Does the Gut Microbiota Influence Immunity and Inflammation in Multiple Sclerosis Pathophysiology?

Monika Adamczyk-Sowa, Aldona Medrek, Paulina Madej, Wirginia Michlicka, Pawel Dobrakowski, Monika Adamczyk-Sowa, Aldona Medrek, Paulina Madej, Wirginia Michlicka, Pawel Dobrakowski

Abstract

Aim. Evaluation of the impact of gut microflora on the pathophysiology of MS. Results. The etiopathogenesis of MS is not fully known. Gut microbiota may be of a great importance in the pathogenesis of MS, since recent findings suggest that substitutions of certain microbial population in the gut can lead to proinflammatory state, which can lead to MS in humans. In contrast, other commensal bacteria and their antigenic products may protect against inflammation within the central nervous system. The type of intestinal flora is affected by antibiotics, stress, or diet. The effects on MS through the intestinal microflora can also be achieved by antibiotic therapy and Lactobacillus. EAE, as an animal model of MS, indicates a strong influence of the gut microbiota on the immune system and shows that disturbances in gut physiology may contribute to the development of MS. Conclusions. The relationship between the central nervous system, the immune system, and the gut microbiota relates to the influence of microorganisms in the development of MS. A possible interaction between gut microbiota and the immune system can be perceived through regulation by the endocannabinoid system. It may offer an opportunity to understand the interaction comprised in the gut-immune-brain axis.

Conflict of interest statement

The authors declare that they have no competing interests.

References

    1. Kalincik T. Multiple sclerosis relapses: epidemiology, outcomes and management. A systematic review. Neuroepidemiology. 2015;44(4):199–214. doi: 10.1159/000382130.
    1. Nylander A., Hafler D. A. Multiple sclerosis. The Journal of Clinical Investigation. 2012;122(4):1180–1188. doi: 10.1172/jci58649.
    1. Sospedra M., Martin R. Immunology of multiple sclerosis. Annual Review of Immunology. 2005;23:683–747. doi: 10.1146/annurev.immunol.23.021704.115707.
    1. Williamson D. M., Henry J. P., Schiffer R., Wagner L. Prevalence of multiple sclerosis in 19 texas counties, 1998–2000. Journal of Environmental Health. 2007;69(10):41–45.
    1. Correale J., Farez M. F. The role of astrocytes in multiple sclerosis progression. Frontiers in Neurology. 2015;6, article 180 doi: 10.3389/fneur.2015.00180.
    1. Miller E., Wachowicz B., Majsterek I. Advances in antioxidative therapy of multiple sclerosis. Current Medicinal Chemistry. 2013;20(37):4720–4730. doi: 10.2174/09298673113209990156.
    1. Weng M., Walker W. A. The role of gut microbiota in programming the immune phenotype. Journal of Developmental Origins of Health and Disease. 2013;4(3):203–214. doi: 10.1017/S2040174412000712.
    1. Wekerle H. Nature plus Nurture∗: the triggering of multiple sclerosis. Swiss Medical Weekly. 2015;145 doi: 10.4414/smw.2015.14189.
    1. Hedström A. K., Alfredsson L., Olsson T. Environmental factors and their interactions with risk genotypes in MS susceptibility. Current Opinion in Neurology. 2016;29(3):293–298. doi: 10.1097/WCO.0000000000000329.
    1. Handunnetthi L., Ramagopalan S. V., Ebers G. C. Multiple sclerosis, vitamin D, and HLA-DRB1∗15. Neurology. 2010;74(23):1905–1910. doi: 10.1212/wnl.0b013e3181e24124.
    1. Alotaibi S., Kennedy J., Tellier R., Stephens D., Banwell B. Epstein-barr virus in pediatric multiple sclerosis. JAMA. 2004;291(15):1875–1879. doi: 10.1001/jama.291.15.1875.
    1. Esplugues E., Huber S., Gagliani N., et al. Control of TH17 cells occurs in the small intestine. Nature. 2011;475(7357):514–518. doi: 10.1038/nature10228.
    1. Munger K. L., Fitzgerald K. C., Freedman M. S., et al. No association of multiple sclerosis activity and progression with EBV or tobacco use in BENEFIT. Neurology. 2015;85(19):1694–1701. doi: 10.1212/WNL.0000000000002099.
    1. Jilek S., Schluep M., Meylan P., et al. Strong EBV-specific CD8+ T-cell response in patients with early multiple sclerosis. Brain. 2008;131(7):1712–1721. doi: 10.1093/brain/awn108.
    1. Jaquiéry E., Jilek S., Schluep M., et al. Intrathecal immune responses to EBV in early MS. European Journal of Immunology. 2010;40(3):878–887. doi: 10.1002/eji.200939761.
    1. Ross R. T., Nicolle L. E., Dawood M. R., Cheang M., Feschuk C. Varicella zoster antibodies after herpes zoster, varicella and multiple sclerosis. Canadian Journal of Neurological Sciences. 1997;24(2):137–139. doi: 10.1017/S0317167100021478.
    1. Orton S.-M., Wald L., Confavreux C., et al. Association of UV radiation with multiple sclerosis prevalence and sex ratio in France. Neurology. 2011;76(5):425–431. doi: 10.1212/WNL.0b013e31820a0a9f.
    1. Spelman T., Gray O., Trojano M., et al. Seasonal variation of relapse rate in multiple sclerosis is latitude dependent. Annals of Neurology. 2014;76(6):880–890. doi: 10.1002/ana.24287.
    1. Ascherio A., Munger K. L., White R., et al. Vitamin D as an early predictor of multiple sclerosis activity and progression. JAMA Neurology. 2014;71(3):306–314. doi: 10.1001/jamaneurol.2013.5993.
    1. Dobson R., Giovannoni G., Ramagopalan S. The month of birth effect in multiple sclerosis: systematic review, meta-analysis and effect of latitude. Journal of Neurology, Neurosurgery and Psychiatry. 2013;84(4):427–432. doi: 10.1136/jnnp-2012-303934.
    1. Alberti T. B., Marcon R., Bicca M. A., Raposo N. R. B., Calixto J. B., Dutra R. C. Essential oil from Pterodon emarginatus seeds ameliorates experimental autoimmune encephalomyelitis by modulating Th1/Treg cell balance. Journal of Ethnopharmacology. 2014;155(1):485–494. doi: 10.1016/j.jep.2014.05.044.
    1. Trapp B. D., Ransohoff R. M., Fisher E., Rudick R. A. Neurodegeneration in multiple sclerosis: relationship to neurological disability. Neuroscientist. 1999;5(1):48–57. doi: 10.1177/107385849900500107.
    1. Chelune G. S. H., Pinkston J. Textbook of Clinical Neuropsychology. 2008. Multiple sclerosis; pp. 599–615.
    1. DiGiulio D. B., Romero R., Amogan H. P., et al. Microbial prevalence, diversity and abundance in amniotic fluid during preterm labor: a molecular and culture-based investigation. PLoS ONE. 2008;3(8) doi: 10.1371/journal.pone.0003056.e3056
    1. Dominguez-Bello M. G., Costello E. K., Contreras M., et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proceedings of the National Academy of Sciences of the United States of America. 2010;107(26):11971–11975. doi: 10.1073/pnas.1002601107.
    1. Mukhopadhya I., Hansen R., Meharg C., et al. The fungal microbiota of de-novo paediatric inflammatory bowel disease. Microbes and Infection. 2015;17(4):304–310. doi: 10.1016/j.micinf.2014.12.001.
    1. Koenig J. E., Spor A., Scalfone N., et al. Succession of microbial consortia in the developing infant gut microbiome. Proceedings of the National Academy of Sciences of the United States of America. 2011;108(1):4578–4585. doi: 10.1073/pnas.1000081107.
    1. Palmer C., Bik E. M., DiGiulio D. B., Relman D. A., Brown P. O. Development of the human infant intestinal microbiota. PLOS biology. 2007;5(7) doi: 10.1371/journal.pbio.0050177.
    1. Mariat D., Firmesse O., Levenez F., et al. The firmicutes/bacteroidetes ratio of the human microbiota changes with age. BMC Microbiology. 2009;9, article no. 123 doi: 10.1186/1471-2180-9-123.
    1. Collins J., Borojevic R., Verdu E. F., Huizinga J. D., Ratcliffe E. M. Intestinal microbiota influence the early postnatal development of the enteric nervous system. Neurogastroenterology and Motility. 2014;26(1):98–107. doi: 10.1111/nmo.12236.
    1. Tuohy K. M., Kolida S., Lustenberger A. M., Gibson G. R. The prebiotic effects of biscuits containing partially hydrolysed guar gum and fructo-oligosaccharides—a human volunteer study. British Journal of Nutrition. 2001;86(3):341–348. doi: 10.1079/bjn2001394.
    1. Tuohy K. M., Ziemer C. J., Klinder A., Knöbel Y., Pool-Zobel B. L., Gibson G. R. A human volunteer study to determine the prebiotic effects of lactulose powder on human colonic microbiota. Microbial Ecology in Health and Disease. 2002;14(3):165–173. doi: 10.1080/089106002320644357.
    1. Strober W. Inside the microbial and immune labyrinth: gut microbes: friends or fiends? Nature Medicine. 2010;16(11):1195–1197. doi: 10.1038/nm1110-1195.
    1. Cukrowska B., Kozáková H., Řeháková Z., Šinkora J., Tlaskalová-Hogenová H. Specific antibody and immunoglobulin responses after intestinal colonization of germ-free piglets with non-pathogenic Escherichia coli O86. Immunobiology. 2001;204(4):425–433. doi: 10.1078/0171-2985-00052.
    1. Cukrowska B., Lodínová-Žádníková R., Enders C., Sonnenborn U., Schulze J., Tlaskalová-Hogenová H. Specific proliferative and antibody responses of premature infants to intestinal colonization with nonpathogenic probiotic E. coli strain Nissle 1917. Scandinavian Journal of Immunology. 2002;55(2):204–209. doi: 10.1046/j.1365-3083.2002.01005.x.
    1. Resta-Lenert S., Barrett K. E. Probiotics and commensals reverse TNF-α- and IFN-γ-induced dysfunction in human intestinal epithelial cells. Gastroenterology. 2006;130(3):731–746. doi: 10.1053/j.gastro.2005.12.015.
    1. Travis S. Advances in therapeutic approaches to ulcerative colitis and crohn’s disease. Current Gastroenterology Reports. 2005;7(6):475–484. doi: 10.1007/s11894-005-0079-9.
    1. Jaquet M., Rochat I., Moulin J., Cavin C., Bibiloni R. Impact of coffee consumption on the gut microbiota: A Human Volunteer Study. International Journal of Food Microbiology. 2009;130(2):117–121. doi: 10.1016/j.ijfoodmicro.2009.01.011.
    1. Derkinderen P., Shannon K. M., Brundin P. Gut feelings about smoking and coffee in Parkinson's disease. Movement Disorders. 2014;29(8):976–979. doi: 10.1002/mds.25882.
    1. Belkaid Y., Hand T. W. Role of the microbiota in immunity and inflammation. Cell. 2014;157(1):121–141. doi: 10.1016/j.cell.2014.03.011.
    1. Turnbaugh P. J., Ridaura V. K., Faith J. J., Rey F. E., Knight R., Gordon J. I. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Science Translational Medicine. 2009;1(6) doi: 10.1126/scitranslmed.3000322.6ra14
    1. Samuel B. S., Hansen E. E., Manchester J. K., et al. Genomic and metabolic adaptations of Methanobrevibacter smithii to the human gut. Proceedings of the National Academy of Sciences of the United States of America. 2007;104(25):10643–10648. doi: 10.1073/pnas.0704189104.
    1. Wang Z., Klipfell E., Bennett B. J., et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011;472(7341):57–63. doi: 10.1038/nature09922.
    1. Robinet P., Wang Z., Hazen S. L., Smith J. D. A simple and sensitive enzymatic method for cholesterol quantification in macrophages and foam cells. Journal of Lipid Research. 2010;51(11):3364–3369. doi: 10.1194/jlr.D007336.
    1. Nagatomo Y., Tang W. H. W. Intersections between microbiome and heart failure: revisiting the gut hypothesis. Journal of Cardiac Failure. 2015;21(12):973–980. doi: 10.1016/j.cardfail.2015.09.017.
    1. Sun J., Furio L., Mecheri R., et al. Pancreatic β-cells limit autoimmune diabetes via an immunoregulatory antimicrobial peptide expressed under the influence of the gut microbiota. Immunity. 2015;43(2):304–317. doi: 10.1016/j.immuni.2015.07.013.
    1. Kasubuchi M., Hasegawa S., Hiramatsu T., Ichimura A., Kimura I. Dietary gut microbial metabolites, short-chain fatty acids, and host metabolic regulation. Nutrients. 2015;7(4):2839–2849. doi: 10.3390/nu7042839.
    1. Cash H. L., Whitham C. V., Behrendt C. L., Hooper L. V. Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science. 2006;313(5790):1126–1130. doi: 10.1126/science.1127119.
    1. The International Multiple Sclerosis Genetics Consortium (IMSGC) Evidence for polygenic susceptibility to multiple sclerosis-the shape of things to come. American Journal of Human Genetics. 2010;86(4):621–625. doi: 10.1016/j.ajhg.2010.02.027.
    1. Sawcer S., Hellenthal G., Pirinen M. Genetic risk and a primary role for cellmediated immune mechanisms in multiple sclerosis. Nature. 2011;476:214–219.
    1. Collins K. H., Paul H. A., Reimer R. A., Seerattan R. A., Hart D. A., Herzog W. Relationship between inflammation, the gut microbiota, and metabolic osteoarthritis development: studies in a rat model. Osteoarthritis and Cartilage. 2015;23(11):1989–1998. doi: 10.1016/j.joca.2015.03.014.
    1. Ivanov I. I., Frutos R. D. L., Manel N., et al. Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host and Microbe. 2008;4(4):337–349. doi: 10.1016/j.chom.2008.09.009.
    1. Lavasani S., Dzhambazov B., Nouri M., et al. A novel probiotic mixture exerts a therapeutic effect on experimental autoimmune encephalomyelitis mediated by IL-10 producing regulatory T cells. PLOS ONE. 2010;5 doi: 10.1371/journal.pone.0009009.
    1. Pantazou V., Schluep M., Du Pasquier R. Environmental factors in multiple sclerosis. Presse médicale. 2015;44(4):e113–e120. doi: 10.1016/j.lpm.2015.01.001.
    1. Earley Z. M., Akhtar S., Green S. J., et al. Burn injury alters the intestinal microbiome and increases gut permeability and bacterial translocation. PLoS ONE. 2015;10(7) doi: 10.1371/journal.pone.0129996.e0129996
    1. Oksenberg J. R., Baranzini S. E., Sawcer S., Hauser S. L. The genetics of multiple sclerosis: SNPs to pathways to pathogenesis. Nature Reviews Genetics. 2008;9(7):516–526. doi: 10.1038/nrg2395.
    1. Lee Y. K., Menezes J. S., Umesaki Y., Mazmanian S. K. Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proceedings of the National Academy of Sciences of the United States of America. 2011;108(1):4615–4622. doi: 10.1073/pnas.1000082107.
    1. Ezendam J., van Loveren H. Lactobacillus casei Shirota administered during lactation increases the duration of autoimmunity in rats and enhances lung inflammation in mice. British Journal of Nutrition. 2008;99(1):83–90. doi: 10.1017/s0007114507803412.
    1. Ezendam J., De Klerk A., Gremmer E. R., Van Loveren H. Effects of Bifidobacterium animalis administered during lactation on allergic and autoimmune responses in rodents. Clinical and Experimental Immunology. 2008;154(3):424–431. doi: 10.1111/j.1365-2249.2008.03788.x.
    1. Banati M., Csecsei P., Koszegi E., et al. Antibody response against gastrointestinal antigens in demyelinating diseases of the central nervous system. European Journal of Neurology. 2013;20(11):1492–1495. doi: 10.1111/ene.12072.
    1. Miyake S., Kim S., Suda W., et al. Dysbiosis in the gut microbiota of patients with multiple sclerosis, with a striking depletion of species belonging to clostridia XIVa and IV clusters. PLOS ONE. 2015;10(9) doi: 10.1371/journal.pone.0137429.e0137429
    1. Frank D. N., St Amand A. L., Feldman R. A., Boedeker E. C., Harpaz N., Pace N. R. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proceedings of the National Academy of Sciences of the United States of America. 2007;104(34):13780–13785. doi: 10.1073/pnas.0706625104.
    1. Peterson D. A., Frank D. N., Pace N. R., Gordon J. I. Metagenomic approaches for defining the pathogenesis of inflammatory bowel diseases. Cell Host and Microbe. 2008;3(6):417–427. doi: 10.1016/j.chom.2008.05.001.
    1. Qin J., Li R., Raes J., et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464(7285):59–65. doi: 10.1038/nature08821.
    1. Tauschmann M., Prietl B., Treiber G., et al. Distribution of CD4(pos)-, CD8(pos)- and regulatory T cells in the upper and lower gastrointestinal tract in healthy young subjects. PLoS ONE. 2013;8e80362
    1. Berer K., Krishnamoorthy G. Microbial view of central nervous system autoimmunity. FEBS Letters. 2014;588(22):4207–4213. doi: 10.1016/j.febslet.2014.04.007.
    1. Becher B., Durell B. G., Miga A. V., Hickey W. F., Noelle R. J. The clinical course of experimental autoimmune encephalomyelitis and inflammation is controlled by the expression of CD40 within the central nervous system. Journal of Experimental Medicine. 2001;193(8):967–974. doi: 10.1084/jem.193.8.967.
    1. Pomare E. W., Branch W. J., Cummings J. H. Carbohydrate fermentation in the human-colon and its relation to acetate concentrations in venous-blood. The Journal of Clinical Investigation. 1985;75(5):1448–1454. doi: 10.1172/jci111847.
    1. Ochoa-Repáraz J., Mielcarz D. W., Haque-Begum S., Kasper L. H. Induction of a regulatory B cell population in experimental allergic encephalomyelitis by alteration of the gut commensal microflora. Gut Microbes. 2010;1(2):103–108. doi: 10.4161/gmic.1.2.11515.
    1. Round J. L., Mazmanian S. K. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proceedings of the National Academy of Sciences of the United States of America. 2010;107(27):12204–12209. doi: 10.1073/pnas.0909122107.
    1. Mazmanian S. K., Liu C. H., Tzianabos A. O., Kasper D. L. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell. 2005;122(1):107–118.
    1. Farrokhi V., Nemati R., Nichols F. C., et al. Bacterial lipodipeptide, Lipid 654, is a microbiome-associated biomarker for multiple sclerosis. Clinical & Translational Immunology. 2013;2 doi: 10.1038/cti.2013.11.
    1. Kleinewietfeld M., Manzel A., Titze J., et al. Sodium chloride drives autoimmune disease by the induction of pathogenic TH17 cells. Nature. 2013;496(7446):518–522. doi: 10.1038/nature11868.
    1. Dowling P., Husar W., Menonna J., Donnenfeld H., Cook S., Sidhu M. Cell death and birth in multiple sclerosis brain. Journal of the Neurological Sciences. 1997;149(1):1–11. doi: 10.1016/S0022-510X(97)05213-1.
    1. Schmierer K., Wheeler-Kingshott C. A. M., Boulby P. A., et al. Diffusion tensor imaging of post mortem multiple sclerosis brain. NeuroImage. 2007;35(2):467–477. doi: 10.1016/j.neuroimage.2006.12.010.
    1. Henderson A. P. D., Barnett M. H., Parratt J. D. E., Prineas J. W. Multiple sclerosis: distribution of inflammatory cells in newly forming lesions. Annals of Neurology. 2009;66(6):739–753. doi: 10.1002/ana.21800.
    1. Barnett M. H., Parratt J. D. E., Cho E.-S., Prineas J. W. Immunoglobulins and complement in postmortem multiple sclerosis tissue. Annals of Neurology. 2009;65(1):32–46. doi: 10.1002/ana.21524.
    1. Varga J. J., Nguyen V., O'Brien D. K., Rodgers K., Walker R. A., Melville S. B. Type IV pili-dependent gliding motility in the Gram-positive pathogen Clostridium perfringens and other Clostridia. Molecular Microbiology. 2006;62(3):680–694. doi: 10.1111/j.1365-2958.2006.05414.x.
    1. Garmory H. S., Chanter N., French N. P., Bueschel D., Songer J. G., Titball R. W. Occurrence of Clostridium perfringens β2-toxin amongst animals, determined using genotyping and subtyping PCR assays. Epidemiology and Infection. 2000;124(1):61–67. doi: 10.1017/s0950268899003295.
    1. Uzal F. A., Kelly W. R., Morris W. E., Bermudez J., Baisón M. The pathology of peracute experimental Clostridium perfringens type D enterotoxemia in sheep. Journal of Veterinary Diagnostic Investigation. 2004;16(5):403–411. doi: 10.1177/104063870401600506.
    1. Uzal F. A., Songer J. G. Diagnosis of Clostridium perfringens intestinal infections in sheep and goats. Journal of Veterinary Diagnostic Investigation. 2008;20(3):253–265. doi: 10.1177/104063870802000301.
    1. Garcia J. P., Adams V., Beingesser J., et al. Epsilon toxin is essential for the virulence of Clostridium perfringens type D infection in sheep, goats, and Mice. Infection and Immunity. 2013;81(7):2405–2414. doi: 10.1128/IAI.00238-13.
    1. Murrell T. G. C., O'Donoghue P. J., Ellis T. A review of the sheep-multiple sclerosis connection. Medical Hypotheses. 1986;19(1):27–39. doi: 10.1016/0306-9877(86)90134-9.
    1. Diep D. B., Nelson K. L., Lawrence T. S., Sellman B. R., Tweten R. K., Buckley J. T. Expression and properties of an aerolysin—clostridium sepficum alpha toxin hybrid protein. Molecular Microbiology. 1999;31(3):785–794. doi: 10.1046/j.1365-2958.1999.01217.x.
    1. Melton-Witt J. A., Bentsen L. M., Tweten R. K. Identification of functional domains of Clostridium septicum alpha toxin. Biochemistry. 2006;45(48):14347–14354. doi: 10.1021/bi061334p.
    1. Rumah K. R., Linden J., Fischetti V. A., Vartanian T. Isolation of Clostridium perfringens Type B in an individual at first clinical presentation of multiple sclerosis provides clues for environmental triggers of the disease. PLoS ONE. 2013;8(10) doi: 10.1371/journal.pone.0076359.e76359
    1. Dorca-Arévalo J., Pauillac S., Díaz-Hidalgo L., Martín-Satué M., Popoff M. R., Blasi J. Correlation between in vitro cytotoxicity and in vivo lethal activity in mice of epsilon toxin mutants from Clostridium perfringens. PLOS ONE. 2014;9(7) doi: 10.1371/journal.pone.0102417.e102417
    1. Fennessey C. M., Sheng J., Rubin D. H., McClain M. S. Oligomerization of Clostridium perfringens epsilon toxin is dependent upon caveolins 1 and 2. PLoS ONE. 2012;7(10) doi: 10.1371/journal.pone.0046866.e46866
    1. Nagahama M., Sakurai J. High-affinity binding of Clostridium perfringens epsilon-toxin to rat brain. Infection and Immunity. 1992;60(3):1237–1240.
    1. Nagpal R., Ogata K., Tsuji H., et al. Sensitive quantification of Clostridium perfringens in human feces by quantitative real-time PCR targeting alpha-toxin and enterotoxin genes. BMC Microbiology. 2015;15 doi: 10.1186/s12866-015-0561-y.
    1. Wioland L., Dupont J.-L., Bossu J.-L., Popoff M. R., Poulain B. Attack of the nervous system by clostridium perfringens epsilon toxin: from disease to mode of action on neural cells. Toxicon. 2013;75:122–135. doi: 10.1016/j.toxicon.2013.04.003.
    1. Petit L., Gibert M., Gillet D., Laurent-Winter C., Boquet P., Popoff M. R. Clostridium perfringens epsilon-toxin acts on MDCK cells by forming a large membrane complex. Journal of Bacteriology. 1997;179(20):6480–6487. doi: 10.1128/jb.179.20.6480-6487.1997.
    1. McClain M. S., Cover T. L. Functional analysis of neutralizing antibodies against Clostridium perfringens epsilon-toxin. Infection and Immunity. 2007;75(4):1785–1793. doi: 10.1128/IAI.01643-06.
    1. Miyata S., Minami J., Tamai E., Matsushita O., Shimamoto S., Okabe A. Clostridium perfringensε-toxin forms a heptameric pore within the detergent-insoluble microdomains of Madin-Darby canine kidney cells and rat synaptosomes. Journal of Biological Chemistry. 2002;277(42):39463–39468. doi: 10.1074/jbc.m206731200.
    1. Yan X.-X., Porter C. J., Hardy S. P., et al. Structural and functional analysis of the pore-forming toxin NetB from Clostridium perfringens. mBio. 2013;4(1) doi: 10.1128/mBio.00019-13.e00019-13
    1. Robertson S. L., Li J., Uzal F. A., McClane B. A. Evidence for a prepore stage in the action of Clostridium perfringens epsilon toxin. PLoS ONE. 2011;6(7) doi: 10.1371/journal.pone.0022053.e22053
    1. Dawson J. The histology of multiple sclerosis. Transactions of the Royal Society of Edinburgh. 1916;50:517–578.
    1. Carman R. J., Sayeed S., Li J., et al. Clostridium perfringens toxin genotypes in the feces of healthy North Americans. Anaerobe. 2008;14(2):102–108. doi: 10.1016/j.anaerobe.2008.01.003.
    1. Asha N. J., Tompkins D., Wilcox M. H. Comparative analysis of prevalence, risk factors, and molecular epidemiology of antibiotic-associated diarrhea due to Clostridium difficile, Clostridium perfringens, and Staphylococcus aureus. Journal of Clinical Microbiology. 2006;44(8):2785–2791. doi: 10.1128/JCM.00165-06.
    1. Maslowski K. M., Vieira A. T., Ng A., et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature. 2009;461(7268):1282–1286. doi: 10.1038/nature08530.
    1. Gross S., Gammon S. T., Moss B. L., et al. Bioluminescence imaging of myeloperoxidase activity in vivo. Nature Medicine. 2009;15(4):455–461. doi: 10.1038/nm.1886.
    1. Kriegel M. A., Sefik E., Hill J. A., Wu H.-J., Benoist C., Mathis D. Naturally transmitted segmented filamentous bacteria segregate with diabetes protection in nonobese diabetic mice. Proceedings of the National Academy of Sciences of the United States of America. 2011;108(28):11548–11553. doi: 10.1073/pnas.1108924108.
    1. Machiels K., Joossens M., Sabino J., et al. A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut. 2014;63(8):1275–1283. doi: 10.1136/gutjnl-2013-304833.
    1. Mete A., Garcia J., Ortega J., Lane M., Scholes S., Uzal F. A. Brain lesions associated with Clostridium perfringens type D epsilon toxin in a Holstein heifer calf. Veterinary Pathology. 2013;50(5):765–768. doi: 10.1177/0300985813476058.
    1. Dorca-Arévalo J., Soler-Jover A., Gibert M., Popoff M. R., Martín-Satué M., Blasi J. Binding of ε-toxin from Clostridium perfringens in the nervous system. Veterinary Microbiology. 2008;131(1-2):14–25. doi: 10.1016/j.vetmic.2008.02.015.
    1. Lonchamp E., Dupont J.-L., Wioland L., et al. Clostridium perfringens epsilon toxin targets granule cells in the mouse cerebellum and stimulates glutamate release. PLoS ONE. 2010;5(9) doi: 10.1371/journal.pone.0013046.e13046
    1. Finnie J. W., Blumbergs P. C., Manavis J. Neuronal damage produced in rat brains by Clostridium perfringens type D epsilon toxin. Journal of Comparative Pathology. 1999;120(4):415–420. doi: 10.1053/jcpa.1998.0289.
    1. Jhangi S., Gandhi R., Glanz B., Cook S., Nejad P., Ward D. Increased Archaea species and changes with therapy in gut microbiome of multiple sclerosis subjects. Neurology. 2014;82:p. S24.001.
    1. Chiurchiù V., Cencioni M. T., Bisicchia E., et al. Distinct modulation of human myeloid and plasmacytoid dendritic cells by anandamide in multiple sclerosis. Annals of Neurology. 2013;73(5):626–636. doi: 10.1002/ana.23875.
    1. Miller P. G., Bonn M. B., Franklin C. L., Ericsson A. C., McKarns S. C. TNFR2 deficiency acts in concert with gut microbiota to precipitate spontaneous sex-biased central nervous system demyelinating autoimmune disease. Journal of Immunology. 2015;195(10):4668–4684. doi: 10.4049/jimmunol.1501664.
    1. Messaoudi M., Lalonde R., Violle N., et al. Assessment of psychotropic-like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects. British Journal of Nutrition. 2011;105(5):755–764. doi: 10.1017/s0007114510004319.
    1. Nicol B., Salou M., Laplaud D.-A., Wekerle H. The autoimmune concept of multiple sclerosis. La Presse Médicale. 2015;44(4):e103–e112. doi: 10.1016/j.lpm.2015.02.009.
    1. Hawker K., O'Connor P., Freedman M. S., et al. Rituximab in patients with primary progressive multiple sclerosis: results of a randomized double-blind placebo-controlled multicenter trial. Annals of Neurology. 2009;66(4):460–471. doi: 10.1002/ana.21867.
    1. Lécuyer E., Rakotobe S., Lengliné-Garnier H., et al. Segmented filamentous bacterium uses secondary and tertiary lymphoid tissues to induce gut IgA and specific T helper 17 cell responses. Immunity. 2014;40(4):608–620. doi: 10.1016/j.immuni.2014.03.009.
    1. David L. A., Maurice C. F., Carmody R. N., et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505(7484):559–563. doi: 10.1038/nature12820.
    1. Claesson M. J., Jeffery I. B., Conde S., et al. Gut microbiota composition correlates with diet and health in the elderly. Nature. 2012;488(7410):178–184. doi: 10.1038/nature11319.
    1. DeSantis T. Z., Brodie E. L., Moberg J. P., Zubieta I. X., Piceno Y. M., Andersen G. L. High-density universal 16S rRNA microarray analysis reveals broader diversity than typical clone library when sampling the environment. Microbial Ecology. 2007;53(3):371–383. doi: 10.1007/s00248-006-9134-9.
    1. Ivanov I. I., Atarashi K., Manel N., et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell. 2009;139(3):485–498. doi: 10.1016/j.cell.2009.09.033.
    1. Wu H.-J., Ivanov I. I., Darce J., et al. Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity. 2010;32(6):815–827. doi: 10.1016/j.immuni.2010.06.001.
    1. Atarashi K., Tanoue T., Oshima K., et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature. 2013;500(7461):232–236. doi: 10.1038/nature12331.
    1. Riccio P., Rossano R. Nutrition facts in multiple sclerosis. ASN Neuro. 2015;7(1):1–20. doi: 10.1177/1759091414568185.
    1. Yokote H., Miyake S., Croxford J. L., Oki S., Mizusawa H., Yamamura T. NKT cell-dependent amelioration of a mouse model of multiple sclerosis by altering gut flora. American Journal of Pathology. 2008;173(6):1714–1723. doi: 10.2353/ajpath.2008.080622.
    1. Burkitt D. P. Epidemiology of large bowel disease: the role of fibre. Proceedings of the Nutrition Society. 1973;32(3):145–149. doi: 10.1079/pns19730032.
    1. De Filippo C., Cavalieri D., Di Paola M., et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proceedings of the National Academy of Sciences of the United States of America. 2010;107(33):14691–14696. doi: 10.1073/pnas.1005963107.
    1. Devereux G. The increase in the prevalence of asthma and allergy: food for thought. Nature Reviews Immunology. 2006;6(11):869–874. doi: 10.1038/nri1958.
    1. Lathrop S. K., Bloom S. M., Rao S. M., et al. Peripheral education of the immune system by colonic commensal microbiota. Nature. 2011;478(7368):250–254. doi: 10.1038/nature10434.

Source: PubMed

3
订阅