Vitamin C to Improve Organ Dysfunction in Cardiac Surgery Patients-Review and Pragmatic Approach

Aileen Hill, Sebastian Wendt, Carina Benstoem, Christina Neubauer, Patrick Meybohm, Pascal Langlois, Neill Kj Adhikari, Daren K Heyland, Christian Stoppe, Aileen Hill, Sebastian Wendt, Carina Benstoem, Christina Neubauer, Patrick Meybohm, Pascal Langlois, Neill Kj Adhikari, Daren K Heyland, Christian Stoppe

Abstract

The pleiotropic biochemical and antioxidant functions of vitamin C have sparked recent interest in its application in intensive care. Vitamin C protects important organ systems (cardiovascular, neurologic and renal systems) during inflammation and oxidative stress. It also influences coagulation and inflammation; its application might prevent organ damage. The current evidence of vitamin C's effect on pathophysiological reactions during various acute stress events (such as sepsis, shock, trauma, burn and ischemia-reperfusion injury) questions whether the application of vitamin C might be especially beneficial for cardiac surgery patients who are routinely exposed to ischemia/reperfusion and subsequent inflammation, systematically affecting different organ systems. This review covers current knowledge about the role of vitamin C in cardiac surgery patients with focus on its influence on organ dysfunctions. The relationships between vitamin C and clinical health outcomes are reviewed with special emphasis on its application in cardiac surgery. Additionally, this review pragmatically discusses evidence on the administration of vitamin C in every day clinical practice, tackling the issues of safety, monitoring, dosage, and appropriate application strategy.

Keywords: antioxidant therapy; ascorbic acid; cardiac surgery; multi organ failure; nutrient; organ dysfunction; oxidative stress; vitamin C.

Conflict of interest statement

The authors declare no conflict of interest that may be perceived as inappropriately influencing the representation or interpretation of reported research results.

Figures

Figure 1
Figure 1
Pathophysiological mechanisms of organ damage in cardiac surgery.
Figure 2
Figure 2
Cerebral dysfunction after cardiac surgery.
Figure 3
Figure 3
Cardiovascular dysfunction after cardiac surgery, LCOS = low cardiac output syndrome.
Figure 4
Figure 4
Pulmonary dysfunction after cardiac surgery.
Figure 5
Figure 5
Renal dysfunction in cardiac surgery.
Figure 6
Figure 6
Gastrointestinal dysfunction after cardiac surgery.
Figure 7
Figure 7
Coagulation disorders after cardiac surgery.
Figure 8
Figure 8
Dysfunction of the immune system after cardiac surgery.

References

    1. Prondzinsky R., Knüpfer A., Loppnow H., Redling F., Lehmann D.W., Stabenow I., Witthaut R., Unverzagt S., Radke J., Zerkowski H.R., et al. Surgical trauma affects the proinflammatory status after cardiac surgery to a higher degree than cardiopulmonary bypass. J. Thorac. Cardiovasc. Surg. 2005;129:760–766. doi: 10.1016/j.jtcvs.2004.07.052.
    1. Laffey J.G., Boylan J.F., Cheng D.C.H. The systemic inflammatory response to cardiac surgery: Implications for the anesthesiologist. Anesthesiology. 2002;97:215–252.
    1. Bronicki R.A., Hall M. Cardiopulmonary bypass-induced inflammatory response: Pathophysiology and treatment. Pediatric critical care medicine: A journal of the Society of Critical Care Medicine and the World. Pediatr. Crit. Care Med. 2016;17:S272–S278. doi: 10.1097/PCC.0000000000000759.
    1. Butler J., Rocker G.M., Westaby S. Inflammatory Response to Cardiopulmonary Bypass. Ann. Thorac. Surg. 1993;55:552–559. doi: 10.1016/0003-4975(93)91048-R.
    1. Chenoweth D.E., Cooper S.W., Hugli T.E., Stewart R.W., Blackstone E.H., Kirklin J.W. Complement activation during cardiopulmonary bypass: Evidence for generation of c3a and c5a anaphylatoxins. N. Eng. J. Med. 1981;304:497–503. doi: 10.1056/NEJM198102263040901.
    1. Hall T.S. The pathophysiology of cardiopulmonary bypass: The risks and benefits of hemodilution. Chest. 1995;107:1125–1133. doi: 10.1378/chest.107.4.1125.
    1. Khabar K.S., ElBarbary M.A., Khouqeer F., Devol E., Al-Gain S., Al-Halees Z. Circulating Endotoxin and Cytokines After Cardiopulmonary Bypass: Differential Correlation with Duration of Bypass and Systemic Inflammatory Response/multiple Organ Dysfunction Syndromes. Clin. Immunol. Immunopathol. 1997;85:97–103. doi: 10.1006/clin.1997.4413.
    1. Moore F.D., Warner K.G., Assousa S., Valeri C.R., Khuri S.F. The effects of complement activation during cardiopulmonary bypass. Attenuation by hypothermia, heparin, and hemodilution. Ann. Surg. 1998;208:95–103. doi: 10.1097/00000658-198807000-00014.
    1. Raja S.G., Berg G.A. Impact of off-pump coronary artery bypass surgery on systemic inflammation: Current best available evidence. J. Card. Surg. 2007;22:445–455. doi: 10.1111/j.1540-8191.2007.00447.x.
    1. Hall R. Identification of inflammatory mediators and their modulation by strategies for the management of the systemic inflammatory response during cardiac surgery. J. Cardiothorac. Vasc. Anesth. 2013;27:983–1033. doi: 10.1053/j.jvca.2012.09.013.
    1. Landis R.C., Brown J.R., Fitzgerald D., Likosky D.S., Shore-Lesserson L., Baker R.A., Hammon J.W. Attenuating the systemic inflammatory response to adult cardiopulmonary bypass: A critical review of the evidence base. J. Extra Corpor. Technol. 2014;46:197–211.
    1. Rossaint J., Berger C., Aken H.V., Scheld H.H., Zahn P.K., Rukosujew A., Zarbock A. Cardiopulmonary bypass during cardiac surgery modulates systemic inflammation by affecting different steps of the leukocyte recruitment cascade. PLoS ONE. 2012;7:e45738. doi: 10.1371/journal.pone.0045738.
    1. Paparella D., Yau T.M., Young E. Cardiopulmonary bypass induced inflammation: Pathophysiology and treatment. an update. Eur. J. Cardiothorac. Surg. 2002;21:232–244. doi: 10.1016/S1010-7940(01)01099-5.
    1. Hickey E., Karamlou T., You J., Ungerleider R.M. Effects of Circuit Miniaturization in Reducing Inflammatory Response to Infant Cardiopulmonary Bypass by Elimination of Allogeneic Blood Products. Ann. Thorac. Surg. 2006;81:S2367–S2372. doi: 10.1016/j.athoracsur.2006.02.071.
    1. Jansen P.G., te Velthuis H., Bulder E.R., Paulus R., Scheltinga M.R., Eijsman L., Wildevuur C.R. Reduction in prime volume attenuates the hyperdynamic response after cardiopulmonary bypass. Ann. Thorac. Surg. 1995;60:544–549. doi: 10.1016/0003-4975(95)00385-X.
    1. Magder S. Reactive oxygen species: Toxic molecules or spark of life? Crit. Care. 2006;10:208. doi: 10.1186/cc3992.
    1. Roy J., Galano J.-M., Durand T., Le Guennec J.Y., Lee J.C.-Y. Physiological role of reactive oxygen species as promoters of natural defenses. FASEB J. 2017;31:3729–3745. doi: 10.1096/fj.201700170R.
    1. Roth E., Manhart N., Wessner B. Assessing the antioxidative status in critically ill patients. Curr. Opin. Clin. Nutr. Metab. Care. 2004;7:161–168. doi: 10.1097/00075197-200403000-00010.
    1. Koekkoek W.A., van Zanten A.R. Antioxidant vitamins and trace elements in critical illness. Nutr. Clin. Pract. 2016;31:457–474. doi: 10.1177/0884533616653832.
    1. Levy J.H., Tanaka K.A. Inflammatory Response to Cardiopulmonary Bypass. Ann. Thorac. Surg. 2003;75:S715–S720. doi: 10.1016/S0003-4975(02)04701-X.
    1. Seghaye M.C., Grabitz R.G., Duchateau J., Busse S., Däbritz S., Koch D., Alzen G., Hörnchen H., Messmer B.J., Von Bernuth G. Inflammatory reaction and capillary leak syndrome related to cardiopulmonary bypass in neonates undergoing cardiac operations. J. Thorac. Cardiovasc. Surg. 1996;112:687–697. doi: 10.1016/S0022-5223(96)70053-3.
    1. Crimi E., Sica V., Slutsky A.S., Zhang H., Williams-Ignarro S., Ignarro L.J., Napoli C. Role of oxidative stress in experimental sepsis and multisystem organ dysfunction. Free Radic. Res. 2006;40:665–672. doi: 10.1080/10715760600669612.
    1. Kollef M.H., Wragge T., Pasque C. Determinants of mortality and multiorgan dysfunction in cardiac surgery patients requiring prolonged mechanical ventilation. Chest. 1995;107:1395–1401. doi: 10.1378/chest.107.5.1395.
    1. Suleiman M.-S., Zacharowski K., Angelini G.D. Inflammatory response and cardioprotection during open-heart surgery: The importance of anaesthetics. Br. J. Pharmacol. 2008;153:21–33. doi: 10.1038/sj.bjp.0707526.
    1. Stoppe C., McDonald B., Benstoem C., Elke G., Meybohm P., Whitlock R., Fremes S., Fowler R., Lamarche R., Jiang X., et al. Evaluation of persistent organ dysfunction plus death as a novel composite outcome in cardiac surgical patients. J. Cardiothorac. Vasc. Anesth. 2016;30:30–38. doi: 10.1053/j.jvca.2015.07.035.
    1. Karlsen A., Blomhoff R., Gundersen T.E. Stability of whole blood and plasma ascorbic acid. Eur. J. Clin. Nutr. 2007;61:1233–1236. doi: 10.1038/sj.ejcn.1602655.
    1. Levine M., Rumsey S.C., Daruwala R., Park J.B., Wang Y. Criteria and recommendations for vitamin c intake. JAMA. 1999;281:1415–1423. doi: 10.1001/jama.281.15.1415.
    1. Carr A.C., Frei B. Toward a new recommended dietary allowance for vitamin C based on antioxidant and health effects in humans. Am. J. Clin. Nutr. 1999;69:1086–1107. doi: 10.1093/ajcn/69.6.1086.
    1. Jacob R.A., Burri B.J. Human metabolism and the requirement for vitamin C. In: Packer L., Fuchs J., editors. Vitamin C in Health and Disease. Marcel Dekker Inc.; New York, NY, USA: 1997. pp. 341–366.
    1. Tsao C.S. An overview of ascorbic acid chemistry and biochemistry. In: Packer L., Fuchs J., editors. Vitamin C in Health and Disease. Marcel Dekker Inc.; New York, NY, USA: 1997. pp. 25–58.
    1. Huang Y., Tang X., Xie W., Zhou Y., Li D., Zhou Y., Zhu J., Yuan T., Lai L., Pang D., Ouyang H. Vitamin C enhances in vitro and in vivo development of porcine somatic cell nuclear transfer embryos. Biochem. Biophys. Res. Commun. 2011;411:397–401. doi: 10.1016/j.bbrc.2011.06.160.
    1. Esteban M.A., Wang T., Qin B., Yang J., Qin D., Cai J., Li W., Weng Z., Chen J., Ni S., et al. Vitamin C enhances the generation of mouse and human induced pluripotent stem cells. Cell Stem. Cell. 2010;6:71–79. doi: 10.1016/j.stem.2009.12.001.
    1. Takahashi T., Lord B., Schulze P.C., Fryer R.M., Sarang S.S., Gullans S.R., Lee R.T. Ascorbic acid enhances differentiation of embryonic stem cells into cardiac myocytes. Circulation. 2003;107:1912–1916. doi: 10.1161/01.CIR.0000064899.53876.A3.
    1. Cao N., Liu Z., Chen Z., Wang J., Chen T., Zhao S., Ma Y., Qin L., Kang J., Wei B., et al. Ascorbic acid enhances the cardiac differentiation of induced pluripotent stem cells through promoting the proliferation of cardiac progenitor cells. Cell Res. 2012;22:219–236. doi: 10.1038/cr.2011.195.
    1. Yin R., Mao S.-Q., Zhao B., Chong Z., Yang Y., Zhao C., Zhang D., Huang H., Gao J., Li Z., et al. Ascorbic acid enhances tet-mediated 5-methylcytosine oxidation and promotes DNA demethylation in mammals. J. Am. Chem. Soc. 2013;135:10396–10403. doi: 10.1021/ja4028346.
    1. Frei B., England L., Ames B.N. Ascorbate is an outstanding antioxidant in human blood plasma. Proc. Natl. Acad. Sci. USA. 1989;86:6377–6381. doi: 10.1073/pnas.86.16.6377.
    1. Frei B., Stocker R., England L., Ames B.N. Ascorbate: The most effective antioxidant in human blood plasma. Antioxid. Ther. Prev. Med. 1990;264:155–163.
    1. Carr A.C., Maggini S. Vitamin C and immune function. Nutrients. 2017;9:1211. doi: 10.3390/nu9111211.
    1. Carr A.C., Shaw G.M., Fowler A.A., Natarajan R. Ascorbate-dependent vasopressor synthesis: A rationale for vitamin C administration in severe sepsis and septic shock? Crit. Care. 2015;19:418. doi: 10.1186/s13054-015-1131-2.
    1. Oudemans-van Straaten H.M., Spoelstra-de Man A.M., de Waard M.C. Vitamin C revisited. Crit. Care. 2014;18:460. doi: 10.1186/s13054-014-0460-x.
    1. Berger M.M., Oudemans-van Straaten H.M. Vitamin C supplementation in the critically ill patient. Curr. Opin. Clin. Nutr. Metabol. Care. 2015;18:193–201. doi: 10.1097/MCO.0000000000000148.
    1. Han M., Pendem S., Teh S.L., Sukumaran D.K., Wu F., Wilson J.X. Ascorbate protects endothelial barrier function during septic insult: Role of protein phosphatase type 2a. Free Radic. Biol. Med. 2010;48:128–135. doi: 10.1016/j.freeradbiomed.2009.10.034.
    1. Tyml K. Vitamin C and microvascular dysfunction in systemic inflammation. Antioxidants. 2017;6:49. doi: 10.3390/antiox6030049.
    1. Yamamoto T., Kinoshita M., Shinomiya N., Hiroi S., Sugasawa H., Matsushita Y., Majima T., Saitoh D., Seki S. Pretreatment with ascorbic acid prevents lethal gastrointestinal syndrome in mice receiving a massive amount of radiation. J. Radiat. Res. 2010;51:145–156. doi: 10.1269/jrr.09078.
    1. Cecconi M., Evans L., Levy M., Rhodes A. Sepsis and septic shock. Lancet. 2018;392:75–87. doi: 10.1016/S0140-6736(18)30696-2.
    1. Carr A.C., Rosengrave P.C., Bayer S., Chambers S., Mehrtens J., Shaw G.M. Hypovitaminosis C and vitamin C deficiency in critically ill patients despite recommended enteral and parenteral intakes. Crit. Care. 2017;21:300. doi: 10.1186/s13054-017-1891-y.
    1. Wilson J.X. Evaluation of vitamin C for adjuvant sepsis therapy. Antioxid. Redox Signal. 2013;19:2129–2140. doi: 10.1089/ars.2013.5401.
    1. Long C.L., Maull K.I., Krishnan R.S., Laws H.L., Geiger J.W., Borghesi L., Franks W., Lawson T.C., Sauberlich H.E. Ascorbic acid dynamics in the seriously ill and injured. J. Surg. Res. 2003;109:144–148. doi: 10.1016/S0022-4804(02)00083-5.
    1. Angelique M.E., Spoelstra-de Man A.M., Elbers P.W., Oudemans-van Straaten H.M. Making sense of early high-dose intravenous vitamin C in ischemia/reperfusion injury. Crit. Crit. Care. 2018;22:70.
    1. Borrelli E., Roux-Lombard P., Grau G.E., Girardin E., Ricou B., Dayer J.M., Suter P.M. Plasma concentrations of cytokines, their soluble receptors, and antioxidant vitamins can predict the development of multiple organ failure in patients at risk. Crit. Care Med. 1996;24:392–397. doi: 10.1097/00003246-199603000-00006.
    1. Fowler A.A., Syed A.A., Knowlson S., Sculthorpe R., Farthing D., De Wilde C., Farthing C.A., Larus T.L., Martin E., Brophy D.F., et al. Phase I safety trial of intravenous ascorbic acid in patients with severe sepsis. J. Transl. Med. 2014;12:32. doi: 10.1186/1479-5876-12-32.
    1. Zabet M.H., Mohammadi M., Ramezani M., Khalili H. Effect of high-dose ascorbic acid on vasopressor’s requirement in septic shock. J. Res. Pharm. Pract. 2016;5:94–100.
    1. Nathens A.B., Neff M.J., Jurkovich G.J., Klotz P., Farver K., Ruzinski J.T., Radella F., Garcia I., Maier R.V. Randomized, prospective trial of antioxidant supplementation in critically ill surgical patients. Ann. Surg. 2002;236:814–822. doi: 10.1097/00000658-200212000-00014.
    1. Kahn S.A., Beers R.J., Lentz C.W. Resuscitation after severe burn injury using high-dose ascorbic acid: A retrospective review. J. Burn. Care Res. 2011;32:110–117. doi: 10.1097/BCR.0b013e318204b336.
    1. Tanaka H., Matsuda T., Miyagantani Y., Yukioka T., Matsuda H., Shimazaki S. Reduction of resuscitation fluid volumes in severely burned patients using ascorbic acid administration: A randomized, prospective study. Arch. Surg. 2000;135:326–331. doi: 10.1001/archsurg.135.3.326.
    1. Bouras E., Chourdakis M., Grammatikopoulou M.G., Heyland D.K. Nutrition therapy practices applied on severe burn patients: Results from the ins 2014 survey. Clin. Nutr. ESPEN. 2018;24:182. doi: 10.1016/j.clnesp.2018.01.042.
    1. Ahmad A., Shah S.A., Badshah H., Kim M.J., Ali T., Yoon G.H., Kim T.H., Abid N.B., Rehman S.U., Khan S., et al. Neuroprotection by Vitamin C Against Ethanol-Induced Neuroinflammation Associated Neurodegeneration in the Developing Rat Brain. CNS Neurol. Disord. Drug Targets. 2016;15:360–370. doi: 10.2174/1871527315666151110130139.
    1. Huang J., Agus D.B., Winfree C.J., Kiss S., Mack W.J., McTaggart R.A., Choudhri T.F., Kim L.J., Mocco J., Pinsky D.J., et al. Dehydroascorbic acid, a blood-brain barrier transportable form of vitamin C, mediates potent cerebroprotection in experimental stroke. Proc. Natl. Acad. Sci. USA. 2001;98:11720–11724. doi: 10.1073/pnas.171325998.
    1. Hu X., Yuan L., Wang H., Li C., Cai J., Hu Y., Ma C. Efficacy and safety of vitamin C for atrial fibrillation after cardiac surgery: A meta-analysis with trial sequential analysis of randomized controlled trials. Int. J. Surg. 2017;37:58–64. doi: 10.1016/j.ijsu.2016.12.009.
    1. Polymeropoulos E., Bagos P., Papadimitriou M., Rizos I., Patsouris E., Τoumpoulis I. Vitamin C for the Prevention of Postoperative Atrial Fibrillation after Cardiac Surgery: A Meta-Analysis. Adv. Pharm. Bull. 2016;6:243–250. doi: 10.15171/apb.2016.033.
    1. May J.M., Harrison F.E. Role of vitamin C in the function of the vascular endothelium. Antioxid. Redox Signal. 2013;19:2068–2083. doi: 10.1089/ars.2013.5205.
    1. Ashor A.W., Lara J., Mathers J.C., Siervo M. Effect of vitamin C on endothelial function in health and disease: A systematic review and meta-analysis of randomised controlled trials. Atherosclerosis. 2014;235:9–20. doi: 10.1016/j.atherosclerosis.2014.04.004.
    1. Geng J., Qian J., Si W., Cheng H., Ji F., Shen Z. The clinical benefits of perioperative antioxidant vitamin therapy in patients undergoing cardiac surgery: A meta-analysis. Interact. Cardiovasc. Thorac. Surg. 2017;5:966–974. doi: 10.1093/icvts/ivx178.
    1. Al-Asmari A.M., Khan A.Q., Al-Qasim A.M., Al-Yousef Y. Ascorbic acid attenuates antineoplastic drug 5-fluorouracil induced gastrointestinal toxicity in rats by modulating the expression of inflammatory mediators. Toxicol. Rep. 2015;2:908–916. doi: 10.1016/j.toxrep.2015.06.006.
    1. Eagle K.A., Guyton R.A., Davidoff R., Edwards F.H., Ewy G.A., Gardner T.J., Hart J.C., Herrmann H.C., Hillis L.D., Hutter A.M., Jr., et al. ACC/AHA 2004 guideline update for coronary artery bypass graft surgery: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Update the 1999 Guidelines for Coronary Artery Bypass Graft Surgery) Circulation. 2004;110:e340–e437.
    1. Biancari F., Tauriainen T., Perrotti A., Dalén M., Faggian G., Franzese I., Chocron S., Ruggieri V.G., Bounader K., Gulbins H., et al. Bleeding, transfusion and the risk of stroke after coronary surgery: A prospective cohort study of 2357 patients. Int. J. Surg. 2016;32:50–57. doi: 10.1016/j.ijsu.2016.06.032.
    1. Cropsey C., Kennedy J., Han J., Pandharipande P. Cognitive dysfunction, delirium, and stroke in cardiac surgery patients. Semin. Cardiothorac. Vasc. Anesth. 2015;19:309–317. doi: 10.1177/1089253215570062.
    1. Knipp S.C., Weimar C., Schlamann M., Schweter S., Wendt D., Thielmann M., Benedik J., Jakob H. Early and long-term cognitive outcome after conventional cardiac valve surgery. Interact. Cardiovasc. Thorac. Surg. 2017;24:534–540. doi: 10.1093/icvts/ivw421.
    1. Selnes O.A., Gottesman R.F., Grega M.A., Baumgartner W.A., Zeger S.L., McKhann G.M. Cognitive and neurologic outcomes after coronary-artery bypass surgery. N. Engl. J. Med. 2012;366:250–257. doi: 10.1056/NEJMra1100109.
    1. Van Harten A.E., Scheeren T.W., Absalom A.R. A review of postoperative cognitive dysfunction and neuroinflammation associated with cardiac surgery and anaesthesia. Anaesthesia. 2012;67:280–293. doi: 10.1111/j.1365-2044.2011.07008.x.
    1. Mangusan R.F., Hooper V., Denslow S.A., Travis L. Outcomes associated with postoperative delirium after cardiac surgery. Am. J. Crit. Care. 2015;24:156–163. doi: 10.4037/ajcc2015137.
    1. Gess B., Lohmann C., Halfter H., Young P. Sodium-dependent vitamin C transporter 2 (SVCT2) is necessary for the uptake of l-ascorbic acid into Schwann cells. Glia. 2010;58:287–299. doi: 10.1002/glia.20923.
    1. Harrison F.E., May J.M. Vitamin C function in the brain: Vital role of the ascorbate transporter SVCT2. Free Radic. Biol. Med. 2009;46:719–730. doi: 10.1016/j.freeradbiomed.2008.12.018.
    1. Eldridge C.F., Bunge M.B., Bunge R.P., Wood P.M. Differentiation of axon-related schwann cells in vitro. I. ascorbic acid regulates basal lamina assembly and myelin formation. J. Cell Biol. 1987;105:1023–1034. doi: 10.1083/jcb.105.2.1023.
    1. Henry P.T., Chandy M.J. Effect of ascorbic acid on infarct size in experimental focal cerebral ischaemia and reperfusion in a primate model. Acta Neurochir. 1998;140:977–980. doi: 10.1007/s007010050201.
    1. Lagowska-Lenard M., Stelmasiak Z., Bartosik-Psujek H. Influence of vitamin C on markers of oxidative stress in the earliest period of ischemic stroke. Pharmacol. Rep. 2010;62:751–756. doi: 10.1016/S1734-1140(10)70334-0.
    1. Bonnefont-Rousselot D., Mahmoudi A., Mougenot N., Varoquaux O., Le Nahour G., Fouret P., Lechat P. Catecholamine effects on cardiac remodelling, oxidative stress and fibrosis in experimental heart failure. Redox Rep. 2002;7:145–151. doi: 10.1179/135100002125000389.
    1. Ellenberger C., Sologashvili T., Cikirikcioglu M., Verdon G., Diaper J., Cassina T., Licker M. Risk factors of postcardiotomy ventricular dysfunction in moderate-to-high risk patients undergoing open-heart surgery. Ann. Card. Anaesth. 2017;20:287–296.
    1. Lomivorotov V.V., Efremov S.M., Kirov M.Y., Fominskiy E.V., Karaskov A.M. Low-cardiac-output syndrome after cardiac surgery. J. Cardiothorac. Vasc. Anesth. 2017;31:291–308. doi: 10.1053/j.jvca.2016.05.029.
    1. Ding W., Ji Q., Shi Y., Ma R. Predictors of low cardiac output syndrome after isolated coronary artery bypass grafting. Int. Heart J. 2015;56:144–149. doi: 10.1536/ihj.14-231.
    1. Epting C.L., McBride M.E., Wald E.L., Costello J.M. Pathophysiology of post-operative low cardiac output syndrome. Curr. Vasc. Pharmacol. 2016;14:14–23. doi: 10.2174/1570161113666151014123718.
    1. Peretto G., Durante A., Limite L.R., Cianflone D. Postoperative arrhythmias after cardiac surgery: Incidence, risk factors, and therapeutic management. Cardiol. Res. Pract. 2014;2014:615987. doi: 10.1155/2014/615987.
    1. Saran V., Sharma V., Wambolt R., Yuen V.G., Allard M., McNeill J.H. Combined metoprolol and ascorbic acid treatment prevents intrinsic damage to the heart during diabetic cardiomyopathy. Can. J. Physiol. Pharmacol. 2014;92:827–837. doi: 10.1139/cjpp-2014-0078.
    1. Hsu C.C., Wang J.J. l-ascorbic acid and alpha-tocopherol attenuates liver ischemia-reperfusion induced of cardiac function impairment. Transplant. Proc. 2012;44:933–936. doi: 10.1016/j.transproceed.2012.01.098.
    1. Kremer T., Harenberg P., Hernekamp F., Riedel K., Gebhardt M.M., Germann G., Heitmann C., Walther A. High-dose vitamin C treatment reduces capillary leakage after burn plasma transfer in rats. J. Burn Care Res. 2010;31:470–479. doi: 10.1097/BCR.0b013e3181db5199.
    1. Dingchao H., Zhiduan Q., Liye H., Xiaodong F. The protective effects of high-dose ascorbic acid on myocardium against reperfusion injury during and after cardiopulmonary bypass. Thorac. Cardiovasc. Surg. 1994;42:276–278. doi: 10.1055/s-2007-1016504.
    1. Rezk M.E. Role of ascorbic acid in reduction of the incidence of the atrial fibrillation in patients under b-blocker and undergoing coronary artery bypass graft operation in early post-operative period. J. Egypt. Soc. Cardio Thorac. Surg. 2017;25:198–203.
    1. Ali-Hassan-Sayegh S., Mirhosseini S.J., Rezaeisadrabadi M., Dehghan H.R., Sedaghat-Hamedani F., Kayvanpour E., Popov A.F., Liakopoulos O.J. Liakopoulos. Antioxidant supplementations for prevention of atrial fibrillation after cardiac surgery: An updated comprehensive systematic review and meta-analysis of 23 randomized controlled trials. Interact. Cardiovasc. Thorac. Surg. 2014;18:646–654. doi: 10.1093/icvts/ivu020.
    1. Baker W.L., Coleman C.I. Meta-analysis of ascorbic acid for prevention of postoperative atrial fibrillation after cardiac surgery. Am. J. Health Syst. Pharm. 2016;73:2056–2066. doi: 10.2146/ajhp160066.
    1. Shi R., Li Z.H., Chen D., Wu Q.C., Zhou X.L., Tie H.T. Sole and combined vitamin C supplementation can prevent postoperative atrial fibrillation after cardiac surgery: A systematic review and meta-analysis of randomized controlled trials. Clin. Cardiol. 2018;41:871–878. doi: 10.1002/clc.22951.
    1. Hemilä H., Suonsyrjae T. Vitamin C for preventing atrial fibrillation in high risk patients: A systematic review and meta-analysis. BMC Cardiovasc. Dis. 2017 doi: 10.1186/s12872-017-0478-5.
    1. Hemilä H. Publication bias in meta-analysis of ascorbic acid for postoperative atrial fibrillation. Am. J. Health Syst. Pharm. 2017;74:372–373. doi: 10.2146/ajhp160999.
    1. García-Delgado M., Navarrete-Sánchez I., Colmenero M. Preventing and managing perioperative pulmonary complications following cardiac surgery. Curr. Opin. Anaesthesiol. 2014;27:146–152. doi: 10.1097/ACO.0000000000000059.
    1. Bedreag O.H., Rogobete A.F., Sarandan M., Cradigati A.C., Papurica M., Dumbuleu M.C., Chira A.M., Rosu O.M., Sandesc D. Oxidative stress in severe pulmonary trauma in critical ill patients. antioxidant therapy in patients with multiple trauma—A review. Anaesthesiol. Intensive Ther. 2015;47:351–359. doi: 10.5603/AIT.a2015.0030.
    1. Lang J.D., McArdle P.J., O’Reilly P.J., Matalon S. Oxidant-antioxidant balance in acute lung injury. Chest. 2002;122(Suppl. 6):314S–320S. doi: 10.1378/chest.122.6_suppl.314S.
    1. Herridge M.S., Tansey C.M., Matté A., Tomlinson G., Diaz-Granados N., Cooper A., Guest C.B., Mazer C.D., Mehta S., Stewart T.E., et al. Functional disability 5 years after acute respiratory distress syndrome. N. Engl. J. Med. 2011;364:1293–1304. doi: 10.1056/NEJMoa1011802.
    1. Kogan A., Segel M., Levin S., Sternik L., Raanani E. Incidence of ards following cardiac surgery: Comparison between american-european consensus conference definition and berlin definition. J. Cardiothorac. Vasc. Anesth. 2017;31:S79–S80. doi: 10.1053/j.jvca.2017.02.167.
    1. Ng C.S., Wan S., Yim A.P., Arifi A.A. Pulmonary dysfunction after cardiac surgery. CHEST J. 2002;121:1269–1277. doi: 10.1378/chest.121.4.1269.
    1. Stephens R.S., Shah A.S., Whitman G.J.R. Lung injury and acute respiratory distress syndrome after cardiac surgery. Ann. Thorac. Surg. 2013;95:1122–1129. doi: 10.1016/j.athoracsur.2012.10.024.
    1. Wynne R., Botti M. Postoperative pulmonary dysfunction in adults after cardiac surgery with cardiopulmonary bypass: Clinical significance and implications for practice. Am. J. Crit. Care. 2004;13:384–393.
    1. Fisher B.J., Kraskauskas D., Martin E.J., Farkas D., Wegelin J.A., Brophy D., Ward K.R., Voelkel N.F., Fowler A.A., Natarajan R. Mechanisms of attenuation of abdominal sepsis induced acute lung injury by ascorbic acid. Am. J. Physiol. Lung Cell Mol. Physiol. 2012;303:L20–L32. doi: 10.1152/ajplung.00300.2011.
    1. Li W., Maeda N., Beck M.A. Vitamin C deficiency increases the lung pathology of influenza virus-infected gulo-/- mice. J. Nutr. 2006;136:2611–2616. doi: 10.1093/jn/136.10.2611.
    1. Baltalarli A., Ozcan V., Ferda B., Aybek H., Sacar M., Onem G., Goksin I., Demir S., Zafer T. Ascorbic Acid (Vitamin C) and Iloprost Attenuate the Lung Injury Caused by Ischemia/Reperfusion of the Lower Extremities of Rats. Ann. Vasc. Surg. 2006;20:49–55. doi: 10.1007/s10016-005-9284-0.
    1. Jin X., Su R., Li R., Song L., Chen M., Cheng L., Li Z. Amelioration of particulate matter-induced oxidative damage by vitamin C and quercetin in human bronchial epithelial cells. Chemosphere. 2016;144:459–466. doi: 10.1016/j.chemosphere.2015.09.023.
    1. Gupta I., Ganguly S., Rozanas C.R., Stuehr D.J., Panda K. Ascorbate attenuates pulmonary emphysema by inhibiting tobacco smoke and Rtp801-triggered lung protein modification and proteolysis. Proc. Natl. Acad. Sci. USA. 2016;113:E4208–E4217. doi: 10.1073/pnas.1600056113.
    1. Rice T.W., Wheeler A.P., Thompson B.T., de Boisblanc B.P., Steingrub J., Rock P., Hudson L., Hough C., Neff M., Sims K. Enteral omega-3 fatty acid, gamma-linolenic acid, and antioxidant supplementation in acute lung injury. JAMA. 2011;306:1574–1581. doi: 10.1001/jama.2011.1435.
    1. Gadek J.E., DeMichele S.J., Karlstad M.D., Pacht E.R., Donahoe M., Albertson T.E., Van Hoozen C., Wennberg A.K., Nelson J.L., Noursalehi M. Effect of enteral feeding with eicosapentaenoic acid, gamma-linolenic acid, and antioxidants in patients with acute respiratory distress syndrome. enteral nutrition in ards study group. Crit. Care Med. 1999;27:1409–1420. doi: 10.1097/00003246-199908000-00001.
    1. Corredor C., Thomson R., Al-Subaie N. Long-term consequences of acute kidney injury after cardiac surgery: A systematic review and meta-analysis. J. Cardiothorac. Vasc. Anesth. 2016;30:69–75. doi: 10.1053/j.jvca.2015.07.013.
    1. Shi Q., Hong L., Mu X., Zhang C., Chen X. Meta-analysis for outcomes of acute kidney injury after cardiac surgery. Medicine. 2016;95:e5558. doi: 10.1097/MD.0000000000005558.
    1. Ferreiro A., Lombardi R. Acute kidney injury after cardiac surgery is associated with mid-term but not long-term mortality: A cohort-based study. PLoS ONE. 2017;12:e0181158. doi: 10.1371/journal.pone.0181158.
    1. Hobson C.E., Yavas S., Segal M.S., Schold J.D., Tribble C.G., Layon A.J., Bihorac A. Acute kidney injury is associated with increased long-term mortality after cardiothoracic surgery. Circulation. 2009;119:2444–2453. doi: 10.1161/CIRCULATIONAHA.108.800011.
    1. O’Neal J.B., Shaw A.D., Billings F.T. Acute kidney injury following cardiac surgery: Current understanding and future directions. Crit. Care. 2016;20:187. doi: 10.1186/s13054-016-1352-z.
    1. Pickering J.W., James M.T., Palmer S.C. Acute kidney injury and prognosis after cardiopulmonary bypass: A meta-analysis of cohort studies. Am. J. Kidney Dis. 2015;65:283–293. doi: 10.1053/j.ajkd.2014.09.008.
    1. Provenchère S., Plantefève G., Hufnagel G., Vicaut E., De Vaumas C., Lecharny J.B., Depoix J.P., Vrtovsnik F., Desmonts J.M., Philip I. Renal dysfunction after cardiac surgery with normothermic cardiopulmonary bypass: Incidence, risk factors, and effect on clinical outcome. Anesth. Anal. 2003;96:1258–1264. doi: 10.1213/01.ANE.0000055803.92191.69.
    1. Spargias K., Alexopoulos E., Kyrzopoulos S., Iokovis P., Greenwood D.C., Manginas A., Voudris V., Pavlides G., Buller C.E., Kremastinos D., et al. Ascorbic acid prevents contrast-mediated nephropathy in patients with renal dysfunction undergoing coronary angiography or intervention. Circulation. 2004;110:2837–2842. doi: 10.1161/01.CIR.0000146396.19081.73.
    1. Sadat U., Usman A., Gillard J.H., Boyle J.R. Does ascorbic acid protect against contrast-induced acute kidney injury in patients undergoing coronary angiography: A systematic review with meta-analysis of randomized, controlled trials. J. Am. Coll. Cardiol. 2013;62:2167–2175. doi: 10.1016/j.jacc.2013.07.065.
    1. Gurm H., Sheta M.A., Nivera N., Tunkel A. Vitamin C-induced oxalate nephropathy: A case report. J. Community Hosp. Intern. Med. Perspect. 2012;2 doi: 10.3402/jchimp.v2i2.17718.
    1. Sunkara V., Pelkowski T.D., Dreyfus D., Satoskar A. Acute Kidney Disease Due to Excessive Vitamin C Ingestion and Remote Roux-en-Y Gastric Bypass Surgery Superimposed on CKD. Am. J. Kidney Dis. 2015;66:721–724. doi: 10.1053/j.ajkd.2015.06.021.
    1. Antonic M. Effect of ascorbic acid on postoperative acute kidney injury in coronary artery bypass graft patients: A pilot study. Heart. Surg. Forum. 2017;20:E214–E218. doi: 10.1532/hsf.1811.
    1. Sever K., Ozbek C., Goktas B., Bas S., Ugurlucan M., Mansuroglu D. Gastrointestinal complications after open heart surgery: Incidence and determinants of risk factors. Angiology. 2014;65:425–429. doi: 10.1177/0003319713482357.
    1. Berger M.M., Berger-Gryllaki M., Wiesel P.H., Revelly J.P., Hurni M., Cayeux C., Tappy L., Chioléro R. Intestinal absorption in patients after cardiac surgery. Crit. Care Med. 2000;28:2217–2223. doi: 10.1097/00003246-200007000-00006.
    1. Goldhill D.R., Whelpton R., Winyard J.A., Wilkinson K.A. Gastric emptying in patients the day after cardiac surgery. Anaesthesia. 1995;50:122–125. doi: 10.1111/j.1365-2044.1995.tb15093.x.
    1. Chaudhry R., Zaki J., Wegner R., Pednekar G., Tse A., Sheinbaum R., Williams G.W. Gastrointestinal complications after cardiac surgery: A nationwide population-based analysis of morbidity and mortality predictors. J. Cardiothorac. Vasc. Anesth. 2017;31:1268–1274. doi: 10.1053/j.jvca.2017.04.013.
    1. Cresci G., Hummell A.C., Raheem S.A., Cole D. Nutrition intervention in the critically ill cardiothoracic patient. Nutr. Clin. Pract. 2012;27:323–334. doi: 10.1177/0884533612444135.
    1. Viana F.F., Chen Y., Almeida A.A., Baxter H.D., Cochrane A.D., Smith J.A. Gastrointestinal complications after cardiac surgery: 10-year experience of a single Australian centre. ANZ J. Surg. 2013;83:651–656. doi: 10.1111/ans.12134.
    1. Bjelakovic G., Nikolova D., Simonetti R.G., Gluud C. Antioxidant supplements for preventing gastrointestinal cancers. Cochrane Database Syst. Rev. 2008;16:CD004183. doi: 10.1002/14651858.CD004183.pub3.
    1. Freedman J.E. Oxidative stress and platelets. Arterioscler. Thromb. Vasc. Biol. 2008;28:s11–s16. doi: 10.1161/ATVBAHA.107.159178.
    1. Levi M. Platelets at a crossroad of pathogenic pathways in sepsis. J. Thromb. Haemost. 2004;2:2094–2095. doi: 10.1111/j.1538-7836.2004.01004.x.
    1. Dyke C., Aronson S., Dietrich W., Hofmann A., Karkouti K., Levi M., Murphy G.J., Sellke F.W., Shore-Lesserson L., von Heymann C. Universal definition of perioperative bleeding in adult cardiac surgery. J. Thorac. Cardiovasc. Surg. 2013;147:1458–1463. doi: 10.1016/j.jtcvs.2013.10.070.
    1. Kinnunen E.M., De Feo M., Reichart D., Tauriainen T., Gatti G., Onorati F., Maschietto L., Bancone C., Fiorentino F., Chocron S. Incidence and prognostic impact of bleeding and transfusion after coronary surgery in low-risk patients. Transfusion. 2017;57:178–186. doi: 10.1111/trf.13885.
    1. Ranucci M., Baryshnikova E., Castelvecchio S., Pelissero G. Surgical and Clinical Outcome Research (SCORE) Group. Major bleeding, transfusions, and anemia: The deadly triad of cardiac surgery. Ann. Thorac. Surg. 2013;96:478–485. doi: 10.1016/j.athoracsur.2013.03.015.
    1. Gielen C., Dekkers O., Stijnen T., Schoones J., Brand A., Klautz R., Eikenboom J. The effects of pre- and postoperative fibrinogen levels on blood loss after cardiac surgery: A systematic review and meta-analysis. Interact. Cardiovasc. Thorac. Surg. 2014;18:292–298. doi: 10.1093/icvts/ivt506.
    1. Dayton P.G., Weiner M. Ascorbic acid and blood coagulation. Ann. N. Y. Acad. Sci. 1961;92:302–306. doi: 10.1111/j.1749-6632.1961.tb46130.x.
    1. Li Y.D., Ye B.Q., Zheng S.X., Wang J.T., Wang J.G., Chen M., Liu J.G., Pei X.H., Wang L.J., Lin Z.X., et al. NF-kappaB transcription factor p50 critically regulates tissue factor in deep vein thrombosis. J. Biol. Chem. 2009;284:4473–4483. doi: 10.1074/jbc.M806010200.
    1. Esmon C.T. The interactions between inflammation and coagulation. Br. J. Haematol. 2005;131:417–430. doi: 10.1111/j.1365-2141.2005.05753.x.
    1. Parahuleva M.S., Jung J., Burgazli M., Erdogan A., Parviz B., Hölschermann H. Vitamin C suppresses lipopolysaccharide-induced procoagulant response of human monocyte-derived macrophages. Eur. Rev. Med. Pharmacol. Sci. 2016;20:2174–2182.
    1. Tousoulis D., Antoniades C., Tountas C., Bosinakou E., Kotsopoulou M., Toutouzas P., Stefanadis C. Vitamin C affects thrombosis/fibrinolysis system and reactive hyperemia in patients with type 2 diabetes and coronary artery disease. Diabetes Care. 2003;26:2749–2753. doi: 10.2337/diacare.26.10.2749.
    1. Kaehler J., Koeke K., Karstens M., Schneppenheim R., Meinertz T., Heitzer T. Impaired capacity for acute endogenous fibrinolysis in smokers is restored by ascorbic acid. Free Radic. Biol. Med. 2008;44:315–321. doi: 10.1016/j.freeradbiomed.2007.08.023.
    1. Cooke A.R. The role of acid in the pathogenesis of aspirin-induced gastrointestinal erosions and hemorrhage. Am. J. Dig. Dis. 1973;18:225–237. doi: 10.1007/BF01071977.
    1. Kim K., Bae O.N., Koh S.H., Kang S., Lim K.M., Noh J.Y., Shin S., Kim I., Chung J.H. High-Dose Vitamin C Injection to Cancer Patients May Promote Thrombosis Through Procoagulant Activation of Erythrocytes. Toxicol. Sci. 2015;147:350–359. doi: 10.1093/toxsci/kfv133.
    1. Sadeghpour A., Alizadehasl A., Kyavar M., Sadeghi T., Moludi J., Gholizadeh F., Totonchi Z., Ghadrdoost B. Impact of vitamin C supplementation on post-cardiac surgery ICU and hospital length of stay. Anesth. Pain Med. 2015;5:e25337. doi: 10.5812/aapm.25337.
    1. Gelijns A.C., Moskowitz A.J., Acker M.A., Argenziano M., Geller N.L., Puskas J.D., Perrault L.P., Smith P.K., Kron I.L., Michler R.E., et al. Management practices and major infections after cardiac surgery. J. Am. Coll. Cardiol. 2014;64:372–381. doi: 10.1016/j.jacc.2014.04.052.
    1. Cove M.E., Spelman D.W., MacLaren G. Infectious complications of cardiac surgery: A clinical review. J. Cardiothorac. Vasc. Anesth. 2012;26:1094–1100. doi: 10.1053/j.jvca.2012.04.021.
    1. Wendler O., Baghai M. Infections post-cardiac surgery: New information during challenging times. J. Am. Coll. Cardiol. 2014;64:382–384. doi: 10.1016/j.jacc.2014.04.050.
    1. Benjamin E.J., Blaha M.J., Chiuve S.E., Cushman M., Das S.R., Deo R., de Ferranti S.D., Floyd J., Fornage M., Gillespie C., et al. Heart disease and stroke statistics—2017 update: A report from the American heart association. Circulation. 2017;135:e146–e603. doi: 10.1161/CIR.0000000000000485.
    1. Kirklin J.K., Pagani F.D., Kormos R.L., Stevenson L.W., Blume E.D., Myers S.L., Miller M.A., Baldwin J.T., Young J.B., Naftel D.C. Eighth annual INTERMACS report: Special focus on framing the impact of adverse events. J. Heart Lung Transplant. 2017;36:1080–1086. doi: 10.1016/j.healun.2017.07.005.
    1. Lampropulos J.F., Kim N., Wang Y., Desai M.M., Barreto-Filho J.A., Dodson J.A., Dries D.L., Mangi A.A., Krumholz H.M. Trends in left ventricular assist device use and outcomes among medicare beneficiaries, 2004–2011. Open Heart. 2014;1:e000109. doi: 10.1136/openhrt-2014-000109.
    1. Bouza E., Hortal J., Muñoz P., Pascau J., Pérez M.J., Hiesmayr M., European Study Group on Nosocomial Infections. European Workgroup of Cardiothoracic Intensivists Postoperative infections after major heart surgery and prevention of ventilator-associated pneumonia: A one-day European prevalence study (ESGNI-008) J. Hosp. Infect. 2006;64:224–230. doi: 10.1016/j.jhin.2006.06.019.
    1. He S., Chen B., Li W., Yan J., Chen L., Wang X., Xiao Y. Ventilator-associated pneumonia after cardiac surgery: a meta-analysis and systematic review. J. Thorac. Cardiovasc. Surg. 2014;148:3148–3155.e5. doi: 10.1016/j.jtcvs.2014.07.107.
    1. Hortal J., Muñoz P., Cuerpo G., Litvan H., Rosseel P.M., Bouza E., European Study Group on Nosocomial Infections. European Workgroup of Cardiothoracic Intensivists Ventilator-associated pneumonia in patients undergoing major heart surgery: An incidence study in Europe. Crit. Care. 2009;13:R80. doi: 10.1186/cc7896.
    1. Ibañez J., Riera M., Amezaga R., Herrero J., Colomar A., Campillo-Artero C., de Ibarra J.I., Bonnin O. Long-term mortality after pneumonia in cardiac surgery patients: A propensity-matched analysis. J. Intensive Care Med. 2016;31:34–40. doi: 10.1177/0885066614523918.
    1. Sheng W., Xing Q.S., Hou W.M., Sun L., Niu Z.Z., Lin M.S., Chi Y.F. Independent risk factors for ventilator-associated pneumonia after cardiac surgery. J. Investig. Surg. 2014;27:256–261. doi: 10.3109/08941939.2014.892652.
    1. Hunt C., Chakravorty N.K., Annan G., Habibzadeh N., Schorah C.J. The clinical effects of vitamin C supplementation in elderly hospitalised patients with acute respiratory infections. Int. J. Vitam. Nutr. Res. 1994;64:212–219.
    1. Hemilae H. Vitamin C and Infections. Nutrients. 2017;9:339. doi: 10.3390/nu9040339.
    1. Hemilä H., Louhiala P. Vitamin C for preventing and treating pneumonia. Cochrane Database Syst. Rev. 2013;8:CD005532. doi: 10.1002/14651858.CD005532.pub3.
    1. Jouybar R., Kabgani H., Kamalipour H., Shahbazi S., Allahyary E., Rasouli M., Akhlagh S.H., Shafa M., Ghazinoor M., Moeinvaziri M.T., et al. The perioperative effect of ascorbic acid on inflammatory response in coronary artery bypass graft surgery; a randomized controlled trial coronary artery bypass graft surgery. Age (year) 2012;56:61–83.
    1. Knodell R.G., Tate M.A., Akl B.F., Wilson J.W. Vitamin C prophylaxis for posttransfusion hepatitis: Lack of effect in a controlled trial. Am. J. Clin. Nutr. 1981;34:20–23. doi: 10.1093/ajcn/34.1.20.
    1. Li C.C. Changes of creatine phosphokinase and malondialdehyde in the serum and clinical use of large doses of vitamin C following open heart surgery. Zhonghua Wai Ke Za Zhi (Chin. J. Surg.) 1990;28:16–17.
    1. Carnes C.A., Chung M.K., Nakayama T., Nakayama H., Baliga R.S., Piao S., Kanderian A., Pavia S., Hamlin R.L., McCarthy P.M., et al. Ascorbate attenuates atrial pacing-induced peroxynitrite formation and electrical remodeling and decreases the incidence of postoperative atrial fibrillation. Circ. Res. 2001;89:e32–e38. doi: 10.1161/hh1801.097644.
    1. Demirag K., Askar F.Z., Uyar M., Cevik A., Ozmen D., Mutaf I., Bayindir O. The protective effects of high dose ascorbic acid and diltiazem on myocardial ischaemia-reperfusion injury. Middle East J. Anaesthesiol. 2001;16:67–79.
    1. Eslami M., Badkoubeh R.S., Mousavi M., Radmehr H., Salehi M., Tavakoli N., Avadi M.R. Oral ascorbic acid in combination with beta-blockers is more effective than beta-blockers alone in the prevention of atrial fibrillation after coronary artery bypass grafting. Tex. Heart Inst. J. 2007;342:68.
    1. Colby J.A., Chen W.T., Baker W.L., Coleman C.I., Reinhart K., Kluger J., White C.M. Effect of ascorbic acid on inflammatory markers after cardiothoracic surgery. Am. J. Health Syst. Pharm. 2011;68:1632–1639. doi: 10.2146/ajhp100703.
    1. Papoulidis P., Ananiadou O., Chalvatzoulis E., Ampatzidou F., Koutsogiannidis C., Karaiskos T., Madesis A., Drossos G. The role of ascorbic acid in the prevention of atrial fibrillation after elective on-pump myocardial revascularization surgery: A single-center experience–a pilot study. Interact. Cardiovasc. Thorac. Surg. 2011;12:121–124. doi: 10.1510/icvts.2010.240473.
    1. Bjordahl P.M., Helmer S.D., Gosnell D.J., Wemmer G.E., O’Hara W.W., Milfeld D.J. Perioperative supplementation with ascorbic acid does not prevent atrial fibrillation in coronary artery bypass graft patients. Am. J. Surg. 2012;204:862–867. doi: 10.1016/j.amjsurg.2012.03.012.
    1. Dehghani M.R., Majidi N., Rahmani A., Asgari B., Rezaei Y. Effect of oral vitamin C on atrial fibrillation development after isolated coronary artery bypass grafting surgery: A prospective randomized clinical trial. Cardiol. J. 2014;21:492–499. doi: 10.5603/CJ.a2013.0154.
    1. Ebade A., Taha W.S., Saleh R.H., Fawzy A. Ascorbic acid versus magnesium for the prevention of atrial fibrillation after coronary artery bypass grafting surgery. Egypt. J. Cardiothorac. Anesth. 2014;8:59–65. doi: 10.4103/1687-9090.143259.
    1. Samadikhah J., Golzari S.E.J., Sabermarouf B., Karimzadeh I., Tizro P., Khanli H.M., Ghabili K. Efficacy of Combination Therapy of Statin and Vitamin C in Comparison with Statin in the Prevention of Post-CABG Atrial Fibrillation. Adv. Pharm. Bull. 2014;4:97.
    1. Das D., Sen C., Goswami A. Effect of Vitamin C on adrenal suppression by etomidate induction in patients undergoing cardiac surgery: A randomized controlled trial. Ann. Card. Anaesth. 2016;19:410. doi: 10.4103/0971-9784.185522.
    1. Antonic M., Lipovec R., Gregorcic F., Juric P., Kosir G. Perioperative ascorbic acid supplementation does not reduce the incidence of postoperative atrial fibrillation in on-pump coronary artery bypass graft patients. J. Cardiol. 2017;69:98–102. doi: 10.1016/j.jjcc.2016.01.010.
    1. Crimi E., Sica V., Williams-Ignarro S., Zhang H., Slutsky A.S., Ignarro L.J., Napoli C. The role of oxidative stress in adult critical care. Free Radic. Biol. Med. 2006;40:398–406. doi: 10.1016/j.freeradbiomed.2005.10.054.
    1. Howe K.P., Clochesy J.M., Goldstein L.S., Owen H. Mechanical ventilation antioxidant trial. Am. J. Crit. Care. 2015;24:440–445. doi: 10.4037/ajcc2015335.
    1. Barta E., Pechán I., Cornák V., Luknárová O., Rendeková V., Verchovodko P. Protective effect of alpha-tocopherol and l-ascorbic acid against the ischemic-reperfusion injury in patients during open-heart surgery. Bratisl. Lek. Listy. 1991;92:174–183.
    1. Angdin M., Settergren G., Starkopf J., Zilmer M., Zilmer K., Vaage J. Protective effect of antioxidants on pulmonary endothelial function after cardiopulmonary bypass. J. Cardiothorac. Vasc. Anesth. 2003;17:314–320. doi: 10.1016/S1053-0770(03)00053-3.
    1. Gunes T., Bozok S., Kestelli M., Yurekli I., Ilhan G., Ozpak B., Bademci M., Ozcem B., Sahin A. α-tocopherol and ascorbic acid in early postoperative period of cardiopulmonary bypass. J. Cardiovasc. Med. 2012;13:691–699. doi: 10.2459/JCM.0b013e328356a2dc.
    1. Westhuyzen J., Cochrane A.D., Tesar P.J., Mau T., Cross D.B., Frenneaux M.P., Khafagi F.A., Fleming S.J. Effect of preoperative supplementation with alpha-tocopherol and ascorbic acid on myocardial injury in patients undergoing cardiac operations. J. Thorac. Cardiovasc. Surg. 1997;113:942–948. doi: 10.1016/S0022-5223(97)70268-X.
    1. Castillo R., Rodrigo R., Perez F., Cereceda M., Asenjo R., Zamorano J., Navarrete R., Villalabeitia E., Sanz J., Baeza C. Antioxidant therapy reduces oxidative and inflammatory tissue damage in patients subjected to cardiac surgery with extracorporeal circulation. Basic Clin. Pharmacol. Toxicol. 2011;108:256–262. doi: 10.1111/j.1742-7843.2010.00651.x.
    1. Rodrigo R., Prieto J.C., Castillo R. Cardioprotection against ischaemia/reperfusion by vitamins C and E plus n-3 fatty acids: Molecular mechanisms and potential clinical applications. Clin. Sci. 2013;124:1–15. doi: 10.1042/CS20110663.
    1. Stanger O., Aigner I., Schimetta W., Wonisch W. Antioxidant supplementation attenuates oxidative stress in patients undergoing coronary artery bypass graft surgery. Tohoku J. Exp. Med. 2014;232:145–154. doi: 10.1620/tjem.232.145.
    1. Sartor Z., Kesey J., Dissanaike S. The effects of intravenous vitamin C on point-of-care glucose monitoring. J. Burn Care Res. 2015;36:50–56. doi: 10.1097/BCR.0000000000000142.
    1. Vasudevan S., Hirsch I.B. Interference of intravenous vitamin C with blood glucose testing. Diabetes Care. 2014;37:e93–e94. doi: 10.2337/dc13-2452.
    1. Halliwell B. Vitamin C: Antioxidant or pro-oxidant in vivo? Free Radic. Res. 1996;25:439–454. doi: 10.3109/10715769609149066.
    1. Gey K.F. Vitamins E plus C and interacting conutrients required for optimal health. A critical and constructive review of epidemiology and supplementation data regarding cardiovascular disease and cancer. BioFactors. 1998;7:113–174.
    1. Bucala R. Lipid and lipoprotein oxidation: Basic mechanisms and unresolved questions in vivo. Redox Rep. 1996;2:291–307. doi: 10.1080/13510002.1996.11747065.
    1. Chen Q., Espey M.G., Krishna M.C., Mitchell J.B., Corpe C.P., Buettner G.R., Shacter E., Levine M. Pharmacologic ascorbic acid concentrations selectively kill cancer cells: Action as a pro-drug to deliver hydrogen peroxide to tissues. Proc. Natl. Acad. Sci. USA. 2005;102:13604–13609. doi: 10.1073/pnas.0506390102.
    1. Collins A., Cadet J., Epe B., Gedik C. Problems in the measurement of 8-oxoguanine in human DNA. Report of a workshop, DNA oxidation, held in Aberdeen, UK, 19–21 January, 1997. Carcinogenesis. 1997;18:1833–1836. doi: 10.1093/carcin/18.9.1833.
    1. Rümelin A., Jaehde U., Kerz T., Roth W., Krämer M., Fauth U. Early postoperative substitution procedure of the antioxidant ascorbic acid. J. Nutr. Biochem. 2005;16:104–108. doi: 10.1016/j.jnutbio.2004.10.005.
    1. Rümelin A., Humbert T., Lühker O., Drescher A., Fauth U. Metabolic clearance of the antioxidant ascorbic acid in surgical patients. J. Surg. Res. 2005;129:46–51. doi: 10.1016/j.jss.2005.03.017.
    1. Bjugstad K.B., Rael L.T., Stewart Levy S., Carrick M., Mains C.W., Slone D.S., Bar-Or D. Oxidation-reduction potential as a biomarker for severity and acute outcome in traumatic brain injury. Oxid. Med. Cell. Longev. 2016 doi: 10.1155/2016/6974257.
    1. Rael L.T., Bar-Or R., Salottolo K., Mains C.W., Slone D.S., Offner P.J., Bar-Or D. Injury severity and serum amyloid a correlate with plasma oxidation-reduction potential in multi-trauma patients: A retrospective analysis. Scand. J. Trauma Resusc. Emerg. Med. 2009 doi: 10.1186/1757-7241-17-57.
    1. Robitaille L., Hoffer L.J. A simple method for plasma total vitamin C analysis suitable for routine clinical laboratory use. Nutr. J. 2015;15:40. doi: 10.1186/s12937-016-0158-9.
    1. Pullar J.M., Bayer S., Carr A.C. Appropriate handling, processing and analysis of blood samples is essential to avoid oxidation of vitamin C to dehydroascorbic acid. Antioxidants. 2018;7:29. doi: 10.3390/antiox7020029.
    1. Key T., Oakes S., Davey G., Moore J., Edmond L.M., McLoone U.J., Thurnham D.I. Stability of vitamins a, c, and e, carotenoids, lipids, and testosterone in whole blood stored at 4 degrees c for 6 and 24 h before separation of serum and plasma. Cancer Epidemiol. Biomark. Prev. 1996;5:811–814.
    1. Wang Y., Liu X.J., Robitaille L., Eintracht S., MacNamara E., Hoffer L.J. Effects of vitamin C and vitamin d administration on mood and distress in acutely hospitalized patients. Am. J. Clin. Nutr. 2013;98:705–711. doi: 10.3945/ajcn.112.056366.
    1. Margolis S.A., Duewer D.L. Measurement of ascorbic acid in human plasma and serum: Stability, intralaboratory repeatability, and interlaboratory reproducibility. Clin. Chem. 1996;42:1257–1262.
    1. Kirkham J.J., Dwan K.M., Altman D.G., Gamble C., Dodd S., Smyth R., Williamson P.R. The impact of outcome reporting bias in randomised controlled trials on a cohort of systematic reviews. BMJ. 2010;340:c365. doi: 10.1136/bmj.c365.

Source: PubMed

3
订阅