Pulse pressure variation and stroke volume variation during increased intra-abdominal pressure: an experimental study

Didier Jacques, Karim Bendjelid, Serge Duperret, Joëlle Colling, Vincent Piriou, Jean-Paul Viale, Didier Jacques, Karim Bendjelid, Serge Duperret, Joëlle Colling, Vincent Piriou, Jean-Paul Viale

Abstract

Introduction: The aim of this study was to evaluate dynamic indices of fluid responsiveness in a model of intra-abdominal hypertension.

Methods: Nine mechanically-ventilated pigs underwent increased intra-abdominal pressure (IAP) by abdominal banding up to 30 mmHg and then fluid loading (FL) at this IAP. The same protocol was carried out in the same animals made hypovolemic by blood withdrawal. In both volemic conditions, dynamic indices of preload dependence were measured at baseline IAP, at 30 mmHg of IAP, and after FL. Dynamic indices involved respiratory variations in stroke volume (SVV), pulse pressure (PPV), and systolic pressure (SPV, %SPV and Δdown). Stroke volume (SV) was measured using an ultrasound transit-time flow probe placed around the aortic root. Pigs were considered to be fluid responders if their SV increased by 15% or more with FL. Indices of fluid responsiveness were compared with a Mann-Whitney U test. Then, receiver operating characteristic (ROC) curves were generated for these parameters, allowing determination of the cut-off values by using Youden's method.

Results: Five animals before blood withdrawal and all animals after blood withdrawal were fluid responders. Before FL, SVV (78 ± 19 vs 42 ± 17%), PPV (64 ± 18 vs 37 ± 15%), SPV (24 ± 5 vs 18 ± 3 mmHg), %SPV (24 ± 4 vs 17 ± 3%) and Δdown (13 ± 5 vs 6 ± 4 mmHg) were higher in responders than in non-responders (P < 0.05). Areas under ROC curves were 0.93 (95% confidence interval: 0.80 to 1.06), 0.89 (0.70 to 1.07), 0.90 (0.74 to 1.05), 0.92 (0.78 to 1.06), and 0.86 (0.67 to 1.06), respectively. Threshold values discriminating responders and non-responders were 67% for SVV and 41% for PPV.

Conclusions: In intra-abdominal hypertension, respiratory variations in stroke volume and arterial pressure remain indicative of fluid responsiveness, even if threshold values identifying responders and non-responders might be higher than during normal intra-abdominal pressure. Further studies are required in humans to determine these thresholds in intra-abdominal hypertension.

Figures

Figure 1
Figure 1
Flow chart of the experimental protocol.
Figure 2
Figure 2
Effects of alterations in IAP and volemia on SVV and PPV. Definition of abbreviations: FL, fluid loading; IAP, intra-abdominal pressure; PPV, pulse pressure variation; SVV, stroke volume variation. # : P < 0.05 vs IAP 0; * : P < 0.05 vs before blood withdrawal; ♣ : P < 0.05 vs IAP 30 before FL for the animals after blood withdrawal. Before blood withdrawal, n = 9 at IAP 0, 30 before FL and 30 after FL; after blood withdrawal, n = 9 at IAP 0, n = 7 at IAP 30 before FL and 30 after FL.
Figure 3
Figure 3
Relation between PPV and SVV. Definition of abbreviations: PPV, pulse pressure variation; SVV, stroke volume variation. The data were pooled from the different steps of the protocol (n = 67).
Figure 4
Figure 4
Relation between changes in SV with FL and SVV or PPV before FL. Definition of abbreviations: FL, fluid loading; PPV, pulse pressure variation; SV, stroke volume; SVV, stroke volume variation. FL was performed at intra-abdominal pressure of 30 mmHg in 9 pigs before blood withdrawal and 7 pigs after blood withdrawal (see also text).

References

    1. Malbrain ML, Chiumello D, Pelosi P, Wilmer A, Brienza N, Malcangi V, Bihari D, Innes R, Cohen J, Singer P, Japiassu A, Kurtop E, De Keulenaer BL, Daelemans R, Del Turco M, Cosimini P, Ranieri M, Jacquet L, Laterre PF, Gattinoni L. Prevalence of intra-abdominal hypertension in critically ill patients: a multicentre epidemiological study. Intensive Care Med. 2004;30:822–829. doi: 10.1007/s00134-004-2169-9.
    1. Malbrain ML, Cheatham ML, Kirkpatrick A, Sugrue M, Parr M, De Waele J, Balogh Z, Leppaniemi A, Olvera C, Ivatury R, D'Amours S, Wendon J, Hillman K, Johansson K, Kolkman K, Wilmer A. Results from the International Conference of Experts on Intra-abdominal Hypertension and Abdominal Compartment Syndrome. I. Definitions. Intensive Care Med. 2006;32:1722–1732. doi: 10.1007/s00134-006-0349-5.
    1. Cheatham ML, Malbrain ML, Kirkpatrick A, Sugrue M, Parr M, De Waele J, Balogh Z, Leppaniemi A, Olvera C, Ivatury R, D'Amours S, Wendon J, Hillman K, Wilmer A. Results from the International Conference of Experts on Intra-abdominal Hypertension and Abdominal Compartment Syndrome. II. Recommendations. Intensive Care Med. 2007;33:951–962. doi: 10.1007/s00134-007-0592-4.
    1. Berkenstadt H, Margalit N, Hadani M, Friedman Z, Segal E, Villa Y, Perel A. Stroke volume variation as a predictor of fluid responsiveness in patients undergoing brain surgery. Anesth Analg. 2001;92:984–989. doi: 10.1097/00000539-200104000-00034.
    1. Coriat P, Vrillon M, Perel A, Baron JF, Le Bret F, Saada M, Viars P. A comparison of systolic blood pressure variations and echocardiographic estimates of end-diastolic left ventricular size in patients after aortic surgery. Anesth Analg. 1994;78:46–53. doi: 10.1213/00000539-199401000-00009.
    1. Michard F, Boussat S, Chemla D, Anguel N, Mercat A, Lecarpentier Y, Richard C, Pinsky MR, Teboul JL. Relation between respiratory changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatory failure. Am J Respir Crit Care Med. 2000;162:134–138.
    1. Perel A. Assessing fluid responsiveness by the systolic pressure variation in mechanically ventilated patients. Systolic pressure variation as a guide to fluid therapy in patients with sepsis-induced hypotension. Anesthesiology. 1998;89:1309–1310. doi: 10.1097/00000542-199812000-00005.
    1. Perel A, Pizov R, Cotev S. Systolic blood pressure variation is a sensitive indicator of hypovolemia in ventilated dogs subjected to graded hemorrhage. Anesthesiology. 1987;67:498–502. doi: 10.1097/00000542-198710000-00009.
    1. Pizov R, Ya'ari Y, Perel A. Systolic pressure variation is greater during hemorrhage than during sodium nitroprusside-induced hypotension in ventilated dogs. Anesth Analg. 1988;67:170–174. doi: 10.1213/00000539-198802000-00011.
    1. Tavernier B, Makhotine O, Lebuffe G, Dupont J, Scherpereel P. Systolic pressure variation as a guide to fluid therapy in patients with sepsis-induced hypotension. Anesthesiology. 1998;89:1313–1321. doi: 10.1097/00000542-199812000-00007.
    1. Duperret S, Lhuillier F, Piriou V, Vivier E, Metton O, Branche P, Annat G, Bendjelid K, Viale JP. Increased intra-abdominal pressure affects respiratory variations in arterial pressure in normovolaemic and hypovolaemic mechanically ventilated healthy pigs. Intensive Care Med. 2007;33:163–171. doi: 10.1007/s00134-006-0412-2.
    1. Renner J, Gruenewald M, Quaden R, Hanss R, Meybohm P, Steinfath M, Scholz J, Bein B. Influence of increased intra-abdominal pressure on fluid responsiveness predicted by pulse pressure variation and stroke volume variation in a porcine model. Crit Care Med. 2009;37:650–658. doi: 10.1097/CCM.0b013e3181959864.
    1. Anonymous. Practice parameters for hemodynamic support of sepsis in adult patients in sepsis. Task Force of the American College of Critical Care Medicine, Society of Critical Care Medicine. Crit Care Med. 1999;27:639–660. doi: 10.1097/00003246-199903000-00049.
    1. Calvin JE, Driedger AA, Sibbald WJ. Does the pulmonary capillary wedge pressure predict left ventricular preload in critically ill patients? Crit Care Med. 1981;9:437–443. doi: 10.1097/00003246-198106000-00001.
    1. Magder S. More respect for the CVP. Intensive Care Med. 1998;24:651–653. doi: 10.1007/s001340050640.
    1. Cheung AT, Savino JS, Weiss SJ, Aukburg SJ, Berlin JA. Echocardiographic and hemodynamic indexes of left ventricular preload in patients with normal and abnormal ventricular function. Anesthesiology. 1994;81:376–387. doi: 10.1097/00000542-199408000-00016.
    1. Bendjelid K, Romand JA. Fluid responsiveness in mechanically ventilated patients: a review of indices used in intensive care. Intensive Care Med. 2003;29:352–360. doi: 10.1007/s00134-003-1777-0.
    1. Feissel M, Michard F, Mangin I, Ruyer O, Faller JP, Teboul JL. Respiratory changes in aortic blood velocity as an indicator of fluid responsiveness in ventilated patients with septic shock. Chest. 2001;119:867–873. doi: 10.1378/chest.119.3.867.
    1. Slama M, Masson H, Teboul JL, Arnout ML, Susic D, Frohlich E, Andrejak M. Respiratory variations of aortic VTI: a new index of hypovolemia and fluid responsiveness. Am J Physiol Heart Circ Physiol. 2002;283:H1729–1733.
    1. De Backer D, Heenen S, Piagnerelli M, Koch M, Vincent JL. Pulse pressure variations to predict fluid responsiveness: influence of tidal volume. Intensive Care Med. 2005;31:517–523. doi: 10.1007/s00134-005-2586-4.
    1. Szold A, Pizov R, Segal E, Perel A. The effect of tidal volume and intravascular volume state on systolic pressure variation in ventilated dogs. Intensive Care Med. 1989;15:368–371. doi: 10.1007/BF00261495.
    1. Pelosi P, Calzia E, Asfar P. It's time to measure intra-abdominal pressure to optimize hemodynamics! Intensive Care Med. 2007;33:6–8. doi: 10.1007/s00134-006-0413-1.
    1. Vivier E, Metton O, Piriou V, Lhuillier F, Cottet-Emard JM, Branche P, Duperret S, Viale JP. Effects of increased intra-abdominal pressure on central circulation. Br J Anaesth. 2006;96:701–707. doi: 10.1093/bja/ael071.
    1. Vieillard-Baron A, Loubieres Y, Schmitt JM, Page B, Dubourg O, Jardin F. Cyclic changes in right ventricular output impedance during mechanical ventilation. J Appl Physiol. 1999;87:1644–1650.
    1. Malbrain ML, de Laet I. Functional hemodynamics and increased intra-abdominal pressure: same thresholds for different conditions ...? Crit Care Med. 2009;37:781–783. doi: 10.1097/CCM.0b013e318194c397.
    1. Mahjoub Y, Touzeau J, Airapetian N, Lorne E, Hijazi M, Zogheib E, Tinturier F, Slama M, Dupont H. The passive leg-raising maneuver cannot accurately predict fluid responsiveness in patients with intra-abdominal hypertension. Crit Care Med. 2010;38:1824–1829. doi: 10.1097/CCM.0b013e3181eb3c21.
    1. Malbrain ML, Reuter DA. Assessing fluid responsiveness with the passive leg raising maneuver in patients with increased intra-abdominal pressure: Be aware that not all blood returns! Crit Care Med. 2010;38:1912–1915. doi: 10.1097/CCM.0b013e3181f1b6a2.
    1. Alfonsi P, Vieillard-Baron A, Coggia M, Guignard B, Goeau-Brissonniere O, Jardin F, Chauvin M. Cardiac function during intraperitoneal CO2 insufflation for aortic surgery: a transesophageal echocardiographic study. Anesth Analg. 2006;102:1304–1310. doi: 10.1213/01.ane.0000202473.17453.79.
    1. Kitano Y, Takata M, Sasaki N, Zhang Q, Yamamoto S, Miyasaka K. Influence of increased abdominal pressure on steady-state cardiac performance. J Appl Physiol. 1999;86:1651–1656.
    1. Vieillard-Baron A, Chergui K, Rabiller A, Peyrouset O, Page B, Beauchet A, Jardin F. Superior vena caval collapsibility as a gauge of volume status in ventilated septic patients. Intensive Care Med. 2004;30:1734–1739.
    1. Mahjoub Y, Pila C, Friggeri A, Zogheib E, Lobjoie E, Tinturier F, Galy C, Slama M, Dupont H. Assessing fluid responsiveness in critically ill patients: False-positive pulse pressure variation is detected by Doppler echocardiographic evaluation of the right ventricle. Crit Care Med. 2009;37:2570–2575. doi: 10.1097/CCM.0b013e3181a380a3.
    1. Gruenewald M, Renner J, Meybohm P, Hocker J, Scholz J, Bein B. Reliability of continuous cardiac output measurement during intra-abdominal hypertension relies on repeated calibrations: an experimental animal study. Crit Care. 2008;12:R132. doi: 10.1186/cc7102.

Source: PubMed

3
订阅