New horizons for newborn brain protection: enhancing endogenous neuroprotection

K Jane Hassell, Mojgan Ezzati, Daniel Alonso-Alconada, Derek J Hausenloy, Nicola J Robertson, K Jane Hassell, Mojgan Ezzati, Daniel Alonso-Alconada, Derek J Hausenloy, Nicola J Robertson

Abstract

Intrapartum-related events are the third leading cause of childhood mortality worldwide and result in one million neurodisabled survivors each year. Infants exposed to a perinatal insult typically present with neonatal encephalopathy (NE). The contribution of pure hypoxia-ischaemia (HI) to NE has been debated; over the last decade, the sensitising effect of inflammation in the aetiology of NE and neurodisability is recognised. Therapeutic hypothermia is standard care for NE in high-income countries; however, its benefit in encephalopathic babies with sepsis or in those born following chorioamnionitis is unclear. It is now recognised that the phases of brain injury extend into a tertiary phase, which lasts for weeks to years after the initial insult and opens up new possibilities for therapy.There has been a recent focus on understanding endogenous neuroprotection and how to boost it or to supplement its effectors therapeutically once damage to the brain has occurred as in NE. In this review, we focus on strategies that can augment the body's own endogenous neuroprotection. We discuss in particular remote ischaemic postconditioning whereby endogenous brain tolerance can be activated through hypoxia/reperfusion stimuli started immediately after the index hypoxic-ischaemic insult. Therapeutic hypothermia, melatonin, erythropoietin and cannabinoids are examples of ways we can supplement the endogenous response to HI to obtain its full neuroprotective potential. Achieving the correct balance of interventions at the correct time in relation to the nature and stage of injury will be a significant challenge in the next decade.

Keywords: Birth asphyxia; Melatonin; Neonatal encephalopathy; Neuroprotection; Post Conditioning.

Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

Figures

Figure 1
Figure 1
Schematic diagram illustrating the different pathological phases of cerebral injury after cerebral HI. The primary phase (acute HI), latent phase, secondary energy failure phase and tertiary brain injury phase are shown. (A) Magnetic resonance spectra showing the biphasic pattern of NTP/EPP decline and lactate/NAA increase during primary and secondary phases following HI insult. Persisting lactic alkalosis is shown in tertiary phase. (B) Amplitude-integrated EEG showing normal trace at baseline, flat tract following HI, burst-suppression pattern in latent phase, emergence of seizures in secondary phase and normalisation with sleep–wake cycling in tertiary phase. (C) Following HI, there is a period of hypoperfusion associated with hypometabolism during latent phase, followed by relative hyperperfusion in secondary phase. (D) Cellular energetics and mitochondrial function are reflected in the biphasic response shown on magnetic resonance spectroscopy (A), with a period of recovery in latent phase followed by deterioration in secondary phase. There is partial recovery in tertiary phase. (E) The most important pathogenic changes are shown for each phase (see main text for description), including generation of toxic free radical species, accumulation of EAAs, cytotoxic oedema, seizures and inflammation. Cell lysis occurs immediately following HI, while programmed cell death occurs in secondary phase; latent phase provides a therapeutic window. Persisting inflammation and epigenetic changes impede long-term repair. (F) Damage is maximal in the secondary phase, but persists into the tertiary phase as inflammation and gliosis evolve. (G) In the future, neuroprotective treatments are likely to involve a ‘cocktail’ of therapies to be administered intrapartum, in the latent phase to prevent secondary energy failure and through secondary and tertiary phases to offset evolving damage. HI, hypoxia-ischaemia; EAAs, excitatory amino acids; EPP, exchangeable phosphate pool; NAA, N-acetylaspartate; NO, nitric oxide; NTP, nucleoside triphosphate (this is mainly ATP); OFRs, oxygen free radicals; RIPostC, remote ischaemic postconditioning.
Figure 2
Figure 2
(A) The neuroprotective mechanisms of RIPostC are thought to involve three inter-related pathways induced by remote limb ischaemia. (1) The neuronal pathway involves activation of both local sensory nerves and the autonomic nervous system to mediate protective effects, including the release of humoral factors; (2) the humoral pathway involves endogenous protective factors, including locally acting autocoids and bloodborne humoral factors that travel to the brain and (3) the systemic response includes immune modulation and blood pressure regulation. (B) Within the brain, the three pathways converge to increase cerebral blood flow, ameliorate neuroinflammation and to activate cell survival mechanisms. Direct pro-survival actions within cells are mediated via G-protein-coupled (GPC) receptors and include mitochondrial protection (maintenance of potassium-sensitive ATP channel, prevention of mitochondrial permeability transition pore opening) and transcriptional regulation (both genetic and epigenetic modulation) in the nucleus. (C) Following remote ischaemic stimulus after HI, the effects of these neuroprotective mechanisms are to decrease energy consumption; to increase substrate delivery and offset cerebral secondary energy failure; to protect against cell death and to augment long-term recovery and repair. HI, hypoxia-ischaemia; I/R, ischaemia/reperfusion; RIPostC, remote ischaemic postconditioning.

References

    1. Liu L, Oza S, Hogan D, et al. . Global, regional, and national causes of child mortality in 2000-13, with projections to inform post-2015 priorities: an updated systematic analysis. Lancet 2015;385:430–40. 10.1016/S0140-6736(14)61698-6
    1. Lee AC, Kozuki N, Blencowe H, et al. . Intrapartum-related neonatal encephalopathy incidence and impairment at regional and global levels for 2010 with trends from 1990. Pediatr Res 2013;74(Suppl 1):50–72. 10.1038/pr.2013.206
    1. Lawn JE, Blencowe H, Oza S, et al. . Every Newborn: progress, priorities, and potential beyond survival. Lancet 2014;384:189–205. 10.1016/S0140-6736(14)60496-7
    1. Edwards AD, Brocklehurst P, Gunn AJ, et al. . Neurological outcomes at 18 months of age after moderate hypothermia for perinatal hypoxic ischaemic encephalopathy: synthesis and meta-analysis of trial data. BMJ 2010;340:c363 10.1136/bmj.c363
    1. Roka A, Azzopardi D. Therapeutic hypothermia for neonatal hypoxic ischaemic encephalopathy. Early Hum Dev 2010;86:361–7. 10.1016/j.earlhumdev.2010.05.013
    1. Nelson KB, Leviton A. How much of neonatal encephalopathy is due to birth asphyxia? Am J Dis Child 1991;145:1325–31. 10.1001/archpedi.1991.02160040098016
    1. Eklind S, Mallard C, Leverin AL, et al. . Bacterial endotoxin sensitizes the immature brain to hypoxic–ischaemic injury. Eur J Neurosci 2001;13:1101–16. 10.1046/j.0953-816x.2001.01474.x
    1. Wang X, Stridh L, Li W, et al. . Lipopolysaccharide sensitizes neonatal hypoxic-ischemic brain injury in a MyD88-dependent manner. J Immunol 2009;183:7471–7. 10.4049/jimmunol.0900762
    1. Nelson KB, Willoughby RE. Infection, inflammation and the risk of cerebral palsy. Curr Opin Neurol 2000;13:133–9. 10.1097/00019052-200004000-00004
    1. Szydlowska K, Tymianski M. Calcium, ischemia and excitotoxicity. Cell Calcium 2010;47:122–9. 10.1016/j.ceca.2010.01.003
    1. Jensen EC, Bennet L, Hunter CJ, et al. . Post-hypoxic hypoperfusion is associated with suppression of cerebral metabolism and increased tissue oxygenation in near-term fetal sheep. J Physiol 2006;572(Pt 1):131–9. 10.1113/jphysiol.2005.100768
    1. Iwata O, Iwata S, Thornton JS, et al. . “Therapeutic time window” duration decreases with increasing severity of cerebral hypoxia-ischaemia under normothermia and delayed hypothermia in newborn piglets. Brain Res 2007;1154:173–80. 10.1016/j.brainres.2007.03.083
    1. Iwata O, Iwata S, Bainbridge A, et al. . Supra- and sub-baseline phosphocreatine recovery in developing brain after transient hypoxia-ischaemia: relation to baseline energetics, insult severity and outcome. Brain 2008;131(Pt 8):2220–6. 10.1093/brain/awn150
    1. Cady EB, Iwata O, Bainbridge A, et al. . Phosphorus magnetic resonance spectroscopy 2 h after perinatal cerebral hypoxia-ischemia prognosticates outcome in the newborn piglet. J Neurochem 2008;107:1027–35. 10.1111/j.1471-4159.2008.05662.x
    1. Lorek A, Takei Y, Cady EB, et al. . Delayed (“secondary)” cerebral energy failure after acute hypoxia-ischemia in the newborn piglet: continuous 48-hour studies by phosphorus magnetic resonance spectroscopy. Pediatr Res 1994;36:699–706. 10.1203/00006450-199412000-00003
    1. Azzopardi D, Wyatt JS, Cady EB, et al. . Prognosis of newborn infants with hypoxic-ischemic brain injury assessed by phosphorus magnetic resonance spectroscopy. Pediatr Res 1989;25:445–51. 10.1203/00006450-198905000-00004
    1. Martin E, Buchli R, Ritter S, et al. . Diagnostic and prognostic value of cerebral 31P magnetic resonance spectroscopy in neonates with perinatal asphyxia. Pediatr Res 1996;40:749–58. 10.1203/00006450-199611000-00015
    1. Robertson NJ, Cox IJ, Cowan FM, et al. . Cerebral intracellular lactic alkalosis persisting months after neonatal encephalopathy measured by magnetic resonance spectroscopy. Pediatr Res 1999;46:287–96. 10.1203/00006450-199909000-00007
    1. Robertson NJ, Cowan FM, Cox IJ, et al. . Brain alkaline intracellular pH after neonatal encephalopathy. Ann Neurol 2002;52:732–42. 10.1002/ana.10365
    1. Hagberg H, Mallard C, Rousset CI, et al. . Mitochondria: hub of injury responses in the developing brain. Lancet Neurol 2014;13:217–32. 10.1016/S1474-4422(13)70261-8
    1. Northington FJ, Chavez-Valdez R, Martin LJ. Neuronal cell death in neonatal hypoxia-ischemia. Ann Neurol 2011;69:743–58. 10.1002/ana.22419
    1. Fleiss B, Gressens P. Tertiary mechanisms of brain damage: a new hope for treatment of cerebral palsy? Lancet Neurol 2012;11:556–66. 10.1016/S1474–4422(12)70058-3
    1. Gonzalez FF, Ferriero DM. Therapeutics for neonatal brain injury. Pharmacol Ther 2008;120:43–53. 10.1016/j.pharmthera.2008.07.003
    1. Dirnagl U, Simon RP, Hallenbeck JM. Ischemic tolerance and endogenous neuroprotection. Trends Neurosci 2003;26:248–54. 10.1016/S0166-2236(03)00071-7
    1. Burnard ED, Cross KW. Rectal temperature in the newborn after birth asphyxia. BMJ 1958;2:1197–9. 10.1136/bmj.2.5106.1197
    1. Reiter RJ, Tan D-X, Fuentes-Broto L. Melatonin: a multitasking molecule. Prog Brain Res 2010;181:127–51. 10.1016/s0079-6123(08)81008-4
    1. Robertson NJ, Faulkner S, Fleiss B, et al. . Melatonin augments hypothermic neuroprotection in a perinatal asphyxia model. Brain 2013;136(Pt 1):90–105. 10.1093/brain/aws285
    1. Robertson NJ, Nakakeeto M, Hagmann C, et al. . Therapeutic hypothermia for birth asphyxia in low-resource settings: a pilot randomised controlled trial. Lancet 2008;372:801–3. 10.1016/S0140-6736(08)61329-X
    1. Bona E, Hagberg H, Loberg EM, et al. . Protective effects of moderate hypothermia after neonatal hypoxia-ischemia: short- and long-term outcome. Pediatr Res 1998;43:738–45. 10.1203/00006450-199806000-00005
    1. Thoresen M, Penrice J, Lorek A, et al. . Mild hypothermia after severe transient hypoxia-ischemia ameliorates delayed cerebral energy failure in the newborn piglet. Pediatr Res 1995;37:667–70. 10.1203/00006450-199505000-00019
    1. Jacobs SE, Berg M, Hunt R, et al. . Cooling for newborns with hypoxic ischaemic encephalopathy. Cochrane Database Syst Rev 2013;1:CD003311 10.1002/14651858.CD003311.pub3
    1. Wassink G, Gunn ER, Drury PP, et al. . The mechanisms and treatment of asphyxial encephalopathy. Front Neurosci 2014;8:40 10.3389/fnins.2014.00040
    1. Edwards AD, Azzopardi DV, Gunn AJ. Neonatal neural rescue: a clinical guide. Cambridge University Press, 2013.
    1. Busto R, Globus MY, Dietrich WD, et al. . Effect of mild hypothermia on ischemia-induced release of neurotransmitters and free fatty acids in rat brain. Stroke 1989;20:904–10. 10.1161/01.STR.20.7.904
    1. Drury PP, Bennet L, Gunn AJ. Mechanisms of hypothermic neuroprotection. Semin Fetal Neonatal Med 2010;15:287–92. 10.1016/j.siny.2010.05.005
    1. Yenari MA, Han HS. Neuroprotective mechanisms of hypothermia in brain ischaemia. Nat Rev Neurosci 2012;13:267–78.
    1. Azzopardi DV, Strohm B, Edwards AD, et al. . Moderate hypothermia to treat perinatal asphyxial encephalopathy. N Engl J Med 2009;361:1349–58. 10.1056/NEJMoa0900854
    1. Gluckman PD, Wyatt JS, Azzopardi D, et al. . Selective head cooling with mild systemic hypothermia after neonatal encephalopathy: multicentre randomised trial. Lancet 2005;365:663–70. 10.1016/S0140-6736(05)17946-X
    1. Sarkar S, Donn SM, Bapuraj JR, et al. . Distribution and severity of hypoxic-ischaemic lesions on brain MRI following therapeutic cooling: selective head versus whole body cooling. Archives of disease in childhood. Fetal Neonatal Ed 2012;97:F335–9. 10.1136/fetalneonatal-2011-300964
    1. Tagin MA, Woolcott CG, Vincer MJ, et al. . Hypothermia for neonatal hypoxic ischemic encephalopathy: an updated systematic review and meta-analysis. Arch Pediatr Adolesc Med 2012;166:558–66. 10.1001/archpediatrics.2011.1772
    1. Shankaran S. Therapeutic hypothermia for neonatal encephalopathy. Curr Treat Options Neurol 2012;14:608–19. 10.1007/s11940-012-0200-y
    1. Azzopardi D, Strohm B, Linsell L, et al. . Implementation and conduct of therapeutic hypothermia for perinatal asphyxial encephalopathy in the UK–analysis of national data. PloS ONE 2012;7:e38504 10.1371/journal.pone.0038504
    1. Mourvillier B, Tubach F, van de Beek D, et al. . Induced hypothermia in severe bacterial meningitis: a randomized clinical trial. JAMA 2013;310:2174–83. 10.1001/jama.2013.280506
    1. Osredkar D, Thoresen M, Maes E, et al. . Hypothermia is not neuroprotective after infection-sensitized neonatal hypoxic-ischemic brain injury. Resuscitation 2014;85:567–72. 10.1016/j.resuscitation.2013.12.006
    1. Wintermark P, Boyd T, Gregas MC, et al. . Placental pathology in asphyxiated newborns meeting the criteria for therapeutic hypothermia. Am J Obstet Gynecol 2010;203:579 e1–9. 10.1016/j.ajog.2010.08.024
    1. An C, Shi Y, Li P, et al. . Molecular dialogs between the ischemic brain and the peripheral immune system: dualistic roles in injury and repair. Prog Neurobiol 2014;115:6–24. 10.1016/j.pneurobio.2013.12.002
    1. Buck BH, Liebeskind DS, Saver JL, et al. . Early neutrophilia is associated with volume of ischemic tissue in acute stroke. Stroke 2008;39:355–60. 10.1161/STROKEAHA.107.490128
    1. Liesz A, Suri-Payer E, Veltkamp C, et al. . Regulatory T cells are key cerebroprotective immunomodulators in acute experimental stroke. Nat Med 2009;15:192–9. 10.1038/nm.1927
    1. Kline AE, Bolinger BD, Kochanek PM, et al. . Acute systemic administration of interleukin-10 suppresses the beneficial effects of moderate hypothermia following traumatic brain injury in rats. Brain Res 2002;937:22–31. 10.1016/S0006-8993(02)02458-7
    1. Klehmet J, Harms H, Richter M, et al. . Stroke-induced immunodepression and post-stroke infections: lessons from the preventive antibacterial therapy in stroke trial. Neuroscience 2009;158:1184–93. 10.1016/j.neuroscience.2008.07.044
    1. Kimura A, Sakurada S, Ohkuni H, et al. . Moderate hypothermia delays proinflammatory cytokine production of human peripheral blood mononuclear cells. Crit Care Med 2002;30:1499–502. 10.1097/00003246-200207000-00017
    1. Polderman KH. Hypothermia, immune suppression and SDD: can we have our cake and eat it? Crit Care 2011;15:144 10.1186/cc10080
    1. Jenkins DD, Lee T, Chiuzan C, et al. . Altered circulating leukocytes and their chemokines in a clinical trial of therapeutic hypothermia for neonatal hypoxic ischemic encephalopathy*. Pediatr Crit Care Med 2013;14:786–95. 10.1097/PCC.0b013e3182975cc9
    1. Geurts M, Macleod MR, Kollmar R, et al. . Therapeutic hypothermia and the risk of infection: a systematic review and meta-analysis. Crit Care Med 2014;42:231–42. 10.1097/CCM.0b013e3182a276e8
    1. Lin HY, Huang CC, Chang KF. Lipopolysaccharide preconditioning reduces neuroinflammation against hypoxic ischemia and provides long-term outcome of neuroprotection in neonatal rat. Pediatr Res 2009;66:254–9. 10.1203/PDR.0b013e3181b0d336
    1. McAuliffe JJ, Loepke AW, Miles L, et al. . Desflurane, isoflurane, and sevoflurane provide limited neuroprotection against neonatal hypoxia-ischemia in a delayed preconditioning paradigm. Anesthesiology 2009;111:533–46. 10.1097/ALN.0b013e3181b060d3
    1. Wegener S, Gottschalk B, Jovanovic V, et al. . Transient ischemic attacks before ischemic stroke: preconditioning the human brain? A multicenter magnetic resonance imaging study. Stroke 2004;35:616–21. 10.1161/01.STR.0000115767.17923.6A
    1. Weih M, Kallenberg K, Bergk A, et al. . Attenuated stroke severity after prodromal TIA: a role for ischemic tolerance in the brain? Stroke 1999;30:1851–4. 10.1161/01.STR.30.9.1851
    1. Rezkalla SH, Kloner RA. Ischemic preconditioning and preinfarction angina in the clinical arena. Nat Clin Pract Cardiovasc Med 2004;1:96–102. 10.1038/ncpcardio0047
    1. Vinten-Johansen J, Zhao ZQ, Jiang R, et al. . Myocardial protection in reperfusion with postconditioning. Expert Rev Cardiovasc Ther 2005;3:1035–45. 10.1586/14779072.3.6.1035
    1. Zhao ZQ, Corvera JS, Halkos ME, et al. . Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am J Physiol Heart Circ Physiol 2003;285:H579–88. 10.1152/ajpheart.01064.2002
    1. Zhao ZQ, Vinten-Johansen J. Postconditioning: reduction of reperfusion-induced injury. Cardiovasc Res 2006;70:200–11. 10.1016/j.cardiores.2006.01.024
    1. Ren C, Gao X, Niu G, et al. . Delayed postconditioning protects against focal ischemic brain injury in rats. PloS ONE 2008;3:e3851 10.1371/journal.pone.0003851
    1. Lim SY, Hausenloy DJ. Remote ischemic conditioning: from bench to bedside. Front Physiol 2012;3:27 10.3389/fphys.2012.00027
    1. Malhotra S, Naggar I, Stewart M, et al. . Neurogenic pathway mediated remote preconditioning protects the brain from transient focal ischemic injury. Brain Res 2011;1386:184–90. 10.1016/j.brainres.2011.02.032
    1. Pignataro G, Esposito E, Sirabella R, et al. . nNOS and p-ERK involvement in the neuroprotection exerted by remote postconditioning in rats subjected to transient middle cerebral artery occlusion. Neurobiol Dis 2013;54:105–14. 10.1016/j.nbd.2013.02.008
    1. Denning GM, Ackermann LW, Barna TJ, et al. . Proenkephalin expression and enkephalin release are widely observed in non-neuronal tissues. Peptides 2008;29:83–92. 10.1016/j.peptides.2007.11.004
    1. Kanoria S, Jalan R, Seifalian AM, et al. . Protocols and mechanisms for remote ischemic preconditioning: a novel method for reducing ischemia reperfusion injury. Transplantation 2007;84:445–58. 10.1097/01.tp.0000228235.55419.e8
    1. Shimizu M, Saxena P, Konstantinov IE, et al. . Remote ischemic preconditioning decreases adhesion and selectively modifies functional responses of human neutrophils. J Surg Res 2010;158:155–61. 10.1016/j.jss.2008.08.010
    1. Mergenthaler P, Dirnagl U. Protective conditioning of the brain: expressway or roadblock? J Physiol 2011;589(Pt 17):4147–55. 10.1113/jphysiol.2011.209718
    1. Saxena P, Newman MA, Shehatha JS, et al. . Remote ischemic conditioning: evolution of the concept, mechanisms, and clinical application. J Card Surg 2010;25:127–34. 10.1111/j.1540-8191.2009.00820.x
    1. Tapuria N, Kumar Y, Habib MM, et al. . Remote ischemic preconditioning: a novel protective method from ischemia reperfusion injury–a review. J Surg Res 2008;150:304–30. 10.1016/j.jss.2007.12.747
    1. Zhou Y, Fathali N, Lekic T, et al. . Remote limb ischemic postconditioning protects against neonatal hypoxic-ischemic brain injury in rat pups by the opioid receptor/Akt pathway. Stroke 2011;42:439–44. 10.1161/STROKEAHA.110.592162
    1. Liu X, Zhao S, Liu F, et al. . Remote ischemic postconditioning alleviates cerebral ischemic injury by attenuating endoplasmic reticulum stress-mediated apoptosis. Transl Stroke Res 2014;5:692–700. 10.1007/s12975-014-0359-5
    1. Drunalini Perera PN, Hu Q, Tang J, et al. . Delayed remote ischemic postconditioning improves long term sensory motor deficits in a neonatal hypoxic ischemic rat model. PloS ONE 2014;9:e90258 10.1371/journal.pone.0090258
    1. Ezzati M, Bainbridge A, Broad KD, et al. . Limb remote ischemic post-conditioning protects cerebral white matter in a piglet model of perinatal asphyxia. PAS 2014;4118.305.
    1. Thayyil S, Chandrasekaran M, Taylor A, et al. . Cerebral magnetic resonance biomarkers in neonatal encephalopathy: a meta-analysis. Pediatrics 2010;125:e382–95. 10.1542/peds.2009-1046
    1. Brevoord D, Kranke P, Kuijpers M, et al. . Remote ischemic conditioning to protect against ischemia-reperfusion injury: a systematic review and meta-analysis. PloS ONE 2012;7:e42179 10.1371/journal.pone.0042179
    1. Zhong H, Gao Z, Chen M, et al. . Cardioprotective effect of remote ischemic postconditioning on children undergoing cardiac surgery: a randomized controlled trial. Paediatr Anaesth 2013;23:726–33. 10.1111/pan.12181
    1. Hougaard KD, Hjort N, Zeidler D, et al. . Remote ischemic perconditioning as an adjunct therapy to thrombolysis in patients with acute ischemic stroke: a randomized trial. Stroke 2014;45:159–67. 10.1161/STROKEAHA.113.001346
    1. Pilcher JM, Young P, Weatherall M, et al. . A systematic review and meta-analysis of the cardioprotective effects of remote ischaemic preconditioning in open cardiac surgery. J R Soc Med 2012;105:436–45. 10.1258/jrsm.2012.120049
    1. Zhao H. Hurdles to clear before clinical translation of ischemic postconditioning against stroke. Transl Stroke Res 2013;4:63–70. 10.1007/s12975-012-0243-0
    1. Reiter RJ, Tan DX, Manchester LC, et al. . Medical implications of melatonin: receptor-mediated and receptor-independent actions. Adv Med Sci 2007;52:11–28.
    1. Slominski RM, Reiter RJ, Schlabritz-Loutsevitch N, et al. . Melatonin membrane receptors in peripheral tissues: distribution and functions. Mol Cell Endocrinol 2012;351:152–66. 10.1016/j.mce.2012.01.004
    1. Acuna-Castroviejo D, Martin M, Macias M, et al. . Melatonin, mitochondria, and cellular bioenergetics. J Pineal Res 2001;30:65–74. 10.1034/j.1600-079X.2001.300201.x
    1. Cardinali DP, Pagano ES, Scacchi Bernasconi PA, et al. . Melatonin and mitochondrial dysfunction in the central nervous system. Horm Behav 2013;63:322–30. 10.1016/j.yhbeh.2012.02.020
    1. Jou MJ, Peng TI, Yu PZ, et al. . Melatonin protects against common deletion of mitochondrial DNA-augmented mitochondrial oxidative stress and apoptosis. J Pineal Res 2007;43:389–403. 10.1111/j.1600-079X.2007.00490.x
    1. Pandi-Perumal SR, BaHammam AS, Brown GM, et al. . Melatonin antioxidative defense: therapeutical implications for aging and neurodegenerative processes. Neurotox Res 2013;23:267–300. 10.1007/s12640-012-9337-4
    1. Sharma R, Ottenhof T, Rzeczkowska PA, et al. . Epigenetic targets for melatonin: induction of histone H3 hyperacetylation and gene expression in C17.2 neural stem cells. J Pineal Res 2008;45:277–84. 10.1111/j.1600-079X.2008.00587.x
    1. Thomas L, Purvis CC, Drew JE, et al. . Melatonin receptors in human fetal brain: 2-[(125)I]iodomelatonin binding and MT1 gene expression. J Pineal Res 2002;33:218–24. 10.1034/j.1600-079X.2002.02921.x
    1. Tamura H, Nakamura Y, Korkmaz A, et al. . Melatonin and the ovary: physiological and pathophysiological implications. Fertil Steril 2009;92:328–43. 10.1016/j.fertnstert.2008.05.016
    1. Tamura H, Nakamura Y, Terron MP, et al. . Melatonin and pregnancy in the human. Reprod Toxicol 2008;25:291–303. 10.1016/j.reprotox.2008.03.005
    1. Okatani Y, Okamoto K, Hayashi K, et al. . Maternal-fetal transfer of melatonin in pregnant women near term. J Pineal Res 1998;25:129–34. 10.1111/j.1600-079X.1998.tb00550.x
    1. Okatani Y, Wakatsuki A, Kaneda C. Melatonin increases activities of glutathione peroxidase and superoxide dismutase in fetal rat brain. J Pineal Res 2000;28:89–96. 10.1034/j.1600-079X.2001.280204.x
    1. Ardura J, Gutierrez R, Andres J, et al. . Emergence and evolution of the circadian rhythm of melatonin in children. Horm Res 2003;59:66–72. 10.1159/000068571
    1. Kennaway DJ, Stamp GE, Goble FC. Development of melatonin production in infants and the impact of prematurity. J Clin Endocrinol Metab 1992;75:367–9. 10.1210/jcem.75.2.1639937
    1. Marseglia L, Aversa S, Barberi I, et al. . High endogenous melatonin levels in critically Ill children: a Pilot study. J Pediatr 2013;162:357–60. 10.1016/j.jpeds.2012.07.019
    1. Seifman MA, Adamides AA, Nguyen PN, et al. . Endogenous melatonin increases in cerebrospinal fluid of patients after severe traumatic brain injury and correlates with oxidative stress and metabolic disarray. Cereb Blood Flow Metab 2008;28:684–96. 10.1038/sj.jcbfm.9600603
    1. Fu J, Zhao SD, Liu HJ, et al. . Melatonin promotes proliferation and differentiation of neural stem cells subjected to hypoxia in vitro. J Pineal Res 2011;51:104–12. 10.1111/j.1600-079X.2011.00867.x
    1. Husson I, Mesples B, Bac P, et al. . Melatoninergic neuroprotection of the murine periventricular white matter against neonatal excitotoxic challenge. Ann Neurol 2002;51:82–92. 10.1002/ana.10072
    1. Villapol S, Fau S, Renolleau S, et al. . Melatonin promotes myelination by decreasing white matter inflammation after neonatal stroke. Pediatr Res 2011;69:51–5. 10.1203/PDR.0b013e3181fcb40b
    1. Pearce W. Hypoxic regulation of the fetal cerebral circulation. J Appl Physiol 2006;100:731–8. 10.1152/japplphysiol.00990.2005
    1. Vento M, Escobar J, Cernada M, et al. . The use and misuse of oxygen during the neonatal period. Clin Perinatol 2012;39:165–76. 10.1016/j.clp.2011.12.014
    1. Wakatsuki A, Okatani Y, Izumiya C, et al. . Melatonin protects against ischemia and reperfusion-induced oxidative lipid and DNA damage in fetal rat brain. J Pineal Res 1999;26:147–52. 10.1111/j.1600-079X.1999.tb00576.x
    1. Galano A, Tan DX, Reiter RJ. On the free radical scavenging activities of melatonin's metabolites, AFMK and AMK. J Pineal Res 2013;54:245–57. 10.1111/jpi.12010
    1. Gilad E, Cuzzocrea S, Zingarelli B, et al. . Melatonin is a scavenger of peroxynitrite. Life Sci 1997;60:PL169–74. 10.1016/S0024-3205(97)00008-8
    1. Hardeland R, Tan DX, Reiter RJ. Kynuramines, metabolites of melatonin and other indoles: the resurrection of an almost forgotten class of biogenic amines. J Pineal Res 2009;47:109–26. 10.1111/j.1600-079X.2009.00701.x
    1. Ressmeyer AR, Mayo JC, Zelosko V, et al. . Antioxidant properties of the melatonin metabolite N1-acetyl-5-methoxykynuramine (AMK): scavenging of free radicals and prevention of protein destruction. Redox Rep 2003;8:205–13. 10.1179/135100003225002709
    1. Tan DX, Manchester LC, Terron MP, et al. . One molecule, many derivatives: a never-ending interaction of melatonin with reactive oxygen and nitrogen species? J Pineal Res 2007;42:28–42. 10.1111/j.1600-079X.2006.00407.x
    1. Miller SL, Yan EB, Castillo-Melendez M, et al. . Melatonin provides neuroprotection in the late-gestation fetal sheep brain in response to umbilical cord occlusion. Dev Neurosci 2005;27:200–10. 10.1159/000085993
    1. Wakatsuki A, Izumiya C, Okatani Y, et al. . Oxidative damage in fetal rat brain induced by ischemia and subsequent reperfusion. Relation to arachidonic acid peroxidation. Biol Neonate 1999;76:84–91. 10.1159/000014145
    1. Wakatsuki A, Okatani Y, Shinohara K, et al. . Melatonin protects against ischemia/reperfusion-induced oxidative damage to mitochondria in fetal rat brain. J Pineal Res 2001;31:167–72. 10.1034/j.1600-079x.2001.310211.x
    1. Wakatsuki A, Okatani Y, Shinohara K, et al. . Melatonin protects fetal rat brain against oxidative mitochondrial damage. J Pineal Res 2001;30:22–8. 10.1034/j.1600-079X.2001.300103.x
    1. Watanabe K, Hamada F, Wakatsuki A, et al. . Prophylactic administration of melatonin to the mother throughout pregnancy can protect against oxidative cerebral damage in neonatal rats. J Matern Fetal Neonatal Med 2012;25:1254–9. 10.3109/14767058.2011.636094
    1. Watanabe K, Wakatsuki A, Shinohara K, et al. . Maternally administered melatonin protects against ischemia and reperfusion-induced oxidative mitochondrial damage in premature fetal rat brain. J Pineal Res 2004;37:276–80. 10.1111/j.1600-079X.2004.00167.x
    1. Yawno T, Castillo-Melendez M, Jenkin G, et al. . Mechanisms of melatonin-induced protection in the brain of late gestation fetal sheep in response to hypoxia. Dev Neurosci 2012;34:543–51. 10.1159/000346323
    1. Cetinkaya M, Alkan T, Ozyener F, et al. . Possible neuroprotective effects of magnesium sulfate and melatonin as both pre- and post-treatment in a neonatal hypoxic-ischemic rat model. Neonatology 2011;99:302–10. 10.1159/000320643
    1. Hutton LC, Abbass M, Dickinson H, et al. . Neuroprotective properties of melatonin in a model of birth asphyxia in the spiny mouse (Acomys cahirinus). Dev Neurosci 2009;31:437–51. 10.1159/000232562
    1. Kaur C, Sivakumar V, Ling EA. Melatonin protects periventricular white matter from damage due to hypoxia. J Pineal Res 2010;48:185–93. 10.1111/j.1600-079X.2009.00740.x
    1. Ozyener F, Cetinkaya M, Alkan T, et al. . Neuroprotective effects of melatonin administered alone or in combination with topiramate in neonatal hypoxic-ischemic rat model. Restor Neurol Neurosci 2012;30:435–44. 10.3233/RNN-2012-120217
    1. Welin AK, Svedin P, Lapatto R, et al. . Melatonin reduces inflammation and cell death in white matter in the mid-gestation fetal sheep following umbilical cord occlusion. Pediatr Res 2007;61:153–8. 10.1203/01.pdr.0000252546.20451.1a
    1. Carrillo-Vico A, Lardone PJ, Fernandez-Santos JM, et al. . Human lymphocyte-synthesized melatonin is involved in the regulation of the interleukin-2/interleukin-2 receptor system. J Clin Endocrinol Metab 2005;90:992–1000. 10.1210/jc.2004-1429
    1. Srinivasan V, Pandi-Perumal SR, Spence DW, et al. . Melatonin in septic shock: some recent concepts. J Crit Care 2010;25:656 e1–6. 10.1016/j.jcrc.2010.03.006
    1. Balduini W, Carloni S, Perrone S, et al. . The use of melatonin in hypoxic-ischemic brain damage: an experimental study. J Matern Fetal Neonatal Med 2012;25(Suppl 1):119–24. 10.3109/14767058.2012.663232
    1. Wang X, Svedin P, Nie C, et al. . N-acetylcysteine reduces lipopolysaccharide-sensitized hypoxic-ischemic brain injury. Ann Neurol 2007;61:263–71. 10.1002/ana.21066
    1. Jahnke G, Marr M, Myers C, et al. . Maternal and developmental toxicity evaluation of melatonin administered orally to pregnant Sprague-Dawley rats. Toxicol Sci 1999;50:271–9. 10.1093/toxsci/50.2.271
    1. Buscemi N, Vandermeer B, Hooton N, et al. . Efficacy and safety of exogenous melatonin for secondary sleep disorders and sleep disorders accompanying sleep restriction: meta-analysis. BMJ 2006;332:385–93. 10.1136/bmj.38731.532766.F6
    1. Gitto E, Karbownik M, Reiter RJ, et al. . Effects of melatonin treatment in septic newborns. Pediatr Res 2001;50:756–60. 10.1203/00006450-200112000-00021
    1. Gitto E, Reiter RJ, Cordaro SP, et al. . Oxidative and inflammatory parameters in respiratory distress syndrome of preterm newborns: beneficial effects of melatonin. Am J Perinatol 2004;21:209–16. 10.1055/s-2004-828610
    1. Fulia F, Gitto E, Cuzzocrea S, et al. . Increased levels of malondialdehyde and nitrite/nitrate in the blood of asphyxiated newborns: reduction by melatonin. J Pineal Res 2001;31:343–9. 10.1034/j.1600-079X.2001.310409.x
    1. Aly H, Elmahdy H, El-Dib M, et al. . Melatonin use for neuroprotection in perinatal asphyxia: a randomized controlled pilot study. J Perinatol 2014. doi: 10.1038/jp.2014.186. [Epub ahead of print] 10.1038/jp.2014.186
    1. Robertson NJ, Tan S, Groenendaal F, et al. . Which neuroprotective agents are ready for bench to bedside translation in the newborn infant? J Pediatr 2012;160:544–52 e4 10.1016/j.jpeds.2011.12.052
    1. Pacher P, Batkai S, Kunos G. The endocannabinoid system as an emerging target of pharmacotherapy. Pharmacol Rev 2006;58:389–462. 10.1124/pr.58.3.2
    1. Ahn K, McKinney MK, Cravatt BF. Enzymatic pathways that regulate endocannabinoid signaling in the nervous system. Chem Rev 2008;108:1687–707. 10.1021/cr0782067
    1. Di Marzo V, Bisogno T, De Petrocellis L. Endocannabinoids and related compounds: walking back and forth between plant natural products and animal physiology. Chem Biol 2007;14:741–56. 10.1016/j.chembiol.2007.05.014
    1. Berger C, Schmid PC, Schabitz WR, et al. . Massive accumulation of N-acylethanolamines after stroke. Cell signalling in acute cerebral ischemia? J Neurochem 2004;88:1159–67.
    1. Fernandez-Ruiz J, Berrendero F, Hernandez ML, et al. . The endogenous cannabinoid system and brain development. Trends Neurosci 2000;23:14–20. 10.1016/S0166-2236(99)01491-5
    1. Gaffuri AL, Ladarre D, Lenkei Z. Type-1 cannabinoid receptor signaling in neuronal development. Pharmacology 2012;90:19–39. 10.1159/000339075
    1. Harkany T, Keimpema E, Barabas K, et al. . Endocannabinoid functions controlling neuronal specification during brain development. Mol Cell Endocrinol 2008; 286(1–2 Suppl 1):S84–90. 10.1016/j.mce.2008.02.011
    1. Mato S, Del Olmo E, Pazos A. Ontogenetic development of cannabinoid receptor expression and signal transduction functionality in the human brain. Eur J Neurosci 2003;17:1747–54. 10.1046/j.1460-9568.2003.02599.x
    1. Paria BC, Dey SK. Ligand-receptor signaling with endocannabinoids in preimplantation embryo development and implantation. Chem Phys Lipids 2000;108:211–20. 10.1016/S0009-3084(00)00197-3
    1. Hansen HH, Ikonomidou C, Bittigau P, et al. . Accumulation of the anandamide precursor and other N-acylethanolamine phospholipids in infant rat models of in vivo necrotic and apoptotic neuronal death. J Neurochem 2001;76:39–46. 10.1046/j.1471-4159.2001.00006.x
    1. Panikashvili D, Simeonidou C, Ben-Shabat S, et al. . An endogenous cannabinoid (2-AG) is neuroprotective after brain injury. Nature 2001;413:527–31. 10.1038/35097089
    1. Sugiura T, Yoshinaga N, Kondo S, et al. . Generation of 2-arachidonoylglycerol, an endogenous cannabinoid receptor ligand, in picrotoxinin-administered rat brain. Biochem Biophys Res Commun 2000;271:654–8. 10.1006/bbrc.2000.2686
    1. van der Stelt M, Di Marzo V. Cannabinoid receptors and their role in neuroprotection. Neuromolecular Med 2005;7:37–50. 10.1385/NMM:7:1-2:037
    1. Freund TF, Katona I, Piomelli D. Role of endogenous cannabinoids in synaptic signaling. Physiol Rev 2003;83:1017–66. 10.1152/physrev.00004.2003
    1. Kim SH, Won SJ, Mao XO, et al. . Molecular mechanisms of cannabinoid protection from neuronal excitotoxicity. Mol Pharmacol 2006;69:691–6. 10.1124/mol.105.016428
    1. Marsicano G, Goodenough S, Monory K, et al. . CB1 cannabinoid receptors and on-demand defense against excitotoxicity. Science 2003;302:84–8. 10.1126/science.1088208
    1. van der Stelt M, Veldhuis WB, Maccarrone M, et al. . Acute neuronal injury, excitotoxicity, and the endocannabinoid system. Mol Neurobiol 2002;26:317–46. 10.1385/MN:26:2-3:317
    1. Waksman Y, Olson JM, Carlisle SJ, et al. . The central cannabinoid receptor (CB1) mediates inhibition of nitric oxide production by rat microglial cells. J Pharmacol Exp Ther 1999;288:1357–66.
    1. Klein TW. Cannabinoid-based drugs as anti-inflammatory therapeutics. Nature Rev Immunol 2005;5:400–11. 10.1038/nri1602
    1. Murikinati S, Juttler E, Keinert T, et al. . Activation of cannabinoid 2 receptors protects against cerebral ischemia by inhibiting neutrophil recruitment. FASEB J 2010;24:788–98. 10.1096/fj.09-141275
    1. Stella N. Endocannabinoid signaling in microglial cells. Neuropharmacology 2009;56(Suppl 1):244–53. 10.1016/j.neuropharm.2008.07.037
    1. Tanasescu R, Constantinescu CS. Cannabinoids and the immune system: an overview. Immunobiology 2010;215:588–97. 10.1016/j.imbio.2009.12.005
    1. Walter L, Stella N. Cannabinoids and neuroinflammation. Br J Pharmacol 2004;141:775–85. 10.1038/sj.bjp.0705667
    1. Guzman M, Sanchez C, Galve-Roperh I. Control of the cell survival/death decision by cannabinoids. J Mol Med 2001;78:613–25. 10.1007/s001090000177
    1. Guzman M, Sanchez C, Galve-Roperh I. Cannabinoids and cell fate. Pharmacol Ther 2002;95:175–84. 10.1016/S0163-7258(02)00256-5
    1. Molina-Holgado E, Vela JM, Arevalo-Martin A, et al. . Cannabinoids promote oligodendrocyte progenitor survival: involvement of cannabinoid receptors and phosphatidylinositol-3 kinase/Akt signaling. JNeurosci 2002;22:9742–53.
    1. Ozaita A, Puighermanal E, Maldonado R. Regulation of PI3K/Akt/GSK-3 pathway by cannabinoids in the brain. J Neurochem 2007;102:1105–14. 10.1111/j.1471-4159.2007.04642.x
    1. Ramirez SH, Hasko J, Skuba A, et al. . Activation of cannabinoid receptor 2 attenuates leukocyte-endothelial cell interactions and blood-brain barrier dysfunction under inflammatory conditions. J Neurosci 2012;32:4004–16. 10.1523/JNEUROSCI.4628-11.2012
    1. Viscomi MT, Oddi S, Latini L, et al. . Selective CB2 receptor agonism protects central neurons from remote axotomy-induced apoptosis through the PI3K/Akt pathway. J Neurosci 2009;29:4564–70. 10.1523/JNEUROSCI.0786-09.2009
    1. Alonso-Alconada D, Alvarez A, Alvarez FJ, et al. . The cannabinoid WIN 55212-2 mitigates apoptosis and mitochondrial dysfunction after hypoxia ischemia. Neurochem Res 2012;37:161–70. 10.1007/s11064-011-0594-z
    1. Alonso-Alconada D, Alvarez FJ, Alvarez A, et al. . The cannabinoid receptor agonist WIN 55,212-2 reduces the initial cerebral damage after hypoxic-ischemic injury in fetal lambs. Brain Res 2010;1362:150–9. 10.1016/j.brainres.2010.09.050
    1. Fernandez-Lopez D, Pazos MR, Tolon RM, et al. . The cannabinoid agonist WIN55212 reduces brain damage in an in vivo model of hypoxic-ischemic encephalopathy in newborn rats. Pediatr Res 2007;62:255–60. 10.1203/PDR.0b013e318123fbb8
    1. Fernandez-Lopez D, Pradillo JM, Garcia-Yebenes I, et al. . The cannabinoid WIN55212-2 promotes neural repair after neonatal hypoxia-ischemia. Stroke 2010;41:2956–64. 10.1161/STROKEAHA.110.599357
    1. Lafuente H, Alvarez FJ, Pazos MR, et al. . Cannabidiol reduces brain damage and improves functional recovery after acute hypoxia-ischemia in newborn pigs. Pediatr Res 2011;70:272–7. 10.1203/PDR.0b013e3182276b11
    1. Pazos MR, Mohammed N, Lafuente H, et al. . Mechanisms of cannabidiol neuroprotection in hypoxic-ischemic newborn pigs: role of 5HT(1A) and CB2 receptors. Neuropharmacology 2013;71:282–91. 10.1016/j.neuropharm.2013.03.027
    1. Leker RR, Gai N, Mechoulam R, et al. . Drug-induced hypothermia reduces ischemic damage: effects of the cannabinoid HU-210. Stroke 2003;34:2000–6. 10.1161/01.STR.0000079817.68944.1E
    1. Borgelt LM, Franson KL, Nussbaum AM, et al. . The pharmacologic and clinical effects of medical cannabis. Pharmacotherapy 2013;33:195–209. 10.1002/phar.1187
    1. Croxford JL. Therapeutic potential of cannabinoids in CNS disease. CNS Drugs 2003;17:179–202. 10.2165/00023210-200317030-00004
    1. Maas AI, Murray G, Henney H III, et al. . Efficacy and safety of dexanabinol in severe traumatic brain injury: results of a phase III randomised, placebo-controlled, clinical trial. Lancet Neurol 2006;5:38–45. 10.1016/S1474-4422(05)70253-2
    1. Rangarajan V, Juul SE. Erythropoietin: emerging role of erythropoietin in neonatal neuroprotection. Pediatr Neurol 2014;51:481–8. 10.1016/j.pediatrneurol.2014.06.008
    1. Morishita E, Masuda S, Nagao M, et al. . Erythropoietin receptor is expressed in rat hippocampal and cerebral cortical neurons, and erythropoietin prevents in vitro glutamate-induced neuronal death. Neuroscience 1997;76:105–16. 10.1016/S0306-4522(96)00306-5
    1. Nagai A, Nakagawa E, Choi HB, et al. . Erythropoietin and erythropoietin receptors in human CNS neurons, astrocytes, microglia, and oligodendrocytes grown in culture. J Neuropathol Exp Neurol 2001;60:386–92.
    1. Yamaji R, Okada T, Moriya M, et al. . Brain capillary endothelial cells express two forms of erythropoietin receptor mRNA. Eur J Biochem 1996;239:494–500. 10.1111/j.1432-1033.1996.0494u.x
    1. Marti HH, Bernaudin M, Petit E, et al. . Neuroprotection and angiogenesis: dual role of erythropoietin in brain ischemia. News Physiol Sci 2000;15:225–9.
    1. Kilic E, Ozdemir YG, Bolay H, et al. . Pinealectomy aggravates and melatonin administration attenuates brain damage in focal ischemia. J Cereb Blood Flow Metab 1999;19:511–6. 10.1097/00004647-199905000-00005
    1. Chen ZY, Asavaritikrai P, Prchal JT, et al. . Endogenous erythropoietin signaling is required for normal neural progenitor cell proliferation. J Biol Chem 2007;282:25875–83. 10.1074/jbc.M701988200
    1. Prass K, Scharff A, Ruscher K, et al. . Hypoxia-induced stroke tolerance in the mouse is mediated by erythropoietin. Stroke 2003;34:1981–6. 10.1161/01.STR.0000080381.76409.B2
    1. Ferriero DM. Protecting neurons. Epilepsia 2005;46(Suppl 7):45–51. 10.1111/j.1528-1167.2005.00302.x
    1. Juul SE, Beyer RP, Bammler TK, et al. . Microarray analysis of high-dose recombinant erythropoietin treatment of unilateral brain injury in neonatal mouse hippocampus. Pediatr Res 2009;65:485–92. 10.1203/PDR.0b013e31819d90c8
    1. Maiese K, Chong ZZ, Hou J, et al. . Erythropoietin and oxidative stress. Curr Neurovasc Res 2008;5:125–42. 10.2174/156720208784310231
    1. Villa P, van Beek J, Larsen AK, et al. . Reduced functional deficits, neuroinflammation, and secondary tissue damage after treatment of stroke by nonerythropoietic erythropoietin derivatives. Cereb Blood Flow Metab 2007;27:552–63. 10.1038/sj.jcbfm.9600370
    1. Gonzalez FF, Larpthaveesarp A, McQuillen P, et al. . Erythropoietin increases neurogenesis and oligodendrogliosis of subventricular zone precursor cells after neonatal stroke. Stroke 2013;44:753–8. 10.1161/STROKEAHA.111.000104
    1. Xiong Y, Mahmood A, Meng Y, et al. . Delayed administration of erythropoietin reducing hippocampal cell loss, enhancing angiogenesis and neurogenesis, and improving functional outcome following traumatic brain injury in rats: comparison of treatment with single and triple dose. J Neurosurg 2010;113:598–608. 10.3171/2009.9.JNS09844
    1. Kaneko N, Kako E, Sawamoto K. Enhancement of ventricular-subventricular zone-derived neurogenesis and oligodendrogenesis by erythropoietin and its derivatives. Front Cell Neurosci 2013;7:235 10.3389/fncel.2013.00235
    1. Wang L, Zhang ZG, Zhang RL, et al. . Matrix metalloproteinase 2 (MMP2) and MMP9 secreted by erythropoietin-activated endothelial cells promote neural progenitor cell migration. J Neurosci 2006;26:5996–6003. 10.1523/JNEUROSCI.5380-05.2006
    1. Fan X, Heijnen CJ, van der KM, et al. . Beneficial effect of erythropoietin on sensorimotor function and white matter after hypoxia-ischemia in neonatal mice. Pediatr Res 2011;69:56–61. 10.1203/PDR.0b013e3181fcbef3
    1. Gonzalez FF, Abel R, Almli CR, et al. . Erythropoietin sustains cognitive function and brain volume after neonatal stroke. Dev Neurosci 2009;31:403–11. 10.1159/000232558
    1. van de Looij Y, Chatagner A, Quairiaux C, et al. . Multi-modal assessment of long-term erythropoietin treatment after neonatal hypoxic-ischemic injury in rat brain. PloS ONE 2014;9:e95643 10.1371/journal.pone.0095643
    1. Traudt CM, McPherson RJ, Bauer LA, et al. . Concurrent erythropoietin and hypothermia treatment improve outcomes in a term nonhuman primate model of perinatal asphyxia. Dev Neurosci 2013;35:491–503. 10.1159/000355460
    1. McPherson RJ, Demers EJ, Juul SE. Safety of high-dose recombinant erythropoietin in a neonatal rat model. Neonatology 2007;91:36–43. 10.1159/000096969
    1. Juul SE, McPherson RJ, Bauer LA, et al. . A phase I/II trial of high-dose erythropoietin in extremely low birth weight infants: pharmacokinetics and safety. Pediatrics 2008;122:383–91. 10.1542/peds.2007-2711
    1. Benders MJ, van der Aa NE, Roks M, et al. . Feasibility and safety of erythropoietin for neuroprotection after perinatal arterial ischemic stroke. J Pediatr 2014;164:481–6 e1–2 10.1016/j.jpeds.2013.10.084
    1. Wu YW, Bauer LA, Ballard RA, et al. . Erythropoietin for neuroprotection in neonatal encephalopathy: safety and pharmacokinetics. Pediatrics 2012;130:683–91. 10.1542/peds.2012-0498
    1. Sanchis-Gomar F, Perez-Quilis C, Lippi G. Erythropoietin receptor (EpoR) agonism is used to treat a wide range of disease. Mol Med 2013;19:62–4. 10.2119/molmed.2013.00025
    1. Rogers EE, Bonifacio SL, Glass HC, et al. . Erythropoietin and hypothermia for hypoxic-ischemic encephalopathy. Pediatr Neurol 2014;51:657–62. 10.1016/j.pediatrneurol.2014.08.010
    1. Kellert BA, McPherson RJ, Juul SE. A comparison of high-dose recombinant erythropoietin treatment regimens in brain-injured neonatal rats. Pediatr Res 2007;61:451–5. 10.1203/pdr.0b013e3180332cec
    1. El Shimi MS, Awad HA, Hassanein SM, et al. . Single dose recombinant erythropoietin versus moderate hypothermia for neonatal hypoxic ischemic encephalopathy in low resource settings. J Matern Fetal Neonatal Med 2014;27:1295–300. 10.3109/14767058.2013.855894

Source: PubMed

3
订阅