Long-term physical activity on prescription intervention for patients with insufficient physical activity level-a randomized controlled trial

Stefan Lundqvist, Mats Börjesson, Åsa Cider, Lars Hagberg, Camilla Bylin Ottehall, Johan Sjöström, Maria E H Larsson, Stefan Lundqvist, Mats Börjesson, Åsa Cider, Lars Hagberg, Camilla Bylin Ottehall, Johan Sjöström, Maria E H Larsson

Abstract

Background: Physical activity (PA) can be used to prevent and treat diseases. In Sweden, licensed healthcare professionals use PA on prescription (PAP) to support patients to increase their PA level. The aim of this randomized controlled trial was to evaluate a 2-year intervention of two different strategies of PAP treatment for patients with insufficient PA level, after a previous 6-month period of ordinary PAP treatment in a primary health care setting.

Methods: We included 190 patients, 27-77 years, physically inactive with metabolic risk factors where the patients were not responding to a previous 6-month PAP treatment with increased PA. The patients were randomized to either enhanced support from a physiotherapist (PT group) or continued ordinary PAP treatment at the health care centre (HCC group). The PAP treatment included an individualized dialogue; an individually dosed PA recommendation, including a written prescription; and a structured follow-up. In addition to PAP, the PT group received aerobic fitness tests and more frequent scheduled follow-ups. The patient PA level, metabolic health, and health-related quality of life (HRQOL) were measured at baseline and at 1- and 2-year follow-ups.

Results: At the 2-year follow-up, 62.9% of the PT group and 50.8% of the HCC group had increased their PA level and 31.4% vs. 38.5% achieved ≥ 150 min of moderate-intensity PA/week (difference between groups n.s.). Over 2 years, both groups displayed increased high-density lipoproteins (HDL) (p = 0.004 vs. baseline), increased mental health status (MCS) (p = 0.036), and reduced body mass index (BMI) (p = 0.001), with no difference between groups.

Conclusion: During long-term PAP interventions, the PA level, metabolic health, and HRQOL increased in patients at metabolic risk without significant differences between groups. The results indicate to be independent of any changes in pharmacological treatment. We demonstrated that the PAP treatment was feasible in ordinary primary care. Both the patients and the healthcare system benefitted from the improvement in metabolic risk factors. Future studies should elucidate effective long-term PAP-treatment strategies.

Trial registration: ClinicalTrials.gov NCT03012516 . Registered on 30 December 2016-retrospectively registered.

Keywords: Health behaviour; Metabolic syndrome; Physical activity; Physical therapy; Primary health care; Quality of life.

Conflict of interest statement

None declared.

Figures

Fig. 1
Fig. 1
Flow of patients involved in the study. aMajority of the patients in the PT-group not receiving allocated intervention or discontinuing intervention was attended to 1- and 2-year follow-up. bThe number of patients in the HCC group not receiving or discontinuing intervention is not known dependent on non-access to the patient’s medical record with the current information
Fig. 2
Fig. 2
Physical activity level and health outcomes over time for the PT and HCC groupa. aAnalysed with linear mixed effects models. TotalMET is presented with the estimated marginal geometric mean and 95% CI. HDL, MCS, and BMI are presented with the estimated marginal arithmetic mean and 95% CI. PT, physiotherapist; HCC, health care centre; MET, metabolic equivalent; CI, confidence interval; HDL, high-density lipoprotein; MCS, mental component summary; BMI, body mass index

References

    1. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392(10159):1736–88. 10.1016/S0140-6736(18)32203-7.
    1. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392(10159):1923–94. 10.1016/S0140-6736(18)32225-6.
    1. World Health Organization . WHO Guidelines Approved by the Guidelines Review Committee. Global Recommendations on Physical Activity for Health. Geneva: World Health Organization; 2010.
    1. King AC, Whitt-Glover MC, Marquez DX, Buman MP, Napolitano MA, Jakicic J, et al. Physical activity promotion: highlights from the 2018 physical activity guidelines advisory committee systematic review. Med Sci Sports Exerc. 2019;51(6):1340–1353. doi: 10.1249/MSS.0000000000001945.
    1. Lee IM, Shiroma EJ, Lobelo F, Puska P, Blair SN, Katzmarzyk PT. Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy. Lancet. 2012;380(9838):219–229. doi: 10.1016/S0140-6736(12)61031-9.
    1. Love R, Adams J, van Sluijs EMF, Foster C, Humphreys D. A cumulative meta-analysis of the effects of individual physical activity interventions targeting healthy adults. Obes Rev. 2018;19(8):1164–1172. doi: 10.1111/obr.12690.
    1. Arsenijevic J, Groot W. Physical activity on prescription schemes (PARS): do programme characteristics influence effectiveness? Results of a systematic review and meta-analyses. BMJ Open. 2017;7(2):e012156. doi: 10.1136/bmjopen-2016-012156.
    1. Orrow G, Kinmonth AL, Sanderson S, Sutton S. Effectiveness of physical activity promotion based in primary care: systematic review and meta-analysis of randomised controlled trials. BMJ (Clinical research ed) 2012;344:e1389. doi: 10.1136/bmj.e1389.
    1. Onerup A, Arvidsson D, Blomqvist A, Daxberg EL, Jivegard L, Jonsdottir IH, et al. Physical activity on prescription in accordance with the Swedish model increases physical activity: a systematic review. Br J Sports Med. 2018. 10.1136/bjsports-2018-099598.
    1. Andersen P, Lendahls L, Holmberg S, Nilsen P. Patients’ experiences of physical activity on prescription with access to counsellors in routine care: a qualitative study in Sweden. BMC Public Health. 2019;19(1):210. doi: 10.1186/s12889-019-6535-5.
    1. Bohman DM, Mattsson L, Borglin G. Primary healthcare nurses’ experiences of physical activity referrals: an interview study. Prim Health Care Res Dev. 2015;16(3):270–280. doi: 10.1017/S1463423614000267.
    1. Joelsson M, Bernhardsson S, Larsson ME. Patients with chronic pain may need extra support when prescribed physical activity in primary care: a qualitative study. Scand J Prim Health Care. 2017;35(1):64–74. doi: 10.1080/02813432.2017.1288815.
    1. Kallings LV, Leijon ME, Kowalski J, Hellenius ML, Stahle A. Self-reported adherence: a method for evaluating prescribed physical activity in primary health care patients. J Phys Act Health. 2009;6(4):483–492. doi: 10.1123/jpah.6.4.483.
    1. Leijon ME, Bendtsen P, Ståhle A, Ekberg K, Festin K, Nilsen P. Factors associated with patients self-reported adherence to prescribed physical activity in routine primary health care. BMC Fam Pract. 2010;11:38. doi: 10.1186/1471-2296-11-38.
    1. Rodjer L, Ingibjörg HJ, Borjesson M. Physical activity on prescription (PAP): self-reported physical activity and quality of life in a Swedish primary care population, 2-year follow-up. Scand J Prim Health Care. 2016;34(4):443–452. doi: 10.1080/02813432.2016.1253820.
    1. Gustavsson C, Nordqvist M, Broms K, Jerden L, Kallings LV, Wallin L. What is required to facilitate implementation of Swedish physical activity on prescription? - interview study with primary healthcare staff and management. BMC Health Serv Res. 2018;18(1):196. doi: 10.1186/s12913-018-3021-1.
    1. Joy E, Blair SN, McBride P, Sallis R. Physical activity counselling in sports medicine: a call to action. Br J Sports Med. 2013;47(1):49–53. doi: 10.1136/bjsports-2012-091620.
    1. Kwasnicka D, Dombrowski SU, White M, Sniehotta F. Theoretical explanations for maintenance of behaviour change: a systematic review of behaviour theories. Health Psychol Rev. 2016;10(3):277–296. doi: 10.1080/17437199.2016.1151372.
    1. Marcus BH, Dubbert PM, Forsyth LH, McKenzie TL, Stone EJ, Dunn AL, et al. Physical activity behavior change: issues in adoption and maintenance. Health Psychol. 2000;19(1S):32–41. doi: 10.1037/0278-6133.19.Suppl1.32.
    1. Borjesson M. Health care services can boost physical activity on prescription--more people need prescriptions. Lakartidningen. 2012;109(51–52):2340.
    1. Sallis R, Franklin B, Joy L, Ross R, Sabgir D, Stone J. Strategies for promoting physical activity in clinical practice. Prog Cardiovasc Dis. 2015;57(4):375–386. doi: 10.1016/j.pcad.2014.10.003.
    1. Lundqvist S, Borjesson M, Larsson ME, Hagberg L, Cider A. Physical Activity on Prescription (PAP), in patients with metabolic risk factors. A 6-month follow-up study in primary health care. PLoS One. 2017;12(4):e0175190. doi: 10.1371/journal.pone.0175190.
    1. Lundqvist S, Börjesson M, Larsson MEH, Cider Å, Hagberg L. Which patients benefit from physical activity on prescription (PAP)? A prospective observational analysis of factors that predict increased physical activity. BMC Public Health. 2019;19(1):482. doi: 10.1186/s12889-019-6830-1.
    1. Haskell WL, Lee IM, Pate RR, Powell KE, Blair SN, Franklin BA, et al. Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Med Sci Sports Exerc. 2007;39(8):1423–1434. doi: 10.1249/mss.0b013e3180616b27.
    1. Ekelund U, Sepp H, Brage S, Becker W, Jakes R, Hennings M, et al. Criterion-related validity of the last 7-day, short form of the International Physical Activity Questionnaire in Swedish adults. Public Health Nutr. 2006;9(2):258–265. doi: 10.1079/PHN2005840.
    1. Craig CL, Marshall AL, Sjostrom M, Bauman AE, Booth ML, Ainsworth BE, et al. International physical activity questionnaire: 12-country reliability and validity. Med Sci Sports Exerc. 2003;35(8):1381–1395. doi: 10.1249/01.MSS.0000078924.61453.FB.
    1. O'Brien E, Asmar R, Beilin L, Imai Y, Mallion JM, Mancia G, et al. European Society of Hypertension recommendations for conventional, ambulatory and home blood pressure measurement. J Hypertens. 2003;21(5):821–848. doi: 10.1097/00004872-200305000-00001.
    1. European co-operation for Accreditation EA. [homepage on the Internet]. Available from: [updated 2016 May 17].
    1. Sullivan M, Karlsson J, Ware JE., Jr The Swedish SF-36 Health Survey--I. Evaluation of data quality, scaling assumptions, reliability and construct validity across general populations in Sweden. Soc Sci Med. 1995;41(10):1349–1358. doi: 10.1016/0277-9536(95)00125-Q.
    1. McCrum-Gardner E. Sample size and power calculations made simple. Int J Ther Rehabil. 2010;17(1):10–14. doi: 10.12968/ijtr.2010.17.1.45988.
    1. Biddle S, Mutrie N, Gorely T. Psychology of physical activity: determinants, well-being and interventions. 2015.
    1. Hellenius M, Emtner M, Hagberg L, Johansson M, Kallings L, Lindahl B, et al. Metoder för att främja fysisk aktivitet-en systematisk litteraturöversikt. Statens beredning för medicinsk utvärdering (SBU).: Rapport nr 181. 2006.
    1. Eshtiaghi R, Keihani S, Hosseinpanah F, Barzin M, Azizi F. Natural course of metabolically healthy abdominal obese adults after 10 years of follow-up: the Tehran Lipid and Glucose Study. Int J Obes (2005) 2015;39(3):514–519. doi: 10.1038/ijo.2014.176.
    1. Appleton SL, Seaborn CJ, Visvanathan R, Hill CL, Gill TK, Taylor AW, et al. Diabetes and cardiovascular disease outcomes in the metabolically healthy obese phenotype: a cohort study. Diabetes Care. 2013;36(8):2388–2394. doi: 10.2337/dc12-1971.
    1. Achilike I, Hazuda HP, Fowler SP, Aung K, Lorenzo C. Predicting the development of the metabolically healthy obese phenotype. Int J Obes (2005) 2015;39(2):228–234. doi: 10.1038/ijo.2014.113.
    1. Guh DP, Zhang W, Bansback N, Amarsi Z, Birmingham CL, Anis AH. The incidence of co-morbidities related to obesity and overweight: a systematic review and meta-analysis. BMC Public Health. 2009;9:88. doi: 10.1186/1471-2458-9-88.
    1. World Health Organization. Global health risks: mortality and burden of disease attributable to selected major risks: World Health Organization; 2009. Available from: .
    1. Kallings LV, Leijon M, Hellenius ML, Stahle A. Physical activity on prescription in primary health care: a follow-up of physical activity level and quality of life. Scand J Med Sci Sports. 2008;18(2):154–161. doi: 10.1111/j.1600-0838.2007.00678.x.
    1. Morén C, Welmer A-K, Hagströmer M, Karlsson E, Sommerfeld DK. The effects of “physical activity on prescription” in persons with transient ischemic attack: a randomized controlled study. J Neurol Phys Ther. 2016;40(3):176–183. doi: 10.1097/NPT.0000000000000134.
    1. Anderson RT, King A, Stewart AL, Camacho F, Rejeski WJ. Physical activity counseling in primary care and patient well-being: do patients benefit? Ann Behav Med. 2005;30(2):146–154. doi: 10.1207/s15324796abm3002_7.
    1. Hagstromer M, Ainsworth BE, Oja P, Sjostrom M. Comparison of a subjective and an objective measure of physical activity in a population sample. J Phys Act Health. 2010;7(4):541–550. doi: 10.1123/jpah.7.4.541.
    1. Lee PH, Macfarlane DJ, Lam TH, Stewart SM. Validity of the International Physical Activity Questionnaire Short Form (IPAQ-SF): a systematic review. Int J Behav Nutr Phys Act. 2011;8:115. doi: 10.1186/1479-5868-8-115.
    1. Shephard RJ. Limits to the measurement of habitual physical activity by questionnaires. Br J Sports Med. 2003;37(3):197–206. doi: 10.1136/bjsm.37.3.197.
    1. Sternfeld B, Goldman-Rosas L. A systematic approach to selecting an appropriate measure of self-reported physical activity or sedentary behavior. J Phys Act Health. 2012;9(Suppl 1):S19–S28. doi: 10.1123/jpah.9.s1.s19.
    1. van Poppel MN, Chinapaw MJ, Mokkink LB, van Mechelen W, Terwee CB. Physical activity questionnaires for adults: a systematic review of measurement properties. Sports Med (Auckland, NZ) 2010;40(7):565–600. doi: 10.2165/11531930-000000000-00000.
    1. Sallis JF, Saelens BE. Assessment of physical activity by self-report: status, limitations, and future directions. Res Q Exerc Sport. 2000;71(2 Suppl):S1–14. doi: 10.1080/02701367.2000.11082780.
    1. Brauer M, Curtin JJ. Linear mixed-effects models and the analysis of nonindependent data: a unified framework to analyze categorical and continuous independent variables that vary within-subjects and/or within-items. Psychol Methods. 2018;23(3):389–411. doi: 10.1037/met0000159.
    1. Maurissen JP, Vidmar TJ. Repeated-measure analyses: which one? A survey of statistical models and recommendations for reporting. Neurotoxicol Teratol. 2017;59:78–84. doi: 10.1016/j.ntt.2016.10.003.

Source: PubMed

3
订阅