Characterization of Bacterial and Fungal Microbiome in Children with Hirschsprung Disease with and without a History of Enterocolitis: A Multicenter Study

Philip K Frykman, Agneta Nordenskjöld, Akemi Kawaguchi, Thomas T Hui, Anna L Granström, Zhi Cheng, Jie Tang, David M Underhill, Iliyan Iliev, Vince A Funari, Tomas Wester, HAEC Collaborative Research Group (HCRG), Philip K Frykman, Agneta Nordenskjöld, Akemi Kawaguchi, Thomas T Hui, Anna L Granström, Zhi Cheng, Jie Tang, David M Underhill, Iliyan Iliev, Vince A Funari, Tomas Wester, HAEC Collaborative Research Group (HCRG)

Abstract

Development of potentially life-threatening enterocolitis is the most frequent complication in children with Hirschsprung disease (HSCR), even after definitive corrective surgery. Intestinal microbiota likely contribute to the etiology of enterocolitis, so the aim of this study was to compare the fecal bacterial and fungal communities of children who developed Hirschsprung-associated enterocolitis (HAEC) with HSCR patients who had never had enterocolitis. Eighteen Hirschsprung patients who had completed definitive surgery were enrolled: 9 had a history of HAEC and 9 did not. Fecal DNA was isolated and 16S and ITS-1 regions sequenced using Next Generation Sequencing and data analysis for species identification. The HAEC group bacterial composition showed a modest reduction in Firmicutes and Verrucomicrobia with increased Bacteroidetes and Proteobacteria compared with the HSCR group. In contrast, the fecal fungi composition of the HAEC group showed marked reduction in diversity with increased Candida sp., and reduced Malassezia and Saccharomyces sp. compared with the HSCR group. The most striking finding within the HAEC group is that the Candida genus segregated into "high burden" patients with 97.8% C. albicans and 2.2% C. tropicalis compared with "low burden" patients 26.8% C. albicans and 73% C. tropicalis. Interestingly even the low burden HAEC group had altered Candida community structure with just two species compared to more diverse Candida populations in the HSCR patients. This is the first study to identify Candida sp. as potentially playing a role in HAEC either as expanded commensal species as a consequence of enterocolitis (or treatment), or possibly as pathobioants contributing to the pathogenesis of HAEC. These findings suggest a dysbiosis in the gut microbial ecosystem of HAEC patients, such that there may be dominance of fungi and bacteria predisposing patients to development of HAEC.

Conflict of interest statement

Competing Interests: The authors have read the journal's policy and have the following competing interests: PKF is a consultant for Karl Storz Endoscopy - America. The remaining authors declare that they have no conflicts of interest. This does not alter the authors' adherence to PLOS ONE policies on sharing data and materials.

Figures

Fig 1. Bacterial phyla in HSCR and…
Fig 1. Bacterial phyla in HSCR and HAEC patients.
A,16S rRNA gene sequence of fecal bacteria of nine HSCR patients and nine HAEC patients. The pie charts show average relative abundance of five major phyla and six subdominant phyla (summarized as “All others”). B, histograms demonstrating the phyla level bacterial composition of individual subjects with HSCR and HAEC. Individual subject numbers are labeled on the X axis and expressed as relative OTU abundance per each subject. Colors were assigned for each of the 11 detected phyla with the scheme at the right side.
Fig 2. Fungal genera of HAEC patients…
Fig 2. Fungal genera of HAEC patients have increased Candida sp. abundance compared with HSCR patients.
A, Genera level distribution of fungi in nine HSCR patients and eight HAEC patients expressed as OTU abundance of 18S ITS-1 sequences (upper panel). Candida species composition in HSCR and HAEC patients (lower panel). B, Histograms demonstrating the fungal genera composition of individual subjects with HSCR and HAEC. Individual subject numbers are labeled on the X axis and expressed as relative OTUs abundance per each subject. Seventy-four different genera were identified by ITS-1 sequencing. The histogram shows 13 most abundant genera, unclassified genera, and 61 infrequent genera being summarized as “All others”.
Fig 3. Quantitative PCR of Candida albicans…
Fig 3. Quantitative PCR of Candida albicans.
The quantitation of C. albicans by quantitative PCR on total fecal DNA from HSCR and HAEC patients.
Fig 4. Candida albicans and tropicalis OTU…
Fig 4. Candida albicans and tropicalis OTU abundance by phenotype.
A, The OTU abundance of Candida in feces of HSCR and HAEC patients. Three out of eight HAEC patients showed very elevated Candida OTU’s. B, relative distribution of C. albicans to C. tropicalis in the “high burden” patients compared with the “low burden” patients. Comparisons between each group using t-test are noted. There was no significant difference between the HSCR and HAEC-Candida low burden groups.

References

    1. Hirschsprung H. Stuhtragheit neugeborener infolge dilatationen und hypertrophie des colons. Jahruch Kinderheikunde. 1887;27:1.
    1. Frykman PK, Short SS. Hirschsprung-associated enterocolitis: prevention and therapy. Seminars in pediatric surgery. 2012;21(4):328–35. 10.1053/j.sempedsurg.2012.07.007
    1. Austin KM. The pathogenesis of Hirschsprung's disease-associated enterocolitis. Seminars in pediatric surgery. 2012;21(4):319–27. 10.1053/j.sempedsurg.2012.07.006
    1. Hardy SP, Bayston R, Spitz L. Prolonged carriage of Clostridium difficile in Hirschsprung's disease. Archives of disease in childhood. 1993;69(2):221–4.
    1. Rintala RJ, Lindahl H. Sodium cromoglycate in the management of chronic or recurrent enterocolitis in patients with Hirschsprung's disease. Journal of pediatric surgery. 2001;36(7):1032–5.
    1. Thomas DF, Fernie DS, Malone M, Bayston R, Spitz L. Association between Clostridium difficile and enterocolitis in Hirschsprung's disease. Lancet. 1982;1(8263):78–9.
    1. Shen DH, Shi CR, Chen JJ, Yu SY, Wu Y, Yan WB. Detection of intestinal bifidobacteria and lactobacilli in patients with Hirschsprung's disease associated enterocolitis. World journal of pediatrics: WJP. 2009;5(3):201–5. 10.1007/s12519-009-0038-x
    1. Yan Z, Poroyko V, Gu S, Zhang Z, Pan L, Wang J, et al. Characterization of the intestinal microbiome of Hirschsprung's disease with and without enterocolitis. Biochemical and biophysical research communications. 2014;445(2):269–74. 10.1016/j.bbrc.2014.01.104
    1. Hold GL, Smith M, Grange C, Watt ER, El-Omar EM, Mukhopadhya I. Role of the gut microbiota in inflammatory bowel disease pathogenesis: what have we learnt in the past 10 years? World journal of gastroenterology: WJG. 2014;20(5):1192–210. 10.3748/wjg.v20.i5.1192
    1. Iliev ID, Funari VA, Taylor KD, Nguyen Q, Reyes CN, Strom SP, et al. Interactions between commensal fungi and the C-type lectin receptor Dectin-1 influence colitis. Science. 2012;336(6086):1314–7. 10.1126/science.1221789
    1. Pastor AC, Osman F, Teitelbaum DH, Caty MG, Langer JC. Development of a standardized definition for Hirschsprung's-associated enterocolitis: a Delphi analysis. Journal of pediatric surgery. 2009;44(1):251–6. 10.1016/j.jpedsurg.2008.10.052
    1. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nature methods. 2010;7(5):335–6. 10.1038/nmeth.f.303
    1. Findley K, Oh J, Yang J, Conlan S, Deming C, Meyer JA, et al. Topographic diversity of fungal and bacterial communities in human skin. Nature. 2013;498(7454):367–70. 10.1038/nature12171
    1. Hsu MC, Chen KW, Lo HJ, Chen YC, Liao MH, Lin YH, et al. Species identification of medically important fungi by use of real-time LightCycler PCR. Journal of medical microbiology. 2003;52(Pt 12):1071–6.
    1. Mason KL, Erb Downward JR, Mason KD, Falkowski NR, Eaton KA, Kao JY, et al. Candida albicans and bacterial microbiota interactions in the cecum during recolonization following broad-spectrum antibiotic therapy. Infection and immunity. 2012;80(10):3371–80. 10.1128/IAI.00449-12
    1. Samonis G, Anastassiadou H, Dassiou M, Tselentis Y, Bodey GP. Effects of broad-spectrum antibiotics on colonization of gastrointestinal tracts of mice by Candida albicans. Antimicrobial agents and chemotherapy. 1994;38(3):602–3.
    1. Frank DN, St Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proceedings of the National Academy of Sciences of the United States of America. 2007;104(34):13780–5.
    1. Peterson DA, Frank DN, Pace NR, Gordon JI. Metagenomic approaches for defining the pathogenesis of inflammatory bowel diseases. Cell host & microbe. 2008;3(6):417–27.
    1. Andoh A, Kuzuoka H, Tsujikawa T, Nakamura S, Hirai F, Suzuki Y, et al. Multicenter analysis of fecal microbiota profiles in Japanese patients with Crohn's disease. Journal of gastroenterology. 2012;47(12):1298–307. 10.1007/s00535-012-0605-0
    1. Walker AW, Sanderson JD, Churcher C, Parkes GC, Hudspith BN, Rayment N, et al. High-throughput clone library analysis of the mucosa-associated microbiota reveals dysbiosis and differences between inflamed and non-inflamed regions of the intestine in inflammatory bowel disease. BMC microbiology. 2011;11:7 10.1186/1471-2180-11-7
    1. Mukhopadhya I, Hansen R, El-Omar EM, Hold GL. IBD-what role do Proteobacteria play? Nature reviews Gastroenterology & hepatology. 2012;9(4):219–30.
    1. Levin DN, Marcon MA, Rintala RJ, Jacobson D, Langer JC. Inflammatory bowel disease manifesting after surgical treatment for Hirschsprung disease. Journal of pediatric gastroenterology and nutrition. 2012;55(3):272–7. 10.1097/MPG.0b013e31824f617a
    1. Freeman JJ, Rabah R, Hirschl RB, Maspons A, Meier D, Teitelbaum DH. Anti-TNF-alpha treatment for post-anastomotic ulcers and inflammatory bowel disease with Crohn's-like pathologic changes following intestinal surgery in pediatric patients. Pediatric surgery international. 2015;31(1):77–82. 10.1007/s00383-014-3633-4

Source: PubMed

3
订阅