Predominant Founder Effect among Recurrent Pathogenic Variants for an X-Linked Disorder

Chelsea Bender, Elizabeth Geena Woo, Bin Guan, Ehsan Ullah, Eric Feng, Amy Turriff, Santa J Tumminia, Paul A Sieving, Catherine A Cukras, Robert B Hufnagel, Chelsea Bender, Elizabeth Geena Woo, Bin Guan, Ehsan Ullah, Eric Feng, Amy Turriff, Santa J Tumminia, Paul A Sieving, Catherine A Cukras, Robert B Hufnagel

Abstract

For disorders with X-linked inheritance, variants may be transmitted through multiple generations of carrier females before an affected male is ascertained. Pathogenic RS1 variants exclusively cause X-linked retinoschisis (XLRS). While RS1 is constrained to variation, recurrent variants are frequently observed in unrelated probands. Here, we investigate recurrent pathogenic variants to determine the relative burden of mutational hotspot and founder allele events to this phenomenon. A cohort RS1 variant analysis and standardized classification, including variant enrichment in the XLRS cohort and in RS1 functional domains, were performed on 332 unrelated XLRS probands. A total of 108 unique RS1 variants were identified. A subset of 19 recurrently observed RS1 variants were evaluated in 190 probands by a haplotype analysis, using microsatellite and single nucleotide polymorphisms. Fourteen variants had at least two probands with common variant-specific haplotypes over ~1.95 centimorgans (cM) flanking RS1. Overall, 99/190 of reportedly unrelated probands had 25 distinct shared haplotypes. Examination of this XLRS cohort for common RS1 haplotypes indicates that the founder effect plays a significant role in this disorder, including variants in mutational hotspots. This improves the accuracy of clinical variant classification and may be generalizable to other X-linked disorders.

Trial registration: ClinicalTrials.gov NCT02471287 NCT00378742.

Keywords: ACMG/AMP variant interpretation guideline; RS1; X-linked disorder; X-linked retinoschisis (XLRS); founder effect; haplotype analysis; variant classification.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
RS1 variant types and localizations in the XLRS cohort and gnomAD. (a) Variant type distribution in the XLRS cohort. (b) RS1 protein domains (Top) and variant allele frequencies (AF) along the cDNA position in the XLRS cohort (middle) and gnomAD (bottom). The splice region variants in the XLRS cohort include intronic variants reported in clinical reports. The splice region variants in the gnomAD dataset include intronic variants in ±3–8 nucleotides from the exon–intron junctions. The gnomAD v2.1.1 dataset does not contain any variants in the ±2 canonical splicing sites. Variants denoted are those with AF > 0.03 in XLRS or >0.001 in gnomAD. (c) Allele frequencies for variants present in both XLRS cohort and gnomAD. Shaded: the XLRS prevalence of 1 in 5000 to 1 in 25,000 males.
Figure 2
Figure 2
Variant analysis using the ACMG/AMP classification system, including 104 SNVs and small Indels. (a) Variant interpretation in the current study as compared to ClinVar interpretations. (b) Variant interpretation with and without application of PM1 and PS4.
Figure 3
Figure 3
Distribution of distinct shared haplotypes (multi-colored) among 19 recurrently observed RS1 variants, including probands with no variant-specific shared haplotypes (gray).
Figure 4
Figure 4
Geographical distribution of three recurrent variants by proband ZIP code. (a) Three probands with variant-specific haplotypes (Hap15) tightly cluster (blue inset); one proband with the same RS1 variant shared 2/7 haplotype markers (gray). (b) Twelve probands with variant-specific haplotypes are in blue (Hap4); one proband with the same RS1 variant shared 6/7 haplotype markers (gray). (c) Six probands with variant specific haplotypes are in blue (Hap5), and one proband shared 6/7 haplotype markers (gray).

References

    1. Migeon B.R. X-linked diseases: Susceptible females. Genet. Med. 2020;22:1156–1174. doi: 10.1038/s41436-020-0779-4.
    1. Migeon B.R. The role of X inactivation and cellular mosaicism in women’s health and sex-specific diseases. JAMA. 2006;295:1428–1433. doi: 10.1001/jama.295.12.1428.
    1. Shinagawa J., Moteki H., Nishio S.Y., Noguchi Y., Usami S.I. Haplotype Analysis of GJB2 Mutations: Founder Effect or Mutational Hot Spot? Genes. 2020;11:250. doi: 10.3390/genes11030250.
    1. Reeves M.J., Goetz K.E., Guan B., Ullah E., Blain D., Zein W.M., Tumminia S.J., Hufnagel R.B. Genotype-phenotype associations in a large PRPH2-related retinopathy cohort. Hum. Mutat. 2020;41:1528–1539. doi: 10.1002/humu.24065.
    1. Tsang S.H., Sharma T. X-linked Juvenile Retinoschisis. Adv. Exp. Med. Biol. 2018;1085:43–48. doi: 10.1007/978-3-319-95046-4_10.
    1. Sergeev Y.V., Vitale S., Sieving P.A., Vincent A., Robson A.G., Moore A.T., Webster A.R., Holder G.E. Molecular modeling indicates distinct classes of missense variants with mild and severe XLRS phenotypes. Hum. Mol. Genet. 2013;22:4756–4767. doi: 10.1093/hmg/ddt329.
    1. Bush R.A., Wei L.L., Sieving P.A. Convergence of Human Genetics and Animal Studies: Gene Therapy for X-Linked Retinoschisis. Cold Spring Harb. Perspect. Med. 2015;5:a017368. doi: 10.1101/cshperspect.a017368.
    1. The Retinoschisis Consortium Functional implications of the spectrum of mutations found in 234 cases with X-linked juvenile retinoschisis. Hum. Mol. Genet. 1998;7:1185–1192. doi: 10.1093/hmg/7.7.1185.
    1. Cukras C., Wiley H.E., Jeffrey B.G., Sen H.N., Turriff A., Zeng Y., Vijayasarathy C., Marangoni D., Ziccardi L., Kjellstrom S., et al. Retinal AAV8-RS1 Gene Therapy for X-Linked Retinoschisis: Initial Findings from a Phase I/IIa Trial by Intravitreal Delivery. Mol. Ther. 2018;26:2282–2294. doi: 10.1016/j.ymthe.2018.05.025.
    1. Sieving P.A., Collins F.S. Genetic ophthalmology and the era of clinical care. JAMA. 2007;297:733–736. doi: 10.1001/jama.297.7.733.
    1. Brooks B.P., Macdonald I.M., Tumminia S.J., Smaoui N., Blain D., Nezhuvingal A.A., Sieving P.A. Genomics in the era of molecular ophthalmology: Reflections on the National Ophthalmic Disease Genotyping Network (eyeGENE) Arch. Ophthalmol. 2008;126:424–425. doi: 10.1001/archopht.126.3.424.
    1. Blain D., Goetz K.E., Ayyagari R., Tumminia S.J. eyeGENE®: A vision community resource facilitating patient care and paving the path for research through molecular diagnostic testing. Clin. Genet. 2013;84:190–197. doi: 10.1111/cge.12193.
    1. Goetz K.E., Reeves M.J., Tumminia S.J., Brooks B.P. eyeGENE®: A novel approach to combine clinical testing and researching genetic ocular disease. Curr. Opin. Ophthalmol. 2012;23:355–363. doi: 10.1097/ICU.0b013e32835715c9.
    1. Karczewski K.J., Francioli L.C., Tiao G., Cummings B.B., Alföldi J., Wang Q., Collins R.L., Laricchia K.M., Ganna A., Birnbaum D.P., et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2020;581:434–443. doi: 10.1038/s41586-020-2308-7.
    1. McLaren W., Gil L., Hunt S.E., Riat H.S., Ritchie G.R., Thormann A., Flicek P., Cunningham F. The Ensembl Variant Effect Predictor. Genome Biol. 2016;17:122. doi: 10.1186/s13059-016-0974-4.
    1. Richards S., Aziz N., Bale S., Bick D., Das S., Gastier-Foster J., Grody W.W., Hegde M., Lyon E., Spector E., et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015;17:405–424. doi: 10.1038/gim.2015.30.
    1. Schwarz J.M., Rodelsperger C., Schuelke M., Seelow D. MutationTaster evaluates disease-causing potential of sequence alterations. Nat. Methods. 2010;7:575–576. doi: 10.1038/nmeth0810-575.
    1. Adzhubei I.A., Schmidt S., Peshkin L., Ramensky V.E., Gerasimova A., Bork P., Kondrashov A.S., Sunyaev S.R. A method and server for predicting damaging missense mutations. Nat. Methods. 2010;7:248–249. doi: 10.1038/nmeth0410-248.
    1. Kumar P., Henikoff S., Ng P.C. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat. Protoc. 2009;4:1073–1081. doi: 10.1038/nprot.2009.86.
    1. Kopanos C., Tsiolkas V., Kouris A., Chapple C.E., Albarca Aguilera M., Meyer R., Massouras A. VarSome: The human genomic variant search engine. Bioinformatics. 2019;35:1978–1980. doi: 10.1093/bioinformatics/bty897.
    1. Stenson P.D., Ball E.V., Mort M., Phillips A.D., Shiel J.A., Thomas N.S., Abeysinghe S., Krawczak M., Cooper D.N. Human Gene Mutation Database (HGMD): 2003 update. Hum. Mutat. 2003;21:577–581. doi: 10.1002/humu.10212.
    1. Landrum M.J., Lee J.M., Benson M., Brown G.R., Chao C., Chitipiralla S., Gu B., Hart J., Hoffman D., Jang W., et al. ClinVar: Improving access to variant interpretations and supporting evidence. Nucleic Acids Res. 2018;46:D1062–D1067. doi: 10.1093/nar/gkx1153.
    1. Jarvik G.P., Browning B.L. Consideration of Cosegregation in the Pathogenicity Classification of Genomic Variants. Am. J. Hum. Genet. 2016;98:1077–1081. doi: 10.1016/j.ajhg.2016.04.003.
    1. Singh G., Cooper T.A. Minigene reporter for identification and analysis of cis elements and trans factors affecting pre-mRNA splicing. Biotechniques. 2006;41:177–181. doi: 10.2144/000112208.
    1. Guan B., Welch J.M., Sapp J.C., Ling H., Li Y., Johnston J.J., Kebebew E., Biesecker L.G., Simonds W.F., Marx S.J., et al. GCM2-Activating Mutations in Familial Isolated Hyperparathyroidism. Am. J. Hum. Genet. 2016;99:1034–1044. doi: 10.1016/j.ajhg.2016.08.018.
    1. Matise T.C., Chen F., Chen W., De La Vega F.M., Hansen M., He C., Hyland F.C., Kennedy G.C., Kong X., Murray S.S., et al. A second-generation combined linkage physical map of the human genome. Genome Res. 2007;17:1783–1786. doi: 10.1101/gr.7156307.
    1. Kent W.J., Sugnet C.W., Furey T.S., Roskin K.M., Pringle T.H., Zahler A.M., Haussler D. The human genome browser at UCSC. Genome Res. 2002;12:996–1006. doi: 10.1101/gr.229102.
    1. Schuelke M. An economic method for the fluorescent labeling of PCR fragments. Nat. Biotechnol. 2000;18:233–234. doi: 10.1038/72708.
    1. Tolun G., Vijayasarathy C., Huang R., Zeng Y., Li Y., Steven A.C., Sieving P.A., Heymann J.B. Paired octamer rings of retinoschisin suggest a junctional model for cell-cell adhesion in the retina. Proc. Natl. Acad. Sci. USA. 2016;113:5287–5292. doi: 10.1073/pnas.1519048113.
    1. Signal B., Gloss B.S., Dinger M.E., Mercer T.R. Machine learning annotation of human branchpoints. Bioinformatics. 2018;34:920–927. doi: 10.1093/bioinformatics/btx688.
    1. Taggart A.J., DeSimone A.M., Shih J.S., Filloux M.E., Fairbrother W.G. Large-scale mapping of branchpoints in human pre-mRNA transcripts in vivo. Nat. Struct. Mol. Biol. 2012;19:719–721. doi: 10.1038/nsmb.2327.
    1. Ferla R., Calo V., Cascio S., Rinaldi G., Badalamenti G., Carreca I., Surmacz E., Colucci G., Bazan V., Russo A. Founder mutations in BRCA1 and BRCA2 genes. Ann. Oncol. 2007;18((Suppl. S6)):vi93–vi98. doi: 10.1093/annonc/mdm234.
    1. Huopaniemi L., Rantala A., Forsius H., Somer M., de la Chapelle A., Alitalo T. Three widespread founder mutations contribute to high incidence of X-linked juvenile retinoschisis in Finland. Eur. J. Hum. Genet. 1999;7:368–376. doi: 10.1038/sj.ejhg.5200300.
    1. Riveiro-Alvarez R., Trujillo-Tiebas M.J., Gimenez-Pardo A., Garcia-Hoyos M., Lopez-Martinez M.A., Aguirre-Lamban J., Garcia-Sandoval B., Vazquez-Fernandez del Pozo S., Cantalapiedra D., Avila-Fernandez A., et al. Correlation of genetic and clinical findings in Spanish patients with X-linked juvenile retinoschisis. Investig. Ophthalmol. Vis. Sci. 2009;50:4342–4350. doi: 10.1167/iovs.09-3418.
    1. Wang T., Waters C.T., Rothman A.M., Jakins T.J., Romisch K., Trump D. Intracellular retention of mutant retinoschisin is the pathological mechanism underlying X-linked retinoschisis. Hum. Mol. Genet. 2002;11:3097–3105. doi: 10.1093/hmg/11.24.3097.
    1. Bush M., Setiaputra D., Yip C.K., Molday R.S. Cog-Wheel Octameric Structure of RS1, the Discoidin Domain Containing Retinal Protein Associated with X-Linked Retinoschisis. PLoS ONE. 2016;11:e0147653. doi: 10.1371/journal.pone.0147653.
    1. Forsius H., Krause U., Helve J., Vuopala V., Mustonen E., Vainio-Mattila B., Fellman J., Eriksson A.W. Visual acuity in 183 cases of X-chromosomal retinoschisis. Can. J. Ophthalmol. 1973;8:385–393.
    1. Miano M.G., Testa F., Filippini F., Trujillo M., Conte I., Lanzara C., Millan J.M., De Bernardo C., Grammatico B., Mangino M., et al. Identification of novel RP2 mutations in a subset of X-linked retinitis pigmentosa families and prediction of new domains. Hum. Mutat. 2001;18:109–119. doi: 10.1002/humu.1160.
    1. D’Avanzo F., Rigon L., Zanetti A., Tomanin R. Mucopolysaccharidosis Type II: One Hundred Years of Research, Diagnosis, and Treatment. Int. J. Mol. Sci. 2020;21:1258. doi: 10.3390/ijms21041258.
    1. Flanigan K.M., Dunn D.M., von Niederhausern A., Soltanzadeh P., Gappmaier E., Howard M.T., Sampson J.B., Mendell J.R., Wall C., King W.M., et al. Mutational spectrum of DMD mutations in dystrophinopathy patients: Application of modern diagnostic techniques to a large cohort. Hum. Mutat. 2009;30:1657–1666. doi: 10.1002/humu.21114.
    1. Kong X., Zhong X., Liu L., Cui S., Yang Y., Kong L. Genetic analysis of 1051 Chinese families with Duchenne/Becker Muscular Dystrophy. BMC Med. Genet. 2019;20:139. doi: 10.1186/s12881-019-0873-0.
    1. Leroy B.P., Budde B.S., Wittmer M., De Baere E., Berger W., Zeitz C. A common NYX mutation in Flemish patients with X linked CSNB. Br. J. Ophthalmol. 2009;93:692–696. doi: 10.1136/bjo.2008.143727.
    1. Azevedo O., Gal A., Faria R., Gaspar P., Miltenberger-Miltenyi G., Gago M.F., Dias F., Martins A., Rodrigues J., Reimao P., et al. Founder effect of Fabry disease due to p.F113L mutation: Clinical profile of a late-onset phenotype. Mol. Genet. Metab. 2020;129:150–160. doi: 10.1016/j.ymgme.2019.07.012.
    1. Huang L., Sun L., Wang Z., Chen C., Wang P., Sun W., Luo X., Ding X. Clinical manifestation and genetic analysis in Chinese early onset X-linked retinoschisis. Mol. Genet. Genom. Med. 2020;8:e1421. doi: 10.1002/mgg3.1421.

Source: PubMed

3
订阅