BRAF gene: From human cancers to developmental syndromes

Muhammad Ramzan Manwar Hussain, Mukhtiar Baig, Hussein Sheik Ali Mohamoud, Zaheer Ulhaq, Daniel C Hoessli, Ghaidaa Siraj Khogeer, Ranem Radwan Al-Sayed, Jumana Yousuf Al-Aama, Muhammad Ramzan Manwar Hussain, Mukhtiar Baig, Hussein Sheik Ali Mohamoud, Zaheer Ulhaq, Daniel C Hoessli, Ghaidaa Siraj Khogeer, Ranem Radwan Al-Sayed, Jumana Yousuf Al-Aama

Abstract

The BRAF gene encodes for a serine/threonine protein kinase that participates in the MAPK/ERK signalling pathway and plays a vital role in cancers and developmental syndromes (RASopathies). The current review discusses the clinical significance of the BRAF gene and other members of RAS/RAF cascade in human cancers and RAS/MAPK syndromes, and focuses the molecular basis and clinical genetics of BRAF to better understand its parallel involvement in both tumourigenesis and RAS/MAPK syndromes-Noonan syndrome, cardio-facio-cutaneous syndrome and LEOPARD syndrome.

Keywords: BRAF gene; Cancers; Developmental syndromes; RAS–RAF overactivation.

Figures

Figure 1
Figure 1
Protein domains connecting the cancers and RASopathies, and 3D structure of the BRAF protein. (A) BRAF mutations common to kinase domain (457–717 amino acids) are characterised mostly in melanoma, colorectal cancer, lung cancer, thyroid cancer and ovarian cancer, and CFC. (B) 3D structure of the BRAF protein with highlighted residues at the 241, 257, 469, 499 and 600 positions—the most common sites for amino acid substitutions, screened in NS, CFC and cancer diseases.
Figure 2
Figure 2
Venn diagram to show BRAF mutations (amino acid variations), characterised in different cancer types. The highest number of mutations is seen in melanomas, indicated in blue colour circle. The smaller number of mutations is observed in thyroid cancer, shown in red colour circle. However, mutations observed in more than one type of cancer are shown in the overlapping regions. For example, the G469R and V600E mutations are characterised in all 4 types of cancers, shown by the overlapping region.
Figure 3
Figure 3
Schematic diagram showing the RAS–RAF signalling pathway with different cancers (A) and RASopathies (B). In melanoma, in red colour, RAS and BRAF mutations activate both effector pathways: Raf–MEK–ERK (BRAF gene) and PI3K–Akt signalling. In thyroid cancer (papillary carcinoma), in grey colour, both RAS and RAF (BRAF) play a combined critical role in proliferation. Molecular cascade underlying prostate cancer (turquoise) underlies both MAPK and p53 pathways. The glioma involves PDGF, PDGFR, Sch, Grb2, SOS, Ras, Raf and MAPK. In colorectal cancer, indicated in blue colour, both TGF-β and MAPK signalling pathways play a critical role. RAS/RAF signalling transduction for developmental syndromes (NS, CFC and LEOPARD) is indicated in B.
Figure 3
Figure 3
Schematic diagram showing the RAS–RAF signalling pathway with different cancers (A) and RASopathies (B). In melanoma, in red colour, RAS and BRAF mutations activate both effector pathways: Raf–MEK–ERK (BRAF gene) and PI3K–Akt signalling. In thyroid cancer (papillary carcinoma), in grey colour, both RAS and RAF (BRAF) play a combined critical role in proliferation. Molecular cascade underlying prostate cancer (turquoise) underlies both MAPK and p53 pathways. The glioma involves PDGF, PDGFR, Sch, Grb2, SOS, Ras, Raf and MAPK. In colorectal cancer, indicated in blue colour, both TGF-β and MAPK signalling pathways play a critical role. RAS/RAF signalling transduction for developmental syndromes (NS, CFC and LEOPARD) is indicated in B.
Figure 4
Figure 4
Genes—KRAS, BRAF, PTPN11 and SOS1—characterised in both human cancers and RAS/MAPK syndromes (CFC & Noonan).

References

    1. Adeniran A.J., Theoharis C., Hui P., Prasad M.L., Hammers L., Carling T., Udelsman R., Chhieng D.C. Reflex BRAF testing in thyroid fine-needle aspiration biopsy with equivocal and positive interpretation: a prospective study. Thyroid. 2011;21:717–723.
    1. Allanson J.E., Roberts A.E. Noonan syndrome. In: Pagon R.A., Adam M.P., Bird T.D., Dolan C.R., Fong C.T., Stephens K., editors. GeneReviews. University of Washington; Seattle, WA: 1993.
    1. Al-Rahawan M.M., Chute D.J., Sol-Church K., Gripp K.W., Stabley D.L., McDaniel N.L., Wilson W.G., Waldron P.E. Hepatoblastoma and heart transplantation in a patient with cardio-facio-cutaneous syndrome. Am. J. Med. Genet. A. 2007;143A:1481–1488.
    1. Aoki Y., Matsubara Y. Ras/MAPK syndromes and childhood hemato-oncological diseases. Int. J. Hematol. 2013;97:30–36.
    1. Ascierto P.A., Kirkwood J.M., Grob J.J., Simeone E., Grimaldi A.M., Maio M., Palmieri G., Testori A., Marincola F.M., Mozzillo N. The role of BRAF V600 mutation in melanoma. J. Transl. Med. 2012;10:85.
    1. Badalian-Very G., Vergilio J.A., Degar B.A., MacConaill L.E., Brandner B., Calicchio M.L., Kuo F.C., Ligon A.H., Stevenson K.E., Kehoe S.M., Garraway L.A., Hahn W.C., Meyerson M., Fleming M.D., Rollins B.J. Recurrent BRAF mutations in Langerhans cell histiocytosis. Blood. 2010;116:1919–1923.
    1. Badalian-Very G., Vergilio J.-A., Degar B.A., Rodriguez-Galindo C., Rollins B.J. Recent advances in the understanding of Langerhans cell histiocytosis. Br. J. Haematol. 2012;156:163–172.
    1. Bauer A.J., Stratakis C.A. The lentiginoses: cutaneous markers of systemic disease and a window to new aspects of tumourigenesis. J. Med. Genet. 2005;42:801–810.
    1. Benlloch S., Payá A., Alenda C., Bessa X., Andreu M., Jover R., Castells A., Llor X., Aranda F.I., Massutí B. Detection of BRAF V600E mutation in colorectal cancer: comparison of automatic sequencing and real-time chemistry methodology. J. Mol. Diagn. 2006;8:540–543.
    1. Benlloch S., Paya A., Alenda C., Bessa X., Andreu M., Jover R., Castells A., Llor X., Aranda F.I., Massuti B. Detection of BRAF V600E mutation in colorectal cancer: comparison of automatic sequencing and real-time chemistry methodology. J. Mol. Diagn. 2006;8:540–543.
    1. Bertola D.R., Kim C.A., Pereira A.C., Mota G.F., Krieger J.E., Vieira I.C., Valente M., Loreto M.R., Magalhaes R.P., Gonzalez C.H. Are Noonan syndrome and Noonan-like/multiple giant cell lesion syndrome distinct entities? Am. J. Med. Genet. 2001;98:230–234.
    1. Bettstetter M., Dechant S., Ruemmele P., Grabowski M., Keller G., Holinski-Feder E., Hartmann A., Hofstaedter F., Dietmaier W. Distinction of hereditary nonpolyposis colorectal cancer and sporadic microsatellite-unstable colorectal cancer through quantification of MLH1 methylation by real-time PCR. Clin. Cancer Res. 2007;13:3221–3228.
    1. Bhatia S., Tykodi S.S., Thompson J.A. Treatment of metastatic melanoma: an overview. Oncology (Williston Park, N.Y.) 2009;23:488–496.
    1. Bissler J.J., Kingswood J.C., Radzikowska E., Zonnenberg B.A., Frost M., Belousova E., Sauter M., Nonomura N., Brakemeier S., de Vries P.J., Whittemore V.H., Chen D., Sahmoud T., Shah G., Lincy J., Lebwohl D., Budde K. Everolimus for angiomyolipoma associated with tuberous sclerosis complex or sporadic lymphangioleiomyomatosis (EXIST-2): a multicentre, randomised, double-blind, placebo-controlled trial. Lancet. 2013;381:817–824.
    1. Blombery P.A., Wong S.Q., Hewitt C.A., Dobrovic A., Maxwell E.L., Juneja S., Grigoriadis G., Westerman D.A. Detection of BRAF mutations in patients with hairy cell leukemia and related lymphoproliferative disorders. Haematologica. 2012;97:780–783.
    1. Bollag G., Tsai J., Zhang J., Zhang C., Ibrahim P., Nolop K., Hirth P. Vemurafenib: the first drug approved for BRAF-mutant cancer. Nat. Rev. Drug Discov. 2012;11:873–886.
    1. Bosmuller H., Fischer A., Pham D.L., Fehm T., Capper D., von Deimling A., Bonzheim I., Staebler A., Fend F. Detection of the BRAF V600E mutation in serous ovarian tumors: a comparative analysis of immunohistochemistry with a mutation-specific monoclonal antibody and allele-specific PCR. Hum. Pathol. 2013;44:329–335.
    1. Brose M.S., Volpe P., Feldman M., Kumar M., Rishi I., Gerrero R., Einhorn E., Herlyn M., Minna J., Nicholson A., Roth J.A., Albelda S.M., Davies H., Cox C., Brignell G., Stephens P., Futreal P.A., Wooster R., Stratton M.R., Weber B.L. BRAF and RAS mutations in human lung cancer and melanoma. Cancer Res. 2002;62:6997–7000.
    1. Cardarella S., Johnson B.E. The impact of genomic changes on treatment of lung cancer. Am. J. Respir. Crit. Care Med. 2013;188:770–775.
    1. Cardarella S., Ogino A., Nishino M., Butaney M., Shen J., Lydon C., Yeap B.Y., Sholl L., Johnson B.E., Janne P.A. Clinical, pathological and biological features associated with BRAF mutations in non-small cell lung cancer. Clin. Cancer Res. 2013;19:4532–4540.
    1. Chakraborty R., Wieland C.N., Comfere N.I. Molecular targeted therapies in metastatic melanoma. Pharmacogenomics Pers. Med. 2013;6:49–56.
    1. Chappell W.H., Steelman L.S., Long J.M., Kempf R.C., Abrams S.L., Franklin R.A., Basecke J., Stivala F., Donia M., Fagone P., Malaponte G., Mazzarino M.C., Nicoletti F., Libra M., Maksimovic-Ivanic D., Mijatovic S., Montalto G., Cervello M., Laidler P., Milella M., Tafuri A., Bonati A., Evangelisti C., Cocco L., Martelli A.M., McCubrey J.A. Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR inhibitors: rationale and importance to inhibiting these pathways in human health. Oncotarget. 2011;2:135–164.
    1. Cho N.Y., Choi M., Kim B.H., Cho Y.M., Moon K.C., Kang G.H. BRAF and KRAS mutations in prostatic adenocarcinoma. Int. J. Cancer. 2006;119:1858–1862.
    1. Ciampi R., Knauf J.A., Kerler R., Gandhi M., Zhu Z., Nikiforova M.N., Rabes H.M., Fagin J.A., Nikiforov Y.E. Oncogenic AKAP9-BRAF fusion is a novel mechanism of MAPK pathway activation in thyroid cancer. J. Clin. Investig. 2005;115:94–101.
    1. Cin H., Meyer C., Herr R., Janzarik W.G., Lambert S., Jones D.T., Jacob K., Benner A., Witt H., Remke M., Bender S., Falkenstein F., Van Anh T.N., Olbrich H., von Deimling A., Pekrun A., Kulozik A.E., Gnekow A., Scheurlen W., Witt O., Omran H., Jabado N., Collins V.P., Brummer T., Marschalek R., Lichter P., Korshunov A., Pfister S.M. Oncogenic FAM131B-BRAF fusion resulting from 7q34 deletion comprises an alternative mechanism of MAPK pathway activation in pilocytic astrocytoma. Acta Neuropathol. 2011;121:763–774.
    1. Clancy C., Burke J.P., Kalady M.F., Coffey J.C. BRAF mutation is associated with distinct clinicopathological characteristics in colorectal cancer: a systematic review and meta-analysis. Colorectal Dis. 2013;15:e711–e718.
    1. Davies H., Bignell G.R., Cox C., Stephens P., Edkins S., Clegg S., Teague J., Woffendin H., Garnett M.J., Bottomley W., Davis N., Dicks E., Ewing R., Floyd Y., Gray K., Hall S., Hawes R., Hughes J., Kosmidou V., Menzies A., Mould C., Parker A., Stevens C., Watt S., Hooper S., Wilson R., Jayatilake H., Gusterson B.A., Cooper C., Shipley J., Hargrave D., Pritchard-Jones K., Maitland N., Chenevix-Trench G., Riggins G.J., Bigner D.D., Palmieri G., Cossu A., Flanagan A., Nicholson A., Ho J.W., Leung S.Y., Yuen S.T., Weber B.L., Seigler H.F., Darrow T.L., Paterson H., Marais R., Marshall C.J., Wooster R., Stratton M.R., Futreal P.A. Mutations of the BRAF gene in human cancer. Nature. 2002;417:949–954.
    1. Denayer E., Devriendt K., de Ravel T., Van Buggenhout G., Smeets E., Francois I., Sznajer Y., Craen M., Leventopoulos G., Mutesa L., Vandecasseye W., Massa G., Kayserili H., Sciot R., Fryns J.P., Legius E. Tumor spectrum in children with Noonan syndrome and SOS1 or RAF1 mutations. Genes Chromosom. Cancer. 2010;49:242–252.
    1. Deng G., Bell I., Crawley S., Gum J., Terdiman J.P., Allen B.A., Truta B., Sleisenger M.H., Kim Y.S. BRAF mutation is frequently present in sporadic colorectal cancer with methylated hMLH1, but not in hereditary nonpolyposis colorectal cancer. Clin. Cancer Res. 2004;10:191–195.
    1. Elisei R., Ugolini C., Viola D., Lupi C., Biagini A., Giannini R., Romei C., Miccoli P., Pinchera A., Basolo F. BRAFV600E mutation and outcome of patients with papillary thyroid carcinoma: a 15-year median follow-up study. J. Clin. Endocrinol. Metab. 2008;93:3943–3949.
    1. El-Osta H., Falchook G., Tsimberidou A., Hong D., Naing A., Kim K., Wen S., Janku F., Kurzrock R. BRAF mutations in advanced cancers: clinical characteristics and outcomes. PLoS ONE. 2011;6:e25806.
    1. Fargnoli M.C., Pike K., Pfeiffer R.M., Tsang S., Rozenblum E., Munroe D.J., Golubeva Y., Calista D., Seidenari S., Massi D., Carli P., Bauer J., Elder D.E., Bastian B.C., Peris K., Landi M.T. MC1R variants increase risk of melanomas harboring BRAF mutations. J. Invest. Dermatol. 2008;128:2485–2490.
    1. Feng C., Gao Y., Wang C., Yu X., Zhang W., Guan H., Shan Z., Teng W. Aberrant overexpression of pyruvate kinase M2 is associated with aggressive tumor features and the BRAF mutation in papillary thyroid cancer. J. Clin. Endocrinol. Metab. 2013;98:E1524–E1533.
    1. Forschner A., Niessner H., Bauer J., Bender B., Garbe C., Meier F. Successful treatment with vemurafenib in BRAF V600K-positive cerebral melanoma metastasis. JAMA Dermatol. (Chicago, IL) 2013;149:642–644.
    1. Fryer A.E., Holt P.J., Hughes H.E. The cardio-facio-cutaneous (CFC) syndrome and Noonan syndrome: are they the same? Am. J. Med. Genet. 1991;38:548–551.
    1. Fryssira H., Leventopoulos G., Psoni S., Kitsiou-Tzeli S., Stavrianeas N., Kanavakis E. Tumor development in three patients with Noonan syndrome. Eur. J. Pediatr. 2008;167:1025–1031.
    1. Gao Q., Zhao Y.J., Wang X.Y., Guo W.J., Gao S., Wei L., Shi J.Y., Shi G.M., Wang Z.C., Zhang Y.N., Shi Y.H., Ding J., Ding Z.B., Ke A.W., Dai Z., Wu F.Z., Wang H., Qiu Z.P., Chen Z.A., Zhang Z.F., Qiu S.J., Zhou J., He X.H., Fan J. Activating mutations in PTPN3 promote cholangiocarcinoma cell proliferation and migration and are associated with tumor recurrence in patients. Gastroenterology. 2014;146:1397–1407.
    1. Gear H., Williams H., Kemp E.G., Roberts F. BRAF mutations in conjunctival melanoma. Invest. Ophthalmol. Vis. Sci. 2004;45:2484–2488.
    1. Gelb B.D., Tartaglia M. LEOPARD syndrome. In: Pagon R.A., Adam M.P., Bird T.D., Dolan C.R., Fong C.T., Stephens K., editors. GeneReviews. University of Washington; Seattle, WA: 1993.
    1. Gelb B.D., Tartaglia M. RAS signaling pathway mutations and hypertrophic cardiomyopathy: getting into and out of the thick of it. J. Clin. Investig. 2011;121:844–847.
    1. Gershenson D.M. The life and times of low-grade serous carcinoma of the ovary, American Society of Clinical Oncology educational book/ASCO. Am. Soc. Clin. Oncol.: Meeting. 2013;2013:195–199.
    1. Gorlin R.J., Anderson R.C., Blaw M. Multiple lentigenes syndrome. Am. J. Dis. Child. 1960;117(1969):652–662.
    1. Gos M., Leszkiewicz M., Abramowicz A. RAS/MAPK signal transduction pathway and its role in the pathogenesis of Noonan syndrome. Postepy Biochem. 2012;58:255–264.
    1. Gremer L., Merbitz-Zahradnik T., Dvorsky R., Cirstea I.C., Kratz C.P., Zenker M., Wittinghofer A., Ahmadian M.R. Germline KRAS mutations cause aberrant biochemical and physical properties leading to developmental disorders. Hum. Mutat. 2011;32:33–43.
    1. Haroche J., Charlotte F., Arnaud L., von Deimling A., Helias-Rodzewicz Z., Hervier B., Cohen-Aubart F., Launay D., Lesot A., Mokhtari K., Canioni D., Galmiche L., Rose C., Schmalzing M., Croockewit S., Kambouchner M., Copin M.C., Fraitag S., Sahm F., Brousse N., Amoura Z., Donadieu J., Emile J.F. High prevalence of BRAF V600E mutations in Erdheim–Chester disease but not in other non-Langerhans cell histiocytoses. Blood. 2012;120:2700–2703.
    1. Hasle H. Malignant diseases in Noonan syndrome and related disorders. Horm. Res. 2009;72(Suppl. 2):8–14.
    1. Huang C.J., Teng H.W., Chien C.C., Lin J.K., Yang S.H. Prognostic significance of C-reactive protein polymorphism and KRAS/BRAF in synchronous liver metastasis from colorectal cancer. PLoS ONE. 2013;8:e65117.
    1. Hussain M.R., Shaik N.A., Al-Aama J.Y., Asfour H.Z., Khan F.S., Masoodi T.A., Khan M.A., Shaik N.S. In silico analysis of Single Nucleotide Polymorphisms (SNPs) in human BRAF gene. Gene. 2012;508:188–196.
    1. Hussain M.R., Nasir J., Al-Aama J.Y. Clinically significant missense variants in human GALNT3, GALNT8, GALNT12, and GALNT13 genes: intriguing in silico findings. J. Cell. Biochem. 2014;115:313–327.
    1. Hutchinson K.E., Lipson D., Stephens P.J., Otto G., Lehmann B.D., Lyle P.L., Vnencak-Jones C.L., Ross J.S., Pietenpol J.A., Sosman J.A., Puzanov I., Miller V.A., Pao W. BRAF fusions define a distinct molecular subset of melanomas with potential sensitivity to MEK inhibition. Clin. Cancer Res. 2013;19:6696–6702.
    1. Ibrahim N., Haluska F.G. Molecular pathogenesis of cutaneous melanocytic neoplasms. Annu. Rev. Pathol. 2009;4:551–579.
    1. Jemal A., Siegel R., Ward E., Hao Y., Xu J., Murray T., Thun M.J. Cancer statistics, 2008. CA Cancer J. Clin. 2008;58:71–96.
    1. Jo Y.S., Li S., Song J.H., Kwon K.H., Lee J.C., Rha S.Y., Lee H.J., Sul J.Y., Kweon G.R., Ro H.K., Kim J.M., Shong M. Influence of the BRAF V600E mutation on expression of vascular endothelial growth factor in papillary thyroid cancer. J. Clin. Endocrinol. Metab. 2006;91:3667–3670.
    1. Jones D.T., Kocialkowski S., Liu L., Pearson D.M., Backlund L.M., Ichimura K., Collins V.P. Tandem duplication producing a novel oncogenic BRAF fusion gene defines the majority of pilocytic astrocytomas. Cancer Res. 2008;68:8673–8677.
    1. Jozwiak S., Schwartz R.A., Janniger C.K. LEOPARD syndrome (cardiocutaneous lentiginosis syndrome) Cutis. 1996;57:208–214.
    1. Khan S., McDowell H., Upadhyaya M., Fryer A. Vaginal rhabdomyosarcoma in a patient with Noonan syndrome. J. Med. Genet. 1995;32:743–745.
    1. Kim W.Y., Ko Y.S., Hwang T.S., Han H.S., Lim S.D., Kim W.S., Oh S.Y. A case of multifocal papillary thyroid carcinoma consisting of one encapsulated follicular variant with BRAF K601E mutation and three conventional types with BRAF V600E mutation. Korean J Pathol. 2013;47:293–298.
    1. Kitsiou-Tzeli S., Papadopoulou A., Kanaka-Gantenbein C., Fretzayas A., Daskalopoulos D., Kanavakis E., Nicolaidou P. Does the rare A172G mutation of PTPN11 gene convey a mild Noonan syndrome phenotype? Horm. Res. 2006;66:124–131.
    1. Kohn E.C., Hurteau J. Ovarian cancer: making its own rules-again. Cancer. 2013;119:474–476.
    1. Kollermann J., Albrecht H., Schlomm T., Huland H., Graefen M., Bokemeyer C., Simon R., Sauter G., Wilczak W. Activating BRAF gene mutations are uncommon in hormone refractory prostate cancer in Caucasian patients. Oncol. Lett. 2010;1:729–732.
    1. Koudova M., Seemanova E., Zenker M. Novel BRAF mutation in a patient with LEOPARD syndrome and normal intelligence. Eur. J. Med. Genet. 2009;52:337–340.
    1. Lee J.S., Tartaglia M., Gelb B.D., Fridrich K., Sachs S., Stratakis C.A., Muenke M., Robey P.G., Collins M.T., Slavotinek A. Phenotypic and genotypic characterisation of Noonan-like/multiple giant cell lesion syndrome. J. Med. Genet. 2005;42:e11.
    1. Lee S.E., Lee J.U., Lee M.H., Ryu M.J., Kim S.J., Kim Y.K., Choi M.J., Kim K.S., Kim J.M., Kim J.W., Koh Y.W., Lim D.S., Jo Y.S., Shong M. RAF kinase inhibitor-independent constitutive activation of Yes-associated protein 1 promotes tumor progression in thyroid cancer. Oncogenesis. 2013;2:e55.
    1. Lee J.I., Chung Y.J., Lee S.Y. Papillary thyroid carcinoma recurring as squamous cell carcinoma 10 years after total thyroidectomy: lessons from rapidly progressive papillary thyroid carcinoma. Intern. Med. (Tokyo, Japan) 2013;52:1593–1597.
    1. Lewandowska M.A., Jozwicki W., Zurawski B. KRAS and BRAF mutation analysis in colorectal adenocarcinoma specimens with a low percentage of tumor cells. Mol. Diag. Ther. 2013;17:193–203.
    1. Li W.Q., Kawakami K., Ruszkiewicz A., Bennett G., Moore J., Iacopetta B. BRAF mutations are associated with distinctive clinical, pathological and molecular features of colorectal cancer independently of microsatellite instability status. Mol. Cancer. 2006;5:2.
    1. Lochhead P., Kuchiba A., Imamura Y., Liao X., Yamauchi M., Nishihara R., Qian Z.R., Morikawa T., Shen J., Meyerhardt J.A., Fuchs C.S., Ogino S. Microsatellite instability and BRAF mutation testing in colorectal cancer prognostication. J. Natl Cancer Inst. 2013;105:1151–1156.
    1. Makita Y., Narumi Y., Yoshida M., Niihori T., Kure S., Fujieda K., Matsubara Y., Aoki Y. Leukemia in Cardio-facio-cutaneous (CFC) syndrome: a patient with a germline mutation in BRAF proto-oncogene. J. Pediatr. Hematol. Oncol. 2007;29:287–290.
    1. Malaquias A.C., Brasil A.S., Pereira A.C., Arnhold I.J., Mendonca B.B., Bertola D.R., Jorge A.A. Growth standards of patients with Noonan and Noonan-like syndromes with mutations in the RAS/MAPK pathway. Am. J. Med. Genet. A. 2012;158A:2700–2706.
    1. Maldonado J.L., Fridlyand J., Patel H., Jain A.N., Busam K., Kageshita T., Ono T., Albertson D.G., Pinkel D., Bastian B.C. Determinants of BRAF mutations in primary melanomas. J. Natl. Cancer Inst. 2003;95:1878–1890.
    1. Martinez-Quintana E., Rodriguez-Gonzalez F. LEOPARD syndrome: clinical features and gene mutations. Mol. Syndromol. 2012;3:145–157.
    1. Moschovi M., Touliatou V., Papadopoulou A., Mayakou M.A., Nikolaidou-Karpathiou P., Kitsiou-Tzeli S. Rhabdomyosarcoma in a patient with Noonan syndrome phenotype and review of the literature. J. Pediatr. Hematol. Oncol. 2007;29:341–344.
    1. Namba H., Nakashima M., Hayashi T., Hayashida N., Maeda S., Rogounovitch T.I., Ohtsuru A., Saenko V.A., Kanematsu T., Yamashita S. Clinical implication of hot spot BRAF mutation, V599E, in papillary thyroid cancers. J. Clin. Endocrinol. Metab. 2003;88:4393–4397.
    1. Naoki K., Chen T.H., Richards W.G., Sugarbaker D.J., Meyerson M. Missense mutations of the BRAF gene in human lung adenocarcinoma. Cancer Res. 2002;62:7001–7003.
    1. Nelson A.A., Tsao H. Melanoma and genetics. Clin. Dermatol. 2009;27:46–52.
    1. Neumann T.E., Allanson J., Kavamura I., Kerr B., Neri G., Noonan J., Cordeddu V., Gibson K., Tzschach A., Kruger G., Hoeltzenbein M., Goecke T.O., Kehl H.G., Albrecht B., Luczak K., Sasiadek M.M., Musante L., Laurie R., Peters H., Tartaglia M., Zenker M., Kalscheuer V. Multiple giant cell lesions in patients with Noonan syndrome and cardio-facio-cutaneous syndrome. Eur. J. Hum. Genet. 2009;17:420–425.
    1. Niihori T., Aoki Y., Narumi Y., Neri G., Cave H., Verloes A., Okamoto N., Hennekam R.C., Gillessen-Kaesbach G., Wieczorek D., Kavamura M.I., Kurosawa K., Ohashi H., Wilson L., Heron D., Bonneau D., Corona G., Kaname T., Naritomi K., Baumann C., Matsumoto N., Kato K., Kure S., Matsubara Y. Germline KRAS and BRAF mutations in cardio-facio-cutaneous syndrome. Nat. Genet. 2006;38:294–296.
    1. Nikiforov Y.E. Molecular diagnostics of thyroid tumors. Arch. Pathol. Lab. Med. 2011;135:569–577.
    1. Nikiforova M.N., Kimura E.T., Gandhi M., Biddinger P.W., Knauf J.A., Basolo F., Zhu Z., Giannini R., Salvatore G., Fusco A., Santoro M., Fagin J.A., Nikiforov Y.E. BRAF mutations in thyroid tumors are restricted to papillary carcinomas and anaplastic or poorly differentiated carcinomas arising from papillary carcinomas. J. Clin. Endocrinol. Metab. 2003;88:5399–5404.
    1. Ohtake A., Aoki Y., Saito Y., Niihori T., Shibuya A., Kure S., Matsubara Y. Non-Hodgkin lymphoma in a patient with cardiofaciocutaneous syndrome. J. Pediatr. Hematol. Oncol. 2011;33:e342–e346.
    1. Palanisamy N., Ateeq B., Kalyana-Sundaram S., Pflueger D., Ramnarayanan K., Shankar S., Han B., Cao Q., Cao X., Suleman K., Kumar-Sinha C., Dhanasekaran S.M., Chen Y.B., Esgueva R., Banerjee S., LaFargue C.J., Siddiqui J., Demichelis F., Moeller P., Bismar T.A., Kuefer R., Fullen D.R., Johnson T.M., Greenson J.K., Giordano T.J., Tan P., Tomlins S.A., Varambally S., Rubin M.A., Maher C.A., Chinnaiyan A.M. Rearrangements of the RAF kinase pathway in prostate cancer, gastric cancer and melanoma. Nat. Med. 2010;16:793–798.
    1. Pandit B., Sarkozy A., Pennacchio L.A., Carta C., Oishi K., Martinelli S., Pogna E.A., Schackwitz W., Ustaszewska A., Landstrom A., Bos J.M., Ommen S.R., Esposito G., Lepri F., Faul C., Mundel P., Lopez Siguero J.P., Tenconi R., Selicorni A., Rossi C., Mazzanti L., Torrente I., Marino B., Digilio M.C., Zampino G., Ackerman M.J., Dallapiccola B., Tartaglia M., Gelb B.D. Gain-of-function RAF1 mutations cause Noonan and LEOPARD syndromes with hypertrophic cardiomyopathy. Nat. Genet. 2007;39:1007–1012.
    1. Park B.M., Jin S.A., Choi Y.D., Shin S.H., Jung S.T., Lee J.B., Lee S.C., Yun S.J. Two cases of clear cell sarcoma with different clinical and genetic features: cutaneous type with BRAF mutation and subcutaneous type with KIT mutation. Br. J. Dermatol. 2013
    1. Peyssonnaux C., Eychene A. The Raf/MEK/ERK pathway: new concepts of activation. Biol. Cell. 2001;93:53–62.
    1. Popovici V., Budinska E., Tejpar S., Weinrich S., Estrella H., Hodgson G., Van Cutsem E., Xie T., Bosman F.T., Roth A.D., Delorenzi M. Identification of a poor-prognosis BRAF-mutant-like population of patients with colon cancer. J. Clin. Oncol. 2012;30:1288–1295.
    1. Pritchard C., Carragher L., Aldridge V., Giblett S., Jin H., Foster C., Andreadi C., Kamata T. Mouse models for BRAF-induced cancers. Biochem. Soc. Trans. 2007;35:1329–1333.
    1. Puxeddu E., Filetti S. BRAF mutation assessment in papillary thyroid cancer: are we ready to use it in clinical practice. Endocrine. 2013;45:341–343.
    1. Puxeddu E., Moretti S., Elisei R., Romei C., Pascucci R., Martinelli M., Marino C., Avenia N., Rossi E.D., Fadda G. BRAFV599E mutation is the leading genetic event in adult sporadic papillary thyroid carcinomas. J. Clin. Endocrinol. Metab. 2004;89:2414–2420.
    1. Quaio C.R., Almeida T.F., Brasil A.S., Pereira A.C., Jorge A.A., Malaquias A.C., Kim C.A., Bertola D.R. Tegumentary manifestations of Noonan and Noonan-related syndromes. Clinics (Sao Paulo, Brazil) 2013;68:1079–1083.
    1. Rad R., Cadinanos J., Rad L., Varela I., Strong A., Kriegl L., Constantino-Casas F., Eser S., Hieber M., Seidler B., Price S., Fraga M.F., Calvanese V., Hoffman G., Ponstingl H., Schneider G., Yusa K., Grove C., Schmid R.M., Wang W., Vassiliou G., Kirchner T., McDermott U., Liu P., Saur D., Bradley A. A genetic progression model of Braf(V600E)-induced intestinal tumorigenesis reveals targets for therapeutic intervention. Cancer Cell. 2013;24:15–29.
    1. Rajagopalan H., Bardelli A., Lengauer C., Kinzler K.W., Vogelstein B., Velculescu V.E. Tumorigenesis: RAF/RAS oncogenes and mismatch-repair status. Nature. 2002;418:934.
    1. Rauen K.A., Schoyer L., McCormick F., Lin A.E., Allanson J.E., Stevenson D.A., Gripp K.W., Neri G., Carey J.C., Legius E., Tartaglia M., Schubbert S., Roberts A.E., Gelb B.D., Shannon K., Gutmann D.H., McMahon M., Guerra C., Fagin J.A., Yu B., Aoki Y., Neel B.G., Balmain A., Drake R.R., Nolan G.P., Zenker M., Bollag G., Sebolt-Leopold J., Gibbs J.B., Silva A.J., Patton E.E., Viskochil D.H., Kieran M.W., Korf B.R., Hagerman R.J., Packer R.J., Melese T. Proceedings from the 2009 Genetic syndromes of the Ras/MAPK pathway: from bedside to bench and back. Am. J. Med. Genet. A. 2010;152A:4–24.
    1. Ren G., Liu X., Mao X., Zhang Y., Stankiewicz E., Hylands L., Song R., Berney D.M., Clark J., Cooper C., Lu Y.J. Identification of frequent BRAF copy number gain and alterations of RAF genes in Chinese prostate cancer. Genes Chromosom. Cancer. 2012;51:1014–1023.
    1. Reynolds J.F., Neri G., Herrmann J.P., Blumberg B., Coldwell J.G., Miles P.V., Opitz J.M. New multiple congenital anomalies/mental retardation syndrome with cardio-facio-cutaneous involvement—the CFC syndrome. Am. J. Med. Genet. 1986;25:413–427.
    1. Roberts A., Allanson J., Jadico S.K., Kavamura M.I., Noonan J., Opitz J.M., Young T., Neri G. The cardiofaciocutaneous syndrome. J. Med. Genet. 2006;43:833–842.
    1. Rodriguez-Viciana P., Tetsu O., Tidyman W.E., Estep A.L., Conger B.A., Cruz M.S., McCormick F., Rauen K.A. Germline mutations in genes within the MAPK pathway cause cardio-facio-cutaneous syndrome. Science. 2006;311:1287–1290.
    1. Romano A.A., Allanson J.E., Dahlgren J., Gelb B.D., Hall B., Pierpont M.E., Roberts A.E., Robinson W., Takemoto C.M., Noonan J.A. Noonan syndrome: clinical features, diagnosis, and management guidelines. Pediatrics. 2010;126:746–759.
    1. Rowe L.R., Bentz B.G., Bentz J.S. Utility of BRAF V600E mutation detection in cytologically indeterminate thyroid nodules. CytoJournal. 2006;3:10.
    1. Sarkozy A., Carta C., Moretti S., Zampino G., Digilio M.C., Pantaleoni F., Scioletti A.P., Esposito G., Cordeddu V., Lepri F., Petrangeli V., Dentici M.L., Mancini G.M., Selicorni A., Rossi C., Mazzanti L., Marino B., Ferrero G.B., Silengo M.C., Memo L., Stanzial F., Faravelli F., Stuppia L., Puxeddu E., Gelb B.D., Dallapiccola B., Tartaglia M. Germline BRAF mutations in Noonan, LEOPARD, and cardiofaciocutaneous syndromes: molecular diversity and associated phenotypic spectrum. Hum. Mutat. 2009;30:695–702.
    1. Satoh T., Smith A., Sarde A., Lu H.C., Mian S., Trouillet C., Mufti G., Emile J.F., Fraternali F., Donadieu J., Geissmann F. B-RAF mutant alleles associated with Langerhans cell histiocytosis, a granulomatous pediatric disease. PLoS ONE. 2012;7:e33891.
    1. Schubbert S., Zenker M., Rowe S.L., Boll S., Klein C., Bollag G., van der Burgt I., Musante L., Kalscheuer V., Wehner L.E., Nguyen H., West B., Zhang K.Y., Sistermans E., Rauch A., Niemeyer C.M., Shannon K., Kratz C.P. Germline KRAS mutations cause Noonan syndrome. Nat. Genet. 2006;38:331–336.
    1. Schulz A.L., Albrecht B., Arici C., van der Burgt I., Buske A., Gillessen-Kaesbach G., Heller R., Horn D., Hubner C.A., Korenke G.C., Konig R., Kress W., Kruger G., Meinecke P., Mucke J., Plecko B., Rossier E., Schinzel A., Schulze A., Seemanova E., Seidel H., Spranger S., Tuysuz B., Uhrig S., Wieczorek D., Kutsche K., Zenker M. Mutation and phenotypic spectrum in patients with cardio-facio-cutaneous and Costello syndrome. Clin. Genet. 2008;73:62–70.
    1. Shen Y., Lu Y., Yin X., Zhu G., Zhu J. KRAS and BRAF mutations in prostate carcinomas of Chinese patients. Cancer Genet. Cytogenet. 2010;198:35–39.
    1. Si L., Kong Y., Xu X., Flaherty K.T., Sheng X., Cui C., Chi Z., Li S., Mao L., Guo J. Prevalence of BRAF V600E mutation in Chinese melanoma patients: large scale analysis of BRAF and NRAS mutations in a 432-case cohort. Eur. J. Cancer (Oxford, England: 1990) 2012;48:94–100.
    1. Siegel D.H., McKenzie J., Frieden I.J., Rauen K.A. Dermatological findings in 61 mutation-positive individuals with cardiofaciocutaneous syndrome. Br. J. Dermatol. 2011;164:521–529.
    1. Siegel R., Naishadham D., Jemal A. Cancer statistics, 2013. CA Cancer J. Clin. 2013;63:11–30.
    1. Sievert A.J., Jackson E.M., Gai X., Hakonarson H., Judkins A.R., Resnick A.C., Sutton L.N., Storm P.B., Shaikh T.H., Biegel J.A. Duplication of 7q34 in pediatric low-grade astrocytomas detected by high-density single-nucleotide polymorphism-based genotype arrays results in a novel BRAF fusion gene. Brain Pathol. (Zurich, Switzerland) 2009;19:449–458.
    1. Simpkins S.B., Bocker T., Swisher E.M., Mutch D.G., Gersell D.J., Kovatich A.J., Palazzo J.P., Fishel R., Goodfellow P.J. MLH1 promoter methylation and gene silencing is the primary cause of microsatellite instability in sporadic endometrial cancers. Hum. Mol. Genet. 1999;8:661–666.
    1. Sullivan R.J., Lawrence D.P., Wargo J.A., Oh K.S., Gonzalez R.G., Piris A. Case records of the Massachusetts General Hospital. Case 21–2013. A 68-year-old man with metastatic melanoma. N. Engl. J. Med. 2013;369:173–183.
    1. Tan Y.H., Liu Y., Eu K.W., Ang P.W., Li W.Q., Salto-Tellez M., Iacopetta B., Soong R. Detection of BRAF V600E mutation by pyrosequencing. Pathology. 2008;40:295–298.
    1. Tartaglia M., Mehler E.L., Goldberg R., Zampino G., Brunner H.G., Kremer H., van der Burgt I., Crosby A.H., Ion A., Jeffery S., Kalidas K., Patton M.A., Kucherlapati R.S., Gelb B.D. Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome. Nat. Genet. 2001;29:465–468.
    1. Tartaglia M., Gelb B.D., Zenker M. Noonan syndrome and clinically related disorders. Best Pract. Res. Clin. Endocrinol. Metab. 2011;25:161–179.
    1. Tiacci E., Trifonov V., Schiavoni G., Holmes A., Kern W., Martelli M.P., Pucciarini A., Bigerna B., Pacini R., Wells V.A. BRAF mutations in hairy-cell leukemia. N. Engl. J. Med. 2011;364:2305–2315.
    1. Tidyman W.E., Rauen K.A. Noonan, Costello and cardio-facio-cutaneous syndromes: dysregulation of the Ras–MAPK pathway. Expert Rev. Mol. Med. 2008;10:e37.
    1. Tidyman W.E., Rauen K.A. The RASopathies: developmental syndromes of Ras/MAPK pathway dysregulation. Curr. Opin. Genet. Dev. 2009;19:230–236.
    1. Udayakumar D., Mahato B., Gabree M., Tsao H. Genetic determinants of cutaneous melanoma predisposition. Semin. Cutan. Med. Surg. 2010;29:190–195.
    1. Ul-Haq Z., Mahmood U., Reza S. A combined 3D-QSAR and molecular docking strategy to understand the binding mechanism of (V600E)B-RAF inhibitors. Mol. Diversity. 2012;16:771–785.
    1. Umeda Y., Nagasaka T., Mori Y., Sadamori H., Sun D.S., Shinoura S., Yoshida R., Satoh D., Nobuoka D., Utsumi M., Yoshida K., Yagi T., Fujiwara T. Poor prognosis of KRAS or BRAF mutant colorectal liver metastasis without microsatellite instability. J. Hepato-biliary-pancreatic Sci. 2013;20:223–233.
    1. Vang R., Shih Ie.M., Kurman R.J. Ovarian low-grade and high-grade serous carcinoma: pathogenesis, clinicopathologic and molecular biologic features, and diagnostic problems. Adv Anat. Pathol. 2009;16:267–282.
    1. Vasko V., Hu S., Wu G., Xing J.C., Larin A., Savchenko V., Trink B., Xing M. High prevalence and possible de novo formation of BRAF mutation in metastasized papillary thyroid cancer in lymph nodes. J. Clin. Endocrinol. Metab. 2005;90:5265–5269.
    1. Vredeveld L.C., Possik P.A., Smit M.A., Meissl K., Michaloglou C., Horlings H.M., Ajouaou A., Kortman P.C., Dankort D., McMahon M., Mooi W.J., Peeper D.S. Abrogation of BRAFV600E-induced senescence by PI3K pathway activation contributes to melanomagenesis. Genes Dev. 2012;26:1055–1069.
    1. Wajapeyee N., Serra R.W., Zhu X., Mahalingam M., Green M.R. Oncogenic BRAF induces senescence and apoptosis through pathways mediated by the secreted protein IGFBP7. Cell. 2008;132:363–374.
    1. Wan P.T., Garnett M.J., Roe S.M., Lee S., Niculescu-Duvaz D., Good V.M., Jones C.M., Marshall C.J., Springer C.J., Barford D., Marais R. Mechanism of activation of the RAF–ERK signaling pathway by oncogenic mutations of B-RAF. Cell. 2004;116:855–867.
    1. Wang L., Cunningham J.M., Winters J.L., Guenther J.C., French A.J., Boardman L.A., Burgart L.J., McDonnell S.K., Schaid D.J., Thibodeau S.N. BRAF mutations in colon cancer are not likely attributable to defective DNA mismatch repair. Cancer Res. 2003;63:5209–5212.
    1. Wong K.K., Tsang Y.T., Deavers M.T., Mok S.C., Zu Z., Sun C., Malpica A., Wolf J.K., Lu K.H., Gershenson D.M. BRAF mutation is rare in advanced-stage low-grade ovarian serous carcinomas. Am. J. Pathol. 2010;177:1611–1617.
    1. Wu X., Simpson J., Hong J.H., Kim K.H., Thavarajah N.K., Backx P.H., Neel B.G., Araki T. MEK–ERK pathway modulation ameliorates disease phenotypes in a mouse model of Noonan syndrome associated with the Raf 1(L613V) mutation. J. Clin. Investig. 2011;121:1009–1025.
    1. Xi L., Arons E., Navarro W., Calvo K.R., Stetler-Stevenson M., Raffeld M., Kreitman R.J. Both variant and IGHV4-34-expressing hairy cell leukemia lack the BRAF V600E mutation. Blood. 2012;119:3330–3332.
    1. Xing M. BRAF mutation in papillary thyroid cancer: pathogenic role, molecular bases, and clinical implications. Endocr. Rev. 2007;28:742–762.
    1. Xing M., Westra W.H., Tufano R.P., Cohen Y., Rosenbaum E., Rhoden K.J., Carson K.A., Vasko V., Larin A., Tallini G., Tolaney S., Holt E.H., Hui P., Umbricht C.B., Basaria S., Ewertz M., Tufaro A.P., Califano J.A., Ringel M.D., Zeiger M.A., Sidransky D., Ladenson P.W. BRAF mutation predicts a poorer clinical prognosis for papillary thyroid cancer. J. Clin. Endocrinol. Metab. 2005;90:6373–6379.
    1. Yuan Z.X., Wang X.Y., Qin Q.Y., Chen D.F., Zhong Q.H., Wang L., Wang J.P. The prognostic role of BRAF mutation in metastatic colorectal cancer receiving anti-EGFR monoclonal antibodies: a meta-analysis. PLoS ONE. 2013;8:e65995.
    1. Ziai J., Hui P. BRAF mutation testing in clinical practice. Expert Rev. Mol. Diagn. 2012;12:127–138.

Source: PubMed

3
订阅