaucoma progression and the effect of treatment: the early manifest glaucoma trial. Arch. Ophthalmol. 121, 48–56 10.1001/archopht.121.1.48
    1. Lieven C. J., Schlieve C. R., Hoegger M. J., Levin L. A. (2006). Retinal ganglion cell axotomy induces an increase in intracellular superoxide anion. Invest. Ophthalmol. Vis. Sci. 47, 1477–1485 10.1167/iovs.05-0921
    1. Lippoldt A., Padilla C. A., Gerst H., Andbjer B., Richter E., Holmgren A., et al. (1995). Localization of thioredoxin in the rat brain and functional implications. J. Neurosci. 15, 6747–6756
    1. Liu D., McAdoo D. J. (1993). An experimental model combining microdialysis with electrophysiology, histology, and neurochemistry for exploring mechanisms of secondary damage in spinal cord injury: effects of potassium. J. Neurotrauma 10, 349–362
    1. Lonze B. E., Ginty D. D. (2002). Function and regulation of CREB family transcription factors in the nervous system. Neuron 35, 605–623 10.1016/S0896-6273(02)00828-0
    1. Luo X. G., Chiu K., Lau F. H., Lee V. W., Yung K. K., So K. F. (2009). The selective vulnerability of retinal ganglion cells in rat chronic ocular hypertension model at early phase. Cell. Mol. Neurobiol. 29, 1143–1151 10.1007/s10571-009-9407-1
    1. Mabuchi F., Aihara M., Mackey M. R., Lindsey J. D., Weinreb R. N. (2003). Optic nerve damage in experimental mouse ocular hypertension. Invest. Ophthalmol. Vis. Sci. 44, 4321–4330 10.1167/iovs.03-0138
    1. MacCumber M. W., D'Anna S. A. (1994). Endothelin receptor-binding subtypes in the human retina and choroid. Arch. Ophthalmol. 112, 1231–1235 10.1001/archopht.1994.01090210119024
    1. Martin K. R., Levkovitch-Verbin H., Valenta D., Baumrind L., Pease M. E., Quigley H. A. (2002). Retinal glutamate transporter changes in experimental glaucoma and after optic nerve transection in the rat. Invest. Ophthalmol. Vis. Sci. 43, 2236–2243
    1. Martin K. R., Quigley H., Valenta D., Kielczewski J., Pease M. (2006). Optic nerve dynein motor protein distribution changes with intraocular pressure elevation in a rat model of glaucoma. Exp. Eye Res. 83, 255–262 10.1016/j.exer.2005.11.025
    1. Matsui K., Hosoi N., Tachibana M. (1999). Active role of glutamate uptake in the synaptic transmission from retinal nonspiking neurons. J. Neurosci. 19, 6755–6766
    1. May C. A., Mittag T. (2006). Optic nerve degeneration in the DBA/2NNia mouse: is the lamina cribrosa important in the development of glaucomatous optic neuropathy? Acta Neuropathol. 111, 158–167 10.1007/s00401-005-0011-2
    1. McElnea E. M., Quill B., Docherty N. G., Irnaten M., Siah W. F., Clark A. F., et al. (2011). Oxidative stress, mitochondrial dysfunction and calcium overload in human lamina cribrosa cells from glaucoma donors. Mol. Vis. 17, 1182–1191
    1. Minton A. Z., Phatak N. R., Stankowska D. L., He S., Ma H. Y., Mueller B. H., et al. (2012). Endothelin B receptors contribute to retinal ganglion cell loss in a rat model of glaucoma. PLoS ONE 7:e43199 10.1371/journal.pone.0043199
    1. Moreno M., Campanelli J., Sande P., Snez D., Keller-Sarmiento M., Rosenstein R. (2004). Retinal oxidative stress induced by high intraocular pressure. Free Radic. Biol. Med. 37, 803–812
    1. Morrison J., Farrell S., Johnson E., Deppmeier L., Moore C. G., Grossmann E. (1995). Structure and composition of the rodent lamina cribrosa. Exp. Eye Res. 60, 127–135 10.1016/S0014-4835(95)80002-6
    1. Morrison J. C., Dorman-Pease M. E., Dunkelberger G. R., Quigley H. A. (1990). Optic nerve head extracellular matrix in primary optic atrophy and experimental glaucoma. Arch. Ophthalmol. 108, 1020–1024 10.1001/archopht.1990.01070090122053
    1. Munemasa Y., Ahn J. H., Kwong J. M., Caprioli J., Piri N. (2009). Redox proteins thioredoxin1 and thioredoxin 2 support retinal ganglion cell survival in experimental glaucoma. Gene Ther. 16, 17–25 10.1038/gt.2008.126
    1. Munemasa Y., Chang C. S., Kwong J. M., Kyung H., Kitaoka Y., Caprioli J., et al. (2012). The neuronal EGF-related gene Nell2 interacts with Macf1 and supports survival of retinal ganglion cells after optic nerve injury. PLoS ONE 7:e34810 10.1371/journal.pone.0034810
    1. Munemasa Y., Kim S. H., Ahn J. H., Kwong J. M. K., Caprioli J., Piri N. (2008). Protective effect of thioredoxins 1 and 2 in retinal ganglion cells after optic nerve transaction and oxidative stress. Invest. Ophthalmol. Vis. Sci. 49, 3535–3543 10.1167/iovs.08-1716
    1. Munemasa Y., Kitaoka Y., Kuribayashi J., Ueno S. (2010). Modulation of mitochondria in the axon and soma of retinal ganglion cells in a rat glaucoma model. J. Neurochem. 115, 1508–1519 10.1111/j.1471-4159.2010.07057.x
    1. Munemasa Y., Ohtani-Kaneko R., Kitaoka Y., Kumai T., Kitaoka Y., Hayashi Y., et al. (2006). Pro-apoptotic role of c-Jun in NMDA-induced neurotoxicity in the rat retina. J. Neurosci. Res. 83, 907–918 10.1002/jnr.20786
    1. Munemasa Y., Ohtani-Kaneko R., Kitaoka Y., Kuribayashi K., Isenoumi K., Kogo J., et al. (2005). Contribution of mitogen-activated protein kinases to NMDA-induced neurotoxicity in the rat retina. Brain Res. 1044, 227–240 10.1016/j.brainres.2005.03.014
    1. Nadeau P. J., Charette S. J., Toledano M. B., Landry J. (2007). Disulfide Bond-mediated multimerization of Ask1 and its reduction by thioredoxin-1 regulate H(2)O(2)-induced c-Jun NH(2)-terminal kinase activation and apoptosis. Mol. Biol. Cell 18, 3903–3913 10.1091/mbc.E07-05-0491
    1. Nakazawa T., Nakazawa C., Matsubara A., Noda K., Hisatomi T., She H., et al. (2006). Tumor necrosis factor-α mediates oligodendrocyte death and delayed retinal ganglion cell loss in a mouse model of glaucoma. J. Neurosci. 26, 12633–12641 10.1523/JNEUROSCI.2801-06.2006
    1. Neufeld A. H., Gachie E. N. (2003). The inherent, age-dependent loss of retinal ganglion cells is related to the lifespan of the species. Neurobiol. Aging 24, 167–172
    1. North B. J., Verdin E. (2004). Sirtuins: Sir2-related NAD-dependent protein deacetylases. Genome Biol. 5:224 10.1186/gb-2004-5-5-224
    1. Oku H., Ikeda T., Honma Y., Sotozono C., Nishida K., Nakamura Y., et al. (2002). Gene expression of neurotrophins and their high-affinity Trk receptors in cultured human Müller cells. Ophthalmic Res. 34, 38–42
    1. Pannicke T., Uckermann O., Iandiev I., Biedermann B., Wiedemann P., Perlman I., et al. (2005). Altered membrane physiology in Müller glial cells after transient ischemia of the rat retina. Glia 50, 1–11 10.1002/glia.20151
    1. Paulson O. B., Newman E. A. (1987). Does the release of potassium from astrocyte endfeet regulate cerebral blood flow? Science 237, 896–898 10.1126/science.3616619
    1. Pease M. E., McKinnon S. J., Quigley H. A., Kerrigan-Baumrind L. A., Zack D. J. (2000). Obstructed axonal transport of BDNF and its receptor TrkB in experimental glaucoma. Invest. Ophthalmol. Vis. Sci. 41, 764–774
    1. Peitsch M. C., Müller C., Tschopp J. (1993). DNA fragmentation during apoptosis is caused by frequent single-strand cuts. Nucleic Acids Res. 21, 4206–4209 10.1093/nar/21.18.4206
    1. Penfold P. L., Provis J. M. (1986). Cell death in the development of the human retina: phagocytosis of pyknotic and apoptotic bodies by retinal cells. Graefes Arch. Clin. Exp. Ophthalmol. 224, 549–553
    1. Perge J. A., Koch K., Miller R., Sterling P., Balasubramanian V. (2009). How the optic nerve allocates space, energy capacity, and information. J. Neurosci. 29, 7917–7928 10.1523/JNEUROSCI.5200-08.2009
    1. Poitry-Yamate C. L., Poitry S., Tsacopoulos M. (1995). Lactate released by Müller glial cells is metabolized by photoreceptors from mammalian retina. J. Neurosci. 15, 5179–5191
    1. Press C., Milbrandt J. (2008). Nmnat delays axonal degeneration caused by mitochondrial and oxidative stress. J. Neurosci. 28, 4861–4871 10.1523/JNEUROSCI.0525-08.2008
    1. Quigley H. A. (1996). Number of people with glaucoma worldwide. Br. J. Ophthalmol. 80, 389–393
    1. Quigley H. A., Addicks E. M. (1980). Chronic experimental glaucoma in primates. II. Effect of extended intraocular pressure elevation on optic nerve head and axonal transport. Invest. Ophthalmol. Vis. Sci. 19, 137–152
    1. Quigley H. A., Brown A., Dorman-Pease M. E. (1991a). Alterations in elastin of the optic nerve head in human and experimental glaucoma. Br. J. Ophthalmol. 75, 552–557 10.1136/bjo.75.9.552
    1. Quigley H. A., Dorman-Pease M. E., Brown A. E. (1991b). Quantitative study of collagen and elastin of the optic nerve head and sclera in human and experimental monkey glaucoma. Curr. Eye Res. 10, 877–888
    1. Quigley H. A., McKinnon S. J., Zack D. J., Pease M. E., Kerrigan-Baumrind L. A., Kerrigan D. F., et al. (2000). Retrograde axonal transport of BDNF in retinal ganglion cells is blocked by acute IOP elevation in rats. Invest. Ophthalmol. Vis. Sci. 41, 3460–3466
    1. Repka M. X., Quigley H. A. (1989). The effect of age on normal human optic nerve fiber number and diameter. Ophthalmology 96, 26–32
    1. Resnikoff S., Pascolini D., Etya'ale D., Kocur I., Pararajasegaram R., Pokharel G. P., et al. (2004). Global data on visual impairment in the year 2002. Bull. World Health Organ. 82, 844–851 10.1590/S0042-96862004001100009
    1. Roh M., Zhang Y., Murakami Y., Thanos A., Lee S. C., Vavvas D. G., et al. (2012). Etanercept, a widely used inhibitor of tumor necrosis factor-α (TNF-α), prevents retinal ganglion cell loss in a rat model of glaucoma. PLoS ONE 7:e40065 10.1371/journal.pone.0040065
    1. Sarthy V. P., Pignataro L., Pannicke T., Weick M., Reichenbach A., Harada T., et al. (2005). Glutamate transport by retinal Muller cells in glutamate/aspartate transporter-knockout mice. Glia 49, 184–196 10.1002/glia.20097
    1. Sato T., Fujikado T., Lee T. S., Tano Y. (2008). Direct effect of electrical stimulation on induction of brain-derived neurotrophic factor from cultured retinal Müller cells. Invest. Ophthalmol. Vis. Sci. 49, 4641–4646 10.1167/iovs.08-2049
    1. Savitt J. M., Dawson V. L., Dawson T. M. (2006). Diagnosis and treatment of Parkinson disease: molecules to medicine. J. Clin. Invest. 116, 1744–1754 10.1172/JCI29178
    1. Sawada H., Fukuchi T., Tanaka T., Abe H. (2010). Tumor necrosis factor-α concentrations in the aqueous humor of patients with glaucoma. Invest. Ophthalmol. Vis. Sci. 51, 903–906 10.1167/iovs.09-4247
    1. Schori H., Kipnis J., Yoles E., WoldeMussie E., Ruiz G., Wheeler L. A., et al. (2001). Vaccination for protection of retinal ganglion cells against death from glutamate cytotoxicity and ocular hypertension: implications for glaucoma. Proc. Natl. Acad. Sci. U.S.A. 98, 3398–3403 10.1073/pnas.041609498
    1. Shimazawa M., Ito Y., Inokuchi Y., Hara H. (2007). Involvement of double-stranded RNA-dependent protein kinase in ER stress-induced retinal neuron damage. Invest. Ophthalmol. Vis. Sci. 48, 3729–3736 10.1167/iovs.06-1122
    1. Shindler K. S., Ventura E., Dutt M., Elliott P., Fitzgerald D. C., Rostami A. (2010). Oral resveratrol reduces neuronal damage in a model of multiple sclerosis. J. Neuroophthalmol. 30, 32–339 10.1097/WNO.0b013e3181f7f833
    1. Smith C. A., Williams G. T., Kingston R., Jenkinson E. J., Owen J. J. (1989). Apoptosis. Nature 338, 10 10.1038/338010d0
    1. Son J. L., Soto I., Oglesby E., Lopez-Roca T., Pease M. E., Quigley H. A., et al. (2010). Glaucomatous optic nerve injury involves early astrocyte reactivity and late oligodendrocyte loss. Glia 58, 780–789 10.1002/glia.20962
    1. Spear P. D. (1993). Neural bases of visual deficits during aging. Vision Res. 33, 2589–2609 10.1016/0042-6989(93)90218-L
    1. Stemme S., Hansson H. A., Holmgren A., Rozell B. (1985). Axoplasmic transport of thioredoxin and thioredoxin reductase in rat sciatic nerve. Brain Res. 359, 140–146 10.1016/0006-8993(85)91421-0
    1. Streilein J. W., Okamoto S., Sano Y., Taylor A. W. (2000). Neural control of ocular immune privilege. Ann. N.Y. Acad. Sci. 917, 297–306 10.1111/j.1749-6632.2000.tb05396.x
    1. Sullivan T. A., Geisert E. E., Hines-Beard J., Rex T. S. (2011). Systemic adeno-associated virus-mediated gene therapy preserves retinal ganglion cells and visual function in DBA/2J glaucomatous mice. Hum. Gene Ther. 22, 1191–1200 10.1089/hum.2011.052
    1. Susin S. A., Lorenzo H. K., Zamzami N., Marzo I., Snow B. E., Brothers G. M., et al. (1999). Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397, 441–446 10.1038/17135
    1. Takada K., Munemasa Y., Kuribayashi J., Fujino H., Kitaoka Y. (2011). Protective effect of thalidomide against N-methyl-D-aspartate-induced retinal neurotoxicity. J. Neurosci. Res. 89, 1596–1604 10.1002/jnr.22698
    1. Takeda H., Kitaoka Y., Hayashi Y., Kumai T., Munemasa Y., Fujino H., et al. (2007). Calcium/calmodulin-dependent protein kinase II regulates the phosphorylation of CREB in NMDA-induced retinal neurotoxicity. Brain Res. 1184, 306–315 10.1016/j.brainres.2007.09.055
    1. Tao X., Finkbeiner S., Arnold D. B., Shaywitz A. J., Greenberg M. E. (1998). Ca2+ influx regulates BDNF transcription by a CREB family transcription factor-dependent mechanism. Neuron 20, 709–726 10.1016/S0896-6273(00)81010-7
    1. Tezel G. (2006). Oxidative stress in glaucomatous neurodegeneration: mechanisms and consequences. Prog. Retin. Eye Res. 25, 490–513 10.1016/j.preteyeres.2006.07.003
    1. Tezel G., Li L. Y., Patil R. V., Wax M. B. (2001). TNF-alpha and TNF-alpha receptor-1 in the retina of normal and glaucomatous eyes. Invest. Ophthalmol. Vis. Sci. 42, 1787–1794
    1. Tezel G., Wax M. B. (1999). Inhibition of caspase activity in retinal cell apoptosis induced by various stimuli in vitro. Invest. Ophthalmol. Vis. Sci. 40, 2660–2667
    1. Tezel G., Wax M. B. (2000). Increased production of tumor necrosis factor-α by glial cells exposed to simulated ischemia or elevated hydrostatic pressure induced apoptosis in cocultured retinal ganglion cells. J. Neurosci. 20, 8693–8700
    1. Tezel G., Wax M. B. (2004). Hypoxia-inducible factor 1alpha in the glaucomatous retina and optic nerve head. Arch. Ophthalmol. 122, 1348–1356 10.1001/archopht.122.9.1348
    1. Tezel G., Yang X., Luo C., Cai J., Powell D. W. (2012). An astrocyte-specific proteomic approach to inflammatory responses in experimental rat glaucoma. Invest. Ophthalmol. Vis. Sci. 53, 4220–4233 10.1167/iovs.11-9101
    1. Tielsch J. M., Katz J., Singh K., Quigley H. A., Gottsch J. D., Javitt J., et al. (1991). A population-based evaluation of glaucoma screening: the Baltimore Eye Survey. Am. J. Epidemiol. 134, 1102–1110
    1. Tonari M., Kurimoto T., Horie T., Sugiyama T., Ikeda T., Oku H. (2012). Blocking endothelin-B receptors rescues retinal ganglion cells from optic nerve injury through suppression of neuroinflammation. Invest. Ophthalmol. Vis. Sci. 53, 3490–3500 10.1167/iovs.11-9415
    1. Tonge D., Chan K., Zhu N., Panjwani A., Arno M., Lynham S., et al. (2008). Enhancement of axonal regeneration by in vitro conditioning and its inhibition by cyclopentenone prostaglandins. J. Cell Sci. 121, 2565–2577 10.1242/jcs.024943
    1. Tsacopoulos M., Magistretti P. J. (1996). Metabolic coupling between glia and neurons. J. Neurosci. 16, 877–885
    1. Unterlauft J. D., Eichler W., Kuhne K., Yang X. M., Yafai Y., Wiedemann P., et al. (2012). Pigment epithelium-derived factor released by Müller glial cells exerts neuroprotective effects on retinal ganglion cells. Neurochem. Res. 37, 1524–1533 10.1007/s11064-012-0747-8
    1. Van Bergen N. J., Crowston J. G., Kearns L. S., Staffieri S. E., Hewitt A. W., Cohn A. C., et al. (2011). Mitochondrial oxidative phosphorylation compensation may preserve vision in patients with OPA1-linked autosomal dominant optic atrophy. PLoS ONE 6:e21347 10.1371/journal.pone.0021347
    1. VonDran M. W., Singh H., Honeywell J. Z., Dreyfus C. F. (2011). Levels of BDNF impact oligodendrocyte lineage cells following a cuprizone lesion. J. Neurosci. 31, 14182–14190 10.1523/JNEUROSCI.6595-10.2011
    1. Walton M., Woodgate A. M., Muravlev A., Xu R., During M. J., Dragunow M. (1999). CREB phosphorylation promotes nerve cell survival. J. Neurochem. 73, 1836–1842 10.1046/j.1471-4159.1999.01836.x
    1. Wang D., Masutani H., Oka S., Tanaka T., Yamaguchi-Iwai Y., Nakamura H., et al. (2006). Control of mitochondrial outer membrane permeabilization and Bcl-xL levels by thioredoxin 2 in DT40 cells. J. Biol. Chem. 281, 7384–7391 10.1074/jbc.M509876200
    1. Wang G. L., Jiang B. H., Rue E. A., Semenza G. L. (1995). Hypoxia inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc. Natl. Acad. Sci. U.S.A. 92, 5510–5514
    1. Wang J., Zhai Q., Chen Y., Lin E., Gu W., McBurney M. W., et al. (2005). A local mechanism mediates NAD-dependent protection of axon degeneration. J. Cell. Biol. 170, 349–355 10.1083/jcb.200504028
    1. Watson F. L., Heerssen H. M., Moheban D. B., Lin M. Z., Sauvageot C. M., Bhattacharyya A., et al. (1999). Rapid nuclear responses to target-derived neurotrophins require retrograde transport of ligand-receptor complex. J. Neurosci. 19, 7889–7900
    1. Wax M. B., Tezel G., Yang J., Peng G., Patil R. V., Agarwal N., et al. (2008). Induced autoimmunity to heat shock proteins elicits glaucomatous loss of retinal ganglion cell neurons via activated T-cell-derived fas-ligand. J. Neurosci. 28, 12085–12096 10.1523/JNEUROSCI.3200-08.2008
    1. Weber A. J., Viswanáthan S., Ramanathan C., Harman C. D. (2010). Combined application of BDNF to the eye and brain enhances ganglion cell survival and function in the cat after optic nerve injury. Invest. Ophthalmol. Vis. Sci. 51, 327–334 10.1167/iovs.09-3740
    1. Williams P. A., Piechota M., von Ruhland C., Taylor E., Morgan J. E., Votruba M. (2012). Opa1 is essential for retinal ganglion cell synaptic architecture and connectivity. Brain 135, 493–505 10.1093/brain/awr330
    1. Yahata N., Yuasa S., Araki T. (2009). Nicotinamide mononucleotide adenylyltransferase expression in mitochondrial matrix delays Wallerian degeneration. J. Neurosci. 29, 6276–6284 10.1523/JNEUROSCI.4304-08.2009
    1. Yan X., Tezel G., Wax M. B., Edward D. P. (2000). Matrix metalloproteinases and tumor necrosis factor alpha in glaucomatous optic nerve head. Arch. Ophthalmol. 118, 666–678 10.1001/archopht.118.5.666
    1. Yang X., Luo C., Cai J., Powell D. W., Yu D., Kuehn M. H., et al. (2011). Neurodegenerative and inflammatory pathway components linked to TNF-α/TNFR1 signaling in the glaucomatous human retina. Invest. Ophthalmol. Vis. Sci. 52, 8422–8454 10.1167/iovs.11-8152
    1. Yin Y., Cui Q., Li Y., Irwin N., Fischer D., Harvey A. R., et al. (2003). Macrophage-derived factors stimulate optic nerve regeneration. J. Neurosci. 23, 2284–2293
    1. Yuan L., Neufeld A. H. (2000). Tumor necrosis factor-alpha: a potentially neurodestructive cytokine produced by glia in the human glaucomatous optic nerve head. Glia 32, 42–50 10.1002/1098-1136(200010)32:1<42::AID-GLIA40>;2-3
    1. Yuan L., Neufeld A. H. (2001). Activated microglia in the human glaucomatous optic nerve head. J. Neurosci. Res. 64, 523–532
    1. Yuki K., Ozawa Y., Yoshida T., Kurihara T., Hirasawa M., Ozeki N., et al. (2011). Retinal ganglion cell loss in superoxide dismutase 1 deficiency. Invest. Ophthalmol. Vis. Sci. 52, 4143–4150 10.1167/iovs.10-6294

Source: PubMed

3
订阅