The ratios of CD8+ T cells to CD4+CD25+ FOXP3+ and FOXP3- T cells correlate with poor clinical outcome in human serous ovarian cancer

Claudia C Preston, Matthew J Maurer, Ann L Oberg, Daniel W Visscher, Kimberly R Kalli, Lynn C Hartmann, Ellen L Goode, Keith L Knutson, Claudia C Preston, Matthew J Maurer, Ann L Oberg, Daniel W Visscher, Kimberly R Kalli, Lynn C Hartmann, Ellen L Goode, Keith L Knutson

Abstract

Ovarian cancer is an immune reactive malignancy with a complex immune suppressive network that blunts successful immune eradication. This suppressive microenvironment may be mediated by recruitment or induction of CD4(+) regulatory T cells (Tregs). Our study sought to investigate the association of tumor-infiltrating CD4(+)CD25(+)FOXP3(+) Tregs, and other immune factors, with clinical outcome in serous ovarian cancer patients. We performed immunofluorescence and quantification of intraepithelial tumor-infiltrating triple positive Tregs (CD4(+)CD25(+)FOXP3(+)), as well as CD4(+)CD25(+)FOXP3(-), CD3(+) and CD8(+) T cells in tumor specimens from 52 patients with high stage serous ovarian carcinoma. Thirty-one of the patients had good survival (i.e. > 60 months) and 21 had poor survival of < 18 months. Total cell counts as well as cell ratios were compared among these two outcome groups. The total numbers of CD4(+)CD25(+)FOXP3(+) Tregs, CD4(+)CD25(+)FOXP3(-), CD3(+) and CD8(+) cells were not significantly different between the groups. However, higher ratios of CD8(+)/CD4(+)CD25(+)FOXP3(+) Treg, CD8(+)/CD4(+) and CD8/CD4(+)CD25(+)FOXP3(-) cells were seen in the good outcome group when compared to the patients with poor outcome. These data show for the first time that the ratios of CD8(+) to both CD4(+)CD25(+)FOXP3(+) Tregs and CD4(+)CD25(+)FOXP3(-) T cells are associated with disease outcome in ovarian cancer. The association being apparent in ratios rather than absolute count of T cells suggests that the effector/suppressor ratio may be a more important indicator of outcome than individual cell count. Thus, immunotherapy strategies that modify the ratio of CD4(+)CD25(+)FOXP3(+) Tregs or CD4(+)CD25(+)FOXP3(-) T cells to CD8(+) effector cells may be useful in improving outcomes in ovarian cancer.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1. Triple-positive Tregs infiltrate into the…
Figure 1. Triple-positive Tregs infiltrate into the tumor microenvironment of ovarian cancer.
(A) Photo of CD4+CD25+FOXP3+ Tregs in ovarian tumor samples. Top left panel shows CD4 expression (red signal), top right panel shows CD25 expression (green signal), bottom left panel shows FOXP3 expression (blue signal) and bottom right panel shows the combined signals with arrows pointing to triple stained CD4+CD25+FOXP3+ Tregs. In this picture Tregs are seen in close contact to CD4+CD25+FOXP3- cells. (B) Photo of intraepithelial infiltrating CD8+ cytotoxic T cells (left panel) and CD3+ lymphocytes (right panel) in ovarian cancer. This representative scan shows CD8 and CD3 expression (red signal = CD8 or CD3, blue signal = DAPI) in ovarian tumor mass. (C) Correlation plot comparing CD3 counts to either CD8 (filled symbols) and CD4 counts (open symbols). The symbols represent the sum of the 20 fields counted for a unique patient. All patients are represented. The inset lines are the product of linear regression analysis. (D) Shows the overall mean (± SEM, n=52) CD3+, CD4+, and CD8+ T cell counts (sum of 20 fields) for all patients. (E) Correlation plot comparing the total Treg (i.e. CD4+CD25+Foxp3+) counts with the sum of the maximum 3 (MAX3) fields or the maximum field count (MAX1). The symbols represent the sum of the 20 fields counted for a unique patient. All patients are represented. The inset lines are least squares regression lines.
Figure 2. CD4 + or CD8 +…
Figure 2. CD4+ or CD8+ myeloid cells contribute are a minor fraction of the total CD4+ or CD8+ cells, respectively.
(A-B) Bar graphs showing the mean (± SEM, n=3) levels of CD3-CD4+ or CD8+, respectively as a percentage of the total CD4+ or CD8+ T cells, respectively. (C) shown are 4 representative dual color dot plots staining either CD4- or CD8-gated cells. The antibody specificities are noted with the axis. (D) Shown are the mean (± SEM, n=3) levels of CD11C+, BDCA2+ and CD68+ cells as a total CD4+ or CD8+ cells (X-axis).
Figure 3. The CD8 + /Treg ratio…
Figure 3. The CD8+/Treg ratio correlates with clinical outcome in serous ovarian cancer.
(A) Pie chart showing the distribution of CD4+ T cells with respect to CD25 and FOXP3 staining in all patients. (B-D) Scatter dot plots of the ratios of CD8+ T cell counts to Tregs (CD4+CD25+FOXP3+) (B), CD4+CD25+FOXP3- T cells (C), or combined CD4+CD25+FOXP3+ and CD4+CD25+FOXP3- T cells (D) for both the good outcome and poor outcome groups.
Figure 4. Tumor-infiltrating CD4 + CD25 +…
Figure 4. Tumor-infiltrating CD4+CD25+ cells up-regulate FoxP3 and TGF-β expression upon activation.
(A) Shown are two dots plots of purified tumor-infiltrating CD4+ T cells stimulated with ConA or media alone. Cells are gated on CD4 and CD25. (B) Bar charts showing the mean (± SEM, n=3 unique patient samples) percentage of FoxP3+ and TGF-β T cells among the total CD4+CD25+ T cells stimulated with either ConA or media alone. P value obtained by a paired Student’s T test.

References

    1. Aletti GD, Gallenberg MM, Cliby WA, Jatoi A, Hartmann LC (2007) Current management strategies for ovarian cancer. Mayo Clin Proc 82: 751-770. doi:10.1016/S0025-6196(11)61196-8. PubMed: .
    1. Cannistra SA (2004) Cancer of the ovary. N Engl J Med 351: 2519-2529. doi:10.1056/NEJMra041842. PubMed: .
    1. Ozols RF, Bundy BN, Greer BE, Fowler JM, Clarke-Pearson D et al. (2003) Phase III trial of carboplatin and paclitaxel compared with cisplatin and paclitaxel in patients with optimally resected stage III ovarian cancer: a Gynecologic Oncology Group study. J Clin Oncol 21: 3194-3200. doi:10.1200/JCO.2003.02.153. PubMed: .
    1. Hoskins P, Vergote I, Cervantes A, Tu D, Stuart G et al. (2010) Advanced ovarian cancer: phase III randomized study of sequential cisplatin-topotecan and carboplatin-paclitaxel vs carboplatin-paclitaxel. J Natl Cancer Inst 102: 1547-1556. doi:10.1093/jnci/djq362. PubMed: .
    1. Trimble EL, Birrer MJ, Hoskins WJ, Marth C, Petryshyn R et al. (2010) Current academic clinical trials in ovarian cancer: Gynecologic Cancer InterGroup and US National Cancer Institute Clinical Trials Planning Meeting, May 2009. Int J Gynecol Cancer 20: 1290-1298. doi:10.1111/IGC.0b013e3181ee1c01. PubMed: .
    1. Winter WE 3rd, Maxwell GL, Tian C, Carlson JW, Ozols RF, et al. (2007) Prognostic factors for stage III epithelial ovarian cancer: a Gynecologic Oncology Group Study. J Clin Oncol 25: 3621-3627. doi:10.1200/JCO.2006.10.2517. PubMed: .
    1. Zhang L, Conejo-Garcia JR, Katsaros D, Gimotty PA, Massobrio M et al. (2003) Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med 348: 203-213. doi:10.1056/NEJMoa020177. PubMed: .
    1. Sato E, Olson SH, Ahn J, Bundy B, Nishikawa H et al. (2005) Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc Natl Acad Sci U S A 102: 18538-18543. doi:10.1073/pnas.0509182102. PubMed: .
    1. Coleman S, Clayton A, Mason MD, Jasani B, Adams M et al. (2005) Recovery of CD8+ T-cell function during systemic chemotherapy in advanced ovarian cancer. Cancer Res 65: 7000-7006. doi:10.1158/0008-5472.CAN-04-3792. PubMed: .
    1. Ho M, Hassan R, Zhang J, Wang QC, Onda M et al. (2005) Humoral immune response to mesothelin in mesothelioma and ovarian cancer patients. Clin Cancer Res 11: 3814-3820. doi:10.1158/1078-0432.CCR-04-2304. PubMed: .
    1. Goodell V, Salazar LG, Urban N, Drescher CW, Gray H et al. (2006) Antibody immunity to the p53 oncogenic protein is a prognostic indicator in ovarian cancer. J Clin Oncol 24: 762-768. doi:10.1200/JCO.2005.03.2813. PubMed: .
    1. Preston CC, Goode EL, Hartmann LC, Kalli KR, Knutson KL (2011) Immunity and immune suppression in human ovarian cancer. J Immunother 3: 539-556. doi:10.2217/imt.11.20. PubMed: .
    1. Chen F, Hou M, Ye F, Lv W, Xie X (2009) Ovarian cancer cells induce peripheral mature dendritic cells to differentiate into macrophagelike cells in vitro. Int J Gynecol Cancer 19: 1487-1493. doi:10.1111/IGC.0b013e3181bb70c6. PubMed: .
    1. Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P et al. (2004) Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10: 942-949. doi:10.1038/nm1093. PubMed: .
    1. Li X, Ye DF, Xie X, Chen HZ, Lu WG (2005) Proportion of CD4+CD25+ regulatory T cell is increased in the patients with ovarian carcinoma. Cancer Invest 23: 399-403. doi:10.1081/CNV-200067142. PubMed: .
    1. Fontenot JD, Gavin MA, Rudensky AY (2003) Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 4: 330-336. doi:10.1038/ni904. PubMed: .
    1. Hori S, Nomura T, Sakaguchi S (2003) Control of regulatory T cell development by the transcription factor Foxp3. Science 299: 1057-1061. doi:10.1126/science.1079490. PubMed: .
    1. Fontenot JD, Rasmussen JP, Gavin MA, Rudensky AY (2005) A function for interleukin 2 in Foxp3-expressing regulatory T cells. Nat Immunol 6: 1142-1151. doi:10.1038/ni1263. PubMed: .
    1. Setoguchi R, Hori S, Takahashi T, Sakaguchi S (2005) Homeostatic maintenance of natural Foxp3(+) CD25(+) CD4(+) regulatory T cells by interleukin (IL)-2 and induction of autoimmune disease by IL-2 neutralization. J Exp Med 201: 723-735. doi:10.1084/jem.20041982. PubMed: .
    1. Milne K, Köbel M, Kalloger SE, Barnes RO, Gao D et al. (2009) Systematic analysis of immune infiltrates in high-grade serous ovarian cancer reveals CD20, FoxP3 and TIA-1 as positive prognostic factors. PLOS ONE 4: e6412. doi:10.1371/journal.pone.0006412. PubMed: .
    1. Ladoire S, Mignot G, Dalban C, Chevriaux A, Arnould L et al. (2012) FOXP3 expression in cancer cells and anthracyclines efficacy in patients with primary breast cancer treated with adjuvant chemotherapy in the phase III UNICANCER-PACS 01 trial. Ann Oncol 23: 2552-2561. doi:10.1093/annonc/mds028. PubMed: .
    1. Noh J, Noh G, Kim HS, Kim AR, Choi WS (2012) Allergen-specific responses of CD19(+)CD5(+)Foxp3(+) regulatory B cells (Bregs) and CD4(+)Foxp3(+) regulatory T cell (Tregs) in immune tolerance of cow milk allergy of late eczematous reactions. Cell Immunol 274: 109-114. doi:10.1016/j.cellimm.2012.01.005. PubMed: .
    1. Kryczek I, Liu R, Wang G, Wu K, Shu X et al. (2009) FOXP3 defines regulatory T cells in human tumor and autoimmune disease. Cancer Res 69: 3995-4000. doi:10.1158/0008-5472.CAN-08-3804. PubMed: .
    1. Knutson KL, Dang Y, Lu H, Lukas J, Almand B et al. (2006) IL-2 immunotoxin therapy modulates tumor-associated regulatory T cells and leads to lasting immune-mediated rejection of breast cancers in neu-transgenic mice. J Immunol 177: 84-91. PubMed: .
    1. Knutson KL, Almand B, Dang Y, Disis ML (2004) Neu antigen-negative variants can be generated after neu-specific antibody therapy in neu transgenic mice. Cancer Res 64: 1146-1151. doi:10.1158/0008-5472.CAN-03-0173. PubMed: .
    1. Valitutti S, Müller S, Salio M, Lanzavecchia A (1997) Degradation of T cell receptor (TCR)-CD3-zeta complexes after antigenic stimulation. J Exp Med 185: 1859-1864. doi:10.1084/jem.185.10.1859. PubMed: .
    1. Ebert EC (2003) Activation of human intraepithelial lymphocytes reduces CD3 expression. Clin Exp Immunol 132: 424-429. doi:10.1046/j.1365-2249.2003.02156.x. PubMed: .
    1. Sinicrope FA, Rego RL, Ansell SM, Knutson KL, Foster NR et al. (2009) Intraepithelial effector (CD3+)/regulatory (FoxP3+) T-cell ratio predicts a clinical outcome of human colon carcinoma. Gastroenterology 137: 1270-1279. doi:10.1053/j.gastro.2009.06.053. PubMed: .
    1. Facciabene A, Motz GT, Coukos G (2012) T-regulatory cells: key players in tumor immune escape and angiogenesis. Cancer Res 72: 2162-2171. doi:10.1158/1538-7445.AM2012-2162. PubMed: .
    1. Gao Q, Qiu SJ, Fan J, Zhou J, Wang XY et al. (2007) Intratumoral balance of regulatory and cytotoxic T cells is associated with prognosis of hepatocellular carcinoma after resection. J Clin Oncol 25: 2586-2593. doi:10.1200/JCO.2006.09.4565. PubMed: .
    1. Knutson KL, Disis ML, Salazar LG (2007) CD4 regulatory T cells in human cancer pathogenesis. Cancer Immunol Immunother 56: 271-285. PubMed: .
    1. Zou W (2006) Regulatory T cells, tumour immunity and immunotherapy. Nat Rev Immunol 6: 295-307. doi:10.1038/nri1806. PubMed: .
    1. Quezada SA, Peggs KS, Curran MA, Allison JP (2006) CTLA4 blockade and GM-CSF combination immunotherapy alters the intratumor balance of effector and regulatory T cells. J Clin Invest 116: 1935-1945. doi:10.1172/JCI27745. PubMed: .
    1. Lipson EJ, Drake CG (2011) Ipilimumab: an anti-CTLA-4 antibody for metastatic melanoma. Clin Cancer Res 17: 6958-6962. doi:10.1158/1078-0432.CCR-11-1595. PubMed: .
    1. Ziegler SF (2006) FOXP3: of mice and men. Annu Rev Immunol 24: 209-226. doi:10.1146/annurev.immunol.24.021605.090547. PubMed: .
    1. Walker MR, Kasprowicz DJ, Gersuk VH, Benard A, Van Landeghen M et al. (2003) Induction of FoxP3 and acquisition of T regulatory activity by stimulated human CD4+CD25- T cells. J Clin Invest 112: 1437-1443. doi:10.1172/JCI200319441. PubMed: .
    1. Walker MR, Carson BD, Nepom GT, Ziegler SF, Buckner JH (2005) De novo generation of antigen-specific CD4+CD25+ regulatory T cells from human CD4+CD25- cells. Proc Natl Acad Sci U S A 102: 4103-4108. doi:10.1073/pnas.0407691102. PubMed: .
    1. Magg T, Mannert J, Ellwart JW, Schmid I, Albert MH (2012) Subcellular localization of FOXP3 in human regulatory and nonregulatory T cells. Eur J Immunol 42: 1627-1638. doi:10.1002/eji.201141838. PubMed: .
    1. Pot C, Apetoh L, Kuchroo VK (2011) Type 1 regulatory T cells (Tr1) in autoimmunity. Semin Immunol 23: 202-208. doi:10.1016/j.smim.2011.07.005. PubMed: .
    1. Chen W, Jin W, Hardegen N, Lei KJ, Li L et al. (2003) Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med 198: 1875-1886. doi:10.1084/jem.20030152. PubMed: .
    1. Davidson TS, DiPaolo RJ, Andersson J, Shevach EM (2007) Cutting Edge: IL-2 is essential for TGF-beta-mediated induction of Foxp3+ T regulatory cells. J Immunol 178: 4022-4026. PubMed: .
    1. DiPaolo RJ, Brinster C, Davidson TS, Andersson J, Glass D et al. (2007) Autoantigen-specific TGFbeta-induced Foxp3+ regulatory T cells prevent autoimmunity by inhibiting dendritic cells from activating autoreactive T cells. J Immunol 179: 4685-4693. PubMed: .
    1. Siddiqui SA, Frigola X, Bonne-Annee S, Mercader M, Kuntz SM et al. (2007) Tumor-infiltrating Foxp3-CD4+CD25+ T cells predict poor survival in renal cell carcinoma. Clin Cancer Res 13: 2075-2081. doi:10.1158/1078-0432.CCR-06-2139. PubMed: .
    1. Köbel M, Kalloger SE, Boyd N, McKinney S, Mehl E et al. (2008) Ovarian carcinoma subtypes are different diseases: implications for biomarker studies. PLOS Med 5: e232. doi:10.1371/journal.pmed.0050232. PubMed: .

Source: PubMed

3
订阅