Extended effects of a wearable sensory prosthesis on gait, balance function and falls after 26 weeks of use in persons with peripheral neuropathy and high fall risk-The walk2Wellness trial

Lars I E Oddsson, Teresa Bisson, Helen S Cohen, Ikechukwu Iloputaife, Laura Jacobs, Doris Kung, Lewis A Lipsitz, Brad Manor, Patricia McCracken, Yvonne Rumsey, Diane M Wrisley, Sara R Koehler-McNicholas, Lars I E Oddsson, Teresa Bisson, Helen S Cohen, Ikechukwu Iloputaife, Laura Jacobs, Doris Kung, Lewis A Lipsitz, Brad Manor, Patricia McCracken, Yvonne Rumsey, Diane M Wrisley, Sara R Koehler-McNicholas

Abstract

Background: We recently reported that individuals with impaired plantar sensation and high fall risk due to sensory peripheral neuropathy (PN) improved gait and balance function following 10 weeks of use of Walkasins®, a wearable lower limb sensory prosthesis that provides directional specific mechanical tactile stimuli related to plantar pressure measurements during standing and walking (RxFunction Inc., Eden Prairie, MN, United States). Here, we report 26-week outcomes and compare pre- and in-study fall rates. We expected improvements in outcomes and reduced fall rates reported after 10 weeks of use to be sustained.

Materials and methods: Participants had clinically diagnosed PN with impaired plantar sensation, high fall risk (Functional Gait Assessment, FGA score < 23) and ability to sense tactile stimuli above the ankle at the location of the device. Additional outcomes included 10 m Gait Speed, Timed Up and Go (TUG), Four-Stage Balance Test, and self-reported outcomes, including Activities-Specific Balance Confidence scale and Vestibular Disorders Activities of Daily Living Scale. Participants tracked falls using a calendar.

Results: We assessed falls and self-reported outcomes from 44 individuals after 26 weeks of device use; 30 of them conducted in-person testing of clinical outcomes. Overall, improvements in clinical outcomes seen at 10 weeks of use remained sustained at 26 weeks with statistically significant increases compared to baseline seen in FGA scores (from 15.0 to 19.2), self-selected gait speed (from 0.89 to 0.97 m/s), and 4-Stage Balance Test (from 25.6 to 28.4 s), indicating a decrease in fall risk. Non-significant improvements were observed in TUG and fast gait speed. Overall, 39 falls were reported; 31 of them did not require medical treatment and four caused severe injury. Participants who reported falls over 6 months prior to the study had a 43% decrease in fall rate during the study as compared to self-report 6-month pre-study (11.8 vs. 6.7 falls/1000 patient days, respectively, p < 0.004), similar to the 46% decrease reported after 10 weeks of use.

Conclusion: A wearable sensory prosthesis can improve outcomes of gait and balance function and substantially decreases incidence of falls during long-term use. The sustained long-term benefits in clinical outcomes reported here lessen the likelihood that improvements are placebo effects.

Clinical trial registration: ClinicalTrials.gov, identifier #NCT03538756.

Keywords: balance; clinical trial; falls; gait speed; neuromodulation; peripheral neuropathy; sensory prosthesis; wearable.

Conflict of interest statement

LO is an inventor of the technology, Co-Founder of RxFunction Inc., a shareholder in the company, serves on its Board of Directors, and is an employee of the company. LJ and YR are employees and shareholders of RxFunction Inc. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2022 Oddsson, Bisson, Cohen, Iloputaife, Jacobs, Kung, Lipsitz, Manor, McCracken, Rumsey, Wrisley and Koehler-McNicholas.

Figures

FIGURE 1
FIGURE 1
(Left) The two components of the Walkasins prosthetic device, the pressure sensitive flexible foot pad that is placed in the shoe and connects to the leg unit that contains a rechargeable battery, a microprocessor, supporting electronics, and four mechanical tactile stimulators. The embedded software algorithm evaluates pressure data and activates the mechanical tactile stimulators at relevant times during standing and walking to signal balance-related information to the afferent nervous system. (Right) A Walkasins user wearing the device in the process of turning it on. The Walkasins system is worn bilaterally (unilateral components depicted).
FIGURE 2
FIGURE 2
Flowchart of the walk2Wellness trial. Data for the primary endpoint at 10 weeks, shown to the right for reference, were published earlier (Oddsson et al., 2020). Due to COVID-19 site lockdowns, in-person outcomes could be assessed from 30 of the 44 participants. Self-reported outcomes and fall events were assessed from all 44 participants who reached the 26-week follow-up visit.
FIGURE 3
FIGURE 3
Comparing FGA scores at baseline (horizontal axes) with assessments after 2 (A), 6 (B), 10 (C), and 26 (D) weeks (vertical axes) of device use. Open symbols represent pre-study non-fallers and filled ones are pre-study fallers. Dashed lines show regression line for the whole group. Forty-four participants completed in clinic outcomes testing up to 10 weeks (primary endpoint), and 30 participants completed the 26-week assessment in person. Scores above line of equality indicate improvements and below a decrement in FGA score compared to baseline scores. Notice that regression line slopes are less than 1 indicating slightly larger improvements in FGA score for those with lower baseline scores. Overall, improvements observed after 2 weeks of use appeared sustained throughout the 26 weeks of use.
FIGURE 4
FIGURE 4
Averages of clinical outcomes across the in-person assessments at baseline (0), 2, 6, 10, and 26 weeks for the 30 participants (blue lines and symbols) who were able to be tested in clinic after 26 weeks of device use for the in-clinic outcomes FGA (A), TUG (B), gait speed (C,D), and the Four-Stage Balance test (E). Gray symbols and lines represent the pre-study non-fallers (n = 12 of 30) and orange lines and symbols represent pre-study fallers (n = 18 of 30). Notice that most improvements appeared to peak after 6–10 weeks of device use, followed by a leveling off until 26 weeks.
FIGURE 5
FIGURE 5
Illustration of changes in ABC/FGA ratio (left axis, solid lines), an indication of self-perceived balance confidence in relation to externally observed gait function performance, for participants with baseline ABC scores >67% (high balance-confidence, orange triangles) and those with ABC scores ≤67% (low balance-confidence, blue circles). The associated changes over time in FGA scores for the same two groups are also shown (right axis, dashed lines). Notice that both groups had similar FGA scores at baseline, which led to a dramatic difference in the ABC/FGA ratio at baseline. Over time, the ratio for the high balance-confidence participants gradually decreased and aligned with the low balance-confidence group at ∼3.5, mainly due to an increased FGA score and a maintained ABC score. The low balance-confidence group maintained an ABC/FGA ratio ∼3.5 throughout the 26 weeks associated with a proportional increase in ABC and FGA scores. Interestingly, the high balance-confidence group showed a higher increase in FGA score than the low balance-confidence group.
FIGURE 6
FIGURE 6
Accumulated number of falls reported 6 months pre-study (blue trace and blue dotted linear regression line) and falls documented in-study (orange trace and orange dotted regression line). The 53 falls reported for the prior 6 months would correspond to 0.29 falls/day (53/180∼0.29), which represents the slope of the regression line (blue trace). For illustration purposes, the 53 pre-study falls were randomly distributed across the 6 months since their exact time occurrence was unknown. In-study falls are shown as they occurred and were reported by participants throughout the 26 weeks. Notice how the rate of in-study falls appear to begin deviating from pre-study fall rate (slope of dotted blue line) after approximately 20 days of device use.

References

    1. Alexandre N. M., Nordin M., Hiebert R., Campello M. (2002). Predictors of compliance with short-term treatment among patients with back pain. Rev. Panam. Salud. Publica. 12 86–94. 10.1590/S1020-49892002000800003
    1. Algina J., Keselman H. J., Penfield R. D. (2005). Effect sizes and their intervals: The two-level repeated measures case. Educ. Psychol. Meas. 65 241–258. 10.1177/0013164404268675
    1. Askew R. L., Cook K. F., Revicki D. A., Cella D., Amtmann D. (2016). Evidence from diverse clinical populations supported clinical validity of PROMIS pain interference and pain behavior. J. Clin. Epidemiol. 73 103–111. 10.1016/j.jclinepi.2015.08.035
    1. Bao T., Carender W. J., Kinnaird C., Barone V. J., Peethambaran G., Whitney S. L., et al. (2018). Effects of long-term balance training with vibrotactile sensory augmentation among community-dwelling healthy older adults: A randomized preliminary study. J. Neuroeng. Rehabil. 15:5. 10.1186/s12984-017-0339-6
    1. Bao T., Noohi F., Kinnaird C., Carender W. J., Barone V. J., Peethambaran G., et al. (2022). Retention effects of long-term balance training with vibrotactile sensory augmentation in healthy older adults. Sensors (Basel) 22:3014. 10.3390/s22083014
    1. Beninato M., Fernandes A., Plummer L. S. (2014). Minimal clinically important difference of the functional gait assessment in older adults. Phys. Ther. 94 1594–1603. 10.2522/ptj.20130596
    1. Bergen G., Stevens M. R., Burns E. R. (2016). Falls and fall injuries among adults aged = 65 years–United States, 2014. MMWR Morb. Mortal Wkly. Rep. 65 993–998. 10.15585/mmwr.mm6537a2
    1. Buracchio T., Dodge H. H., Howieson D., Wasserman D., Kaye J. (2010). The trajectory of gait speed preceding mild cognitive impairment. Arch. Neurol. 67 980–986. 10.1001/archneurol.2010.159
    1. Cavanagh P. R., Derr J. A., Ulbrecht J. S., Maser R. E., Orchard T. J. (1992). Problems with gait and posture in neuropathic patients with insulin-dependent diabetes mellitus. Diabet. Med. 9 469–474. 10.1111/j.1464-5491.1992.tb01819.x
    1. CDC (2017). STEADI–older adult fall prevention. Available online at: (accessed May 5, 2018)
    1. CDC (2021). Older adult fall prevention. Available online at: (accessed November 1, 2021)
    1. Cesari M., Kritchevsky S. B., Penninx B. W., Nicklas B. J., Simonsick E. M., Newman A. B., et al. (2005). Prognostic value of usual gait speed in well-functioning older people–results from the health, aging and body composition study. J. Am. Geriatr. Soc. 53 1675–1680. 10.1111/j.1532-5415.2005.53501.x
    1. Clark D. J. (2015). Automaticity of walking: Functional significance, mechanisms, measurement and rehabilitation strategies. Front. Hum. Neurosci. 9:246. 10.3389/fnhum.2015.00246
    1. Clark D. J., Christou E. A., Ring S. A., Williamson J. B., Doty L. (2014). Enhanced somatosensory feedback reduces prefrontal cortical activity during walking in older adults. J. Gerontol. A Biol. Sci. Med. Sci. 69 1422–1428. 10.1093/gerona/glu125
    1. Cohen H. S., Kimball K. T., Adams A. S. (2000). Application of the vestibular disorders activities of daily living scale. Laryngoscope 110 1204–1209. 10.1097/00005537-200007000-00026
    1. Cohen J. (1988). Statistical power analysis for the behavioral sciences. New York, NY: Routledge Academic.
    1. Cohen M. A., Miller J., Shi X., Sandhu J., Lipsitz L. A. (2015). Prevention program lowered the risk of falls and decreased claims for long-term services among elder participants. Health Aff. (Millwood) 34 971–977. 10.1377/hlthaff.2014.1172
    1. Coste J., Montel S. (2017). Placebo-related effects: A meta-narrative review of conceptualization, mechanisms and their relevance in rheumatology. Rheumatology (Oxford) 56 334–343. 10.1093/rheumatology/kew274
    1. Cummings S. R., Nevitt M. C., Kidd S. (1988). Forgetting falls. The limited accuracy of recall of falls in the elderly. J. Am. Geriatr. Soc. 36 613–616. 10.1111/j.1532-5415.1988.tb06155.x
    1. DeMott T. K., Richardson J. K., Thies S. B., Ashton-Miller J. A. (2007). Falls and gait characteristics among older persons with peripheral neuropathy. Am J Phys Med Rehabil 86 125–132. 10.1097/PHM.0b013e31802ee1d1
    1. Dixon C. J., Knight T., Binns E., Ihaka B., O’Brien D. (2017). Clinical measures of balance in people with type two diabetes: A systematic literature review. Gait Posture 58 325–332. 10.1016/j.gaitpost.2017.08.022
    1. Dumurgier J., Elbaz A., Ducimetière P., Tavernier B., Alpérovitch A., Tzourio C. (2009). Slow walking speed and cardiovascular death in well functioning older adults: Prospective cohort study. BMJ 339:b4460. 10.1136/bmj.b4460
    1. Enck P., Bingel U., Schedlowski M., Rief W. (2013). The placebo response in medicine: Minimize, maximize or personalize? Nat. Rev. Drug Discov. 12 191–204. 10.1038/nrd3923
    1. Fallon J. B., Bent L. R., McNulty P. A., Macefield V. G. (2005). Evidence for strong synaptic coupling between single tactile afferents from the sole of the foot and motoneurons supplying leg muscles. J. Neurophysiol. 94 3795–3804. 10.1152/jn.00359.2005
    1. Finniss D. G., Kaptchuk T. J., Miller F., Benedetti F. (2010). Biological, clinical, and ethical advances of placebo effects. Lancet 375 686–695. 10.1016/S0140-6736(09)61706-2
    1. Ganz D. A., Latham N. K. (2020). Prevention of falls in community-dwelling older adults. N. Engl. J. Med. 382 734–743. 10.1056/NEJMcp1903252
    1. Gill T. M., Bhasin S., Reuben D. B., Latham N. K., Araujo K., Ganz D. A., et al. (2021). Effect of a multifactorial fall injury prevention intervention on patient well-being: The STRIDE Study. J. Am. Geriatr. Soc. 69 173–179. 10.1111/jgs.16854
    1. Gregg E. W., Sorlie P., Paulose-Ram R., Gu Q., Eberhardt M. S., Wolz M., et al. (2004). Prevalence of lower-extremity disease in the US adult population >=40 years of age with and without diabetes: 1999-2000 national health and nutrition examination survey. Diabet. Care 27 1591–1597. 10.2337/diacare.27.7.1591
    1. Guertin P. A. (2012). Central pattern generator for locomotion: Anatomical, physiological, and pathophysiological considerations. Front. Neurol. 3:183. 10.3389/fneur.2012.00183
    1. Hadjistavropoulos T., Delbaere K., Fitzgerald T. D. (2011). Reconceptualizing the role of fear of falling and balance confidence in fall risk. J. Aging Health 23 3–23. 10.1177/0898264310378039
    1. Hahn E. A., DeWalt D. A., Bode R. K., Garcia S. F., DeVellis R. F., Correia H., et al. (2014). New english and spanish social health measures will facilitate evaluating health determinants. Health Psychol. 33 490–499. 10.1037/hea0000055
    1. Hahn E. A., Kallen M. A., Jensen R. E., Potosky A. L., Moinpour C. M., Ramirez M., et al. (2016b). Measuring social function in diverse cancer populations: Evaluation of measurement equivalence of the patient reported outcomes measurement information system. Psychol. Test Assess. Model 58 403–421.
    1. Hahn E. A., Beaumont J. L., Pilkonis P. A., Garcia S. F., Magasi S., DeWalt D. A., et al. (2016a). The PROMIS satisfaction with social participation measures demonstrated responsiveness in diverse clinical populations. J. Clin. Epidemiol. 73 135–141. 10.1016/j.jclinepi.2015.08.034
    1. Halvarsson A., Franzén E., Farén E., Olsson E., Oddsson L., Ståhle A. (2013). Long-term effects of new progressive group balance training for elderly people with increased risk of falling–a randomized controlled trial. Clin. Rehabil. 27 450–458. 10.1177/0269215512462908
    1. Hanewinckel R., Drenthen J., Verlinden V. J. A., Darweesh S. K. L., van der Geest J. N., Hofman A., et al. (2017). Polyneuropathy relates to impairment in daily activities, worse gait, and fall-related injuries. Neurology 89 76–83. 10.1212/WNL.0000000000004067
    1. Hannan M. T., Gagnon M. M., Aneja J., Jones R. N., Cupples L. A., Lipsitz L. A., et al. (2010). Optimizing the tracking of falls in studies of older participants: Comparison of quarterly telephone recall with monthly falls calendars in the MOBILIZE Boston Study. Am. J. Epidemiol. 171 1031–1036. 10.1093/aje/kwq024
    1. Hardy S. E., Perera S., Roumani Y. F., Chandler J. M., Studenski S. A. (2007). Improvement in usual gait speed predicts better survival in older adults. J. Am. Geriatr. Soc. 55 1727–1734. 10.1111/j.1532-5415.2007.01413.x
    1. Hart D. A. (2021). “Learning from human responses to deconditioning environments: Improved understanding of the “Use It or Lose It” principle. Front. Sports Act Living 3:685845. 10.3389/fspor.2021.685845
    1. Hicks C. W., Wang D., Windham B. G., Matsushita K., Selvin E. (2021). Prevalence of peripheral neuropathy defined by monofilament insensitivity in middle-aged and older adults in two US cohorts. Sci. Rep. 11:19159. 10.1038/s41598-021-98565-w
    1. Hoffman E. M., Staff N. P., Robb J. M., St Sauver J. L., Dyck P. J., Klein C. J. (2015). Impairments and comorbidities of polyneuropathy revealed by population-based analyses. Neurology 84 1644–1651. 10.1212/WNL.0000000000001492
    1. Hsu C. L., Iloputaife I., Oddsson L., Manor B., Lipsitz L. (2021). Six-Month lower-leg sensory stimulation augments neural network connectivity associated with improved gait. Innovation in aging 5(Suppl. 1), 960–961. 10.1093/geroni/igab046.3439
    1. Ites K. I., Anderson E. J., Cahill M. L., Kearney J. A., Post E. C., Gilchrist L. S. (2011). Balance interventions for diabetic peripheral neuropathy: A systematic review. J. Geriatr. Phys. Ther. 34 109–116. 10.1519/JPT.0b013e318212659a
    1. Kästenbauer T., Sauseng S., Brath H., Abrahamian H., Irsigler K. (2004). The value of the Rydel-Seiffer tuning fork as a predictor of diabetic polyneuropathy compared with a neurothesiometer. Diabet. Med. 21 563–567. 10.1111/j.1464-5491.2004.01205.x
    1. Kim D. H., Glynn R. J., Avorn J., Lipsitz L. A., Rockwood K., Pawar A., et al. (2019). Validation of a claims-based frailty index against physical performance and adverse health outcomes in the health and retirement study. J. Gerontol. A Biol. Sci. Med. Sci. 74 1271–1276. 10.1093/gerona/gly197
    1. Koehler-McNicholas S. R., Danzl L., Cataldo A. Y., Oddsson L. I. E. (2019). Neuromodulation to improve gait and balance function using a sensory neuroprosthesis in people who report insensate feet–A randomized control cross-over study. PLoS One 14:e0216212. 10.1371/journal.pone.0216212
    1. Komatsu H., Yagasaki K., Komatsu Y., Yamauchi H., Yamauchi T., Shimokawa T., et al. (2019). Falls and functional impairments in breast cancer patients with chemotherapy-induced peripheral neuropathy. Asia Pac. J. Oncol. Nurs. 6 253–260. 10.4103/apjon.apjon_7_19
    1. Koski K., Luukinen H., Laippala P., Kivelä S. L. (1998). Risk factors for major injurious falls among the home-dwelling elderly by functional abilities. A prospective population-based study. Gerontology 44 232–238. 10.1159/000022017
    1. Kroenke K., Spitzer R. L., Williams J. B. (2001). The PHQ-9: Validity of a brief depression severity measure. J. Gen. Intern. Med. 16 606–613. 10.1046/j.1525-1497.2001.016009606.x
    1. Kruse R. L., Lemaster J. W., Madsen R. W. (2010). Fall and balance outcomes after an intervention to promote leg strength, balance, and walking in people with diabetic peripheral neuropathy: “Feet first” randomized controlled trial. Phys. Ther. 90 1568–1579. 10.2522/ptj.20090362
    1. Lajoie Y., Gallagher S. P. (2004). Predicting falls within the elderly community: Comparison of postural sway, reaction time, the Berg balance scale and the Activities-specific Balance Confidence (ABC) scale for comparing fallers and non-fallers. Arch. Gerontol. Geriatr. 38 11–26. 10.1016/S0167-4943(03)00082-7
    1. Lakens D. (2013). Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs. Front. Psychol. 4:863. 10.3389/fpsyg.2013.00863
    1. Li F., Harmer P., Fisher K. J., McAuley E., Chaumeton N., Eckstrom E., et al. (2005). Tai Chi and fall reductions in older adults: A randomized controlled trial. J. Gerontol. A Biol. Sci. Med. Sci. 60 187–194. 10.1093/gerona/60.2.187
    1. Li L., Manor B. (2010). Long term Tai Chi exercise improves physical performance among people with peripheral neuropathy. Am. J. Chin. Med. 38 449–459. 10.1142/S0192415X1000797X
    1. Lipsitz L. A., Macklin E. A., Travison T. G., Manor B., Gagnon P., Tsai T., I, et al. (2019). A cluster randomized trial of Tai Chi vs health education in subsidized housing: The MI-WiSH study. J. Am. Geriatr. Soc. 67 1812–1819. 10.1111/jgs.15986
    1. Lipsitz L. A., Manor B., Habtemariam D., Iloputaife I., Zhou J., Travison T. G. (2018). The pace and prognosis of peripheral sensory loss in advanced age: Association with gait speed and falls. BMC Geriatr. 18:274. 10.1186/s12877-018-0970-5
    1. Manor B., Lough M., Gagnon M. M., Cupples A., Wayne P. M., Lipsitz L. A. (2014). Functional benefits of tai chi training in senior housing facilities. J. Am. Geriatr. Soc. 62 1484–1489. 10.1111/jgs.12946
    1. Mathias S., Nayak U. S., Isaacs B. (1986). Balance in elderly patients: The “get-up and go” test. Arch. Phys. Med. Rehabil. 67 387–389.
    1. Melzer I., Oddsson LIe. (2013). Improving balance control and self-reported lower extremity function in community-dwelling older adults: A randomized control trial. Clin. Rehabil. 27 195–206. 10.1177/0269215512450295
    1. Menz H. B., Lord S. R., St George R., Fitzpatrick R. C. (2004). Walking stability and sensorimotor function in older people with diabetic peripheral neuropathy. Arch. Phys. Med. Rehabil. 85 245–252. 10.1016/j.apmr.2003.06.015
    1. Meyer P. F., Oddsson L. I., De Luca C. J. (2004a). Reduced plantar sensitivity alters postural responses to lateral perturbations of balance. Exp. Brain Res. 157 526–536. 10.1007/s00221-004-1868-3
    1. Meyer P. F., Oddsson L. I., De Luca C. J. (2004b). The role of plantar cutaneous sensation in unperturbed stance. Exp. Brain Res. 156 505–512. 10.1007/s00221-003-1804-y
    1. Montero-Odasso M. M., Kamkar N., Pieruccini-Faria F., Osman A., Sarquis-Adamson Y., Close J., et al. (2021). Evaluation of clinical practice guidelines on fall prevention and management for older adults: A systematic review. JAMA Netw. Open 4:e2138911.
    1. Montero-Odasso M., Schapira M., Soriano E. R., Varela M., Kaplan R., Camera L. A., et al. (2005). Gait velocity as a single predictor of adverse events in healthy seniors aged 75 years and older. J. Gerontol. A Biol. Sci. Med. Sci. 60 1304–1309. 10.1093/gerona/60.10.1304
    1. Moore J. L., Potter K., Blankshain K., Kaplan S. L., O’Dwyer L. C., Sullivan J. E. (2018). A core set of outcome measures for adults with neurologic conditions undergoing rehabilitation: A Clinical Practice Guideline. J. Neurol. Phys. Ther. 42 174–220. 10.1097/NPT.0000000000000229
    1. Moreland B., Kakara R., Henry A. (2020). Trends in nonfatal falls and fall-related injuries among adults aged = 65 years–United States, 2012-2018. MMWR Morb. Mortal Wkly. Rep. 69 875–881. 10.15585/mmwr.mm6927a5
    1. Morris S. B., DeShon R. P. (2002). Combining effect size estimates in meta-analysis with repeated measures and independent-groups designs. Psychol. Methods 7 105–125. 10.1037/1082-989X.7.1.105
    1. Morrison S., Simmons R., Colberg S. R., Parson H. K., Vinik A. I. (2018). Supervised balance training and wii fit-based exercises lower falls risk in older adults with type 2 diabetes. J. Am. Med. Dir. Assoc. 19 .e187–.e185. 10.1016/j.jamda.2017.11.004
    1. Mustapa A., Justine M., Mohd Mustafah N., Jamil N., Manaf H. (2016). Postural control and gait performance in the diabetic peripheral neuropathy: A systematic review. Biomed. Res. Int. 2016:9305025. 10.1155/2016/9305025
    1. Noohi F., Kinnaird C., DeDios Y., I, Kofman S., Wood S., Bloomberg J., et al. (2017). Functional brain activation in response to a clinical vestibular test correlates with balance. Front. Syst. Neurosci. 11:11. 10.3389/fnsys.2017.00011
    1. Oddsson L. I. E., Bisson T., Cohen H. S., Jacobs L., Khoshnoodi M., Kung D., et al. (2020). The effects of a wearable sensory prosthesis on gait and balance function after 10 weeks of use in persons with peripheral neuropathy and high fall risk–The walk2Wellness trial. Front. Aging Neurosci. 12:592751. 10.3389/fnagi.2020.592751
    1. Oddsson L. I. E., Boissy P., Melzer I. (2007). How to improve gait and balance function in elderly individuals—compliance with principles of training. Eur. Rev. Aging Phys. Act 4 15–23. 10.1007/s11556-007-0019-9
    1. Patsopoulos N. A. (2011). A pragmatic view on pragmatic trials. Dialogues Clin. Neurosci. 13 217–224. 10.31887/DCNS.2011.13.2/npatsopoulos
    1. Paul S. S., Ada L., Canning C. G. (2005). Automaticity of walking–implications for physiotherapy practice. Phys. Ther. Rev. 10 15–23. 10.1179/108331905X43463
    1. Perera S., Mody S. H., Woodman R. C., Studenski S. A. (2006). Meaningful change and responsiveness in common physical performance measures in older adults. J. Am. Geriatr. Soc. 54 743–749. 10.1111/j.1532-5415.2006.00701.x
    1. Powell L. E., Myers A. M. (1995). The activities-specific balance confidence (ABC) scale. J. Gerontol. A Biol. Sci. Med. Sci. 50A M28–M34. 10.1093/gerona/50A.1.M28
    1. Quigley P. A., Bulat T., Schulz B., Friedman Y., Hart-Hughes S., Richardson J. K., et al. (2014). Exercise interventions, gait, and balance in older subjects with distal symmetric polyneuropathy: A three-group randomized clinical trial. Am. J. Phys. Med. Rehabil. 93 1–12. 10.1097/PHM.0000000000000052
    1. Reeves N. D., Orlando G., Brown S. J. (2021). Sensory-motor mechanisms increasing falls risk in diabetic peripheral neuropathy. Medicina (Kaunas) 57:457. 10.3390/medicina57050457
    1. Richardson J. K., Hurvitz E. A. (1995). Peripheral neuropathy: A true risk factor for falls. J. Gerontol. A Biol. Sci. Med. Sci. 50 M211–M215. 10.1093/gerona/50A.4.M211
    1. Richardson J. K., Sandman D., Vela S. (2001). A focused exercise regimen improves clinical measures of balance in patients with peripheral neuropathy. Arch. Phys. Med. Rehabil. 82 205–209. 10.1053/apmr.2001.19742
    1. Riskowski J. L., Quach L., Manor B., Menz H. B., Lipsitz L. A., Hannan M. T. (2012). Idiopathic peripheral neuropathy increases fall risk in a population-based cohort study of older adults. J. Foot Ankle Res. 5:19. 10.1186/1757-1146-5-S1-P19
    1. Sheldon J. H. (1948). Some aspects of old age. Lancet 1 621–624. 10.1016/S0140-6736(48)90811-3
    1. Shumway-Cook A., Gruber W., Baldwin M., Liao S. (1997). The effect of multidimensional exercises on balance, mobility, and fall risk in community-dwelling older adults. Phys. Ther. 77 46–57. 10.1093/ptj/77.1.46
    1. Sienko K. H., Seidler R. D., Carender W. J., Goodworth A. D., Whitney S. L., Peterka R. J. (2018). Potential mechanisms of sensory augmentation systems on human balance control. Front. Neurol. 9:944. 10.3389/fneur.2018.00944
    1. Sluijs E. M., Kok G. J., van der Zee J. (1993). Correlates of exercise compliance in physical therapy. Phys. Ther. 73 771–782. 10.1093/ptj/73.11.771
    1. Soh S. L., Tan C. W., Thomas J. I., Tan G., Xu T., Ng Y. L., et al. (2021). Falls efficacy: Extending the understanding of self-efficacy in older adults towards managing falls. J. Frailty Sarcopenia Falls 6 131–138. 10.22540/JFSF-06-131
    1. Srinivasan S. S., Tuckute G., Zou J., Gutierrez-Arango S., Song H., Barry R. L., et al. (2020). Agonist-antagonist myoneural interface amputation preserves proprioceptive sensorimotor neurophysiology in lower limbs. Sci. Transl. Med. 12:eabc592. 10.1126/scitranslmed.abc5926
    1. STEADI C. (2021). STEADI—Older Adult Fall Prevention. Available online at: (accessed December 10, 2021)
    1. Stevens J. A., Phelan E. A. (2013). Development of STEADI: A fall prevention resource for health care providers. Health Promot. Pract. 14 706–714. 10.1177/1524839912463576
    1. Streckmann F., Zopf E. M., Lehmann H. C., May K., Rizza J., Zimmer P., et al. (2014). Exercise intervention studies in patients with peripheral neuropathy: A systematic review. Sports Med 44 1289–1304. 10.1007/s40279-014-0207-5
    1. Strzalkowski N. D. J., Peters R. M., Inglis J. T., Bent L. R. (2018). Cutaneous afferent innervation of the human foot sole: What can we learn from single-unit recordings? J. Neurophysiol. 120 1233–1246. 10.1152/jn.00848.2017
    1. Studenski S., Perera S., Patel K., Rosano C., Faulkner K., Inzitari M., et al. (2011). Gait speed and survival in older adults. JAMA 305 50–58. 10.1001/jama.2010.1923
    1. Studenski S., Perera S., Wallace D., Chandler J. M., Duncan P. W., Rooney E., et al. (2003). Physical performance measures in the clinical setting. J. Am. Geriatr. Soc. 51 314–322. 10.1046/j.1532-5415.2003.51104.x
    1. Tinetti M. E., Kumar C. (2010). The patient who falls: “It’s always a trade-off”. JAMA 303 258–266. 10.1001/jama.2009.2024
    1. Tofthagen C., Visovsky C., Berry D. L. (2012). Strength and balance training for adults with peripheral neuropathy and high risk of fall: Current evidence and implications for future research. Oncol. Nurs. Forum 39 E416–E424. 10.1188/12.ONF.E416-E424
    1. Uitenbroek D. G. (1997). SISA-Binomial. Available online at: (accessed May, 2020)
    1. van Waart H., Stuiver M. M., van Harten W. H., Geleijn E., Kieffer J. M., Buffart L. M., et al. (2015). Effect of low-intensity physical activity and moderate- to high-intensity physical exercise during adjuvant chemotherapy on physical fitness, fatigue, and chemotherapy completion rates: Results of the paces randomized clinical trial. J. Clin. Oncol. 33 1918–1927. 10.1200/JCO.2014.59.1081
    1. Vaughan G. M. (2021). The roles of mechanoreceptors in muscle and skin in human proprioception. Curr. Opin. Physiol. 21 48–56. 10.1016/j.cophys.2021.03.003
    1. Vinik A. I., Camacho P., Reddy S., Valencia W. M., Trence D., Matsumoto A. M., et al. (2017). Aging, Diabetes, And Falls. Endocr. Pract. 23 1117–1139. 10.4158/EP171794.RA
    1. Wang C., Goel R., Zhang Q., Lepow B., Najafi B. (2019). Daily use of bilateral custom-made ankle-foot orthoses for fall prevention in older adults: A randomized controlled trial. J. Am. Geriatr. Soc. 67 1656–1661. 10.1111/jgs.15929
    1. Winters-Stone K. M., Horak F., Jacobs P. G., Trubowitz P., Dieckmann N. F., Stoyles S., et al. (2017). Falls, functioning, and disability among women with persistent symptoms of chemotherapy-induced peripheral neuropathy. J. Clin. Oncol. 35 2604–2612. 10.1200/JCO.2016.71.3552
    1. Wolf B., Feys H., De Weerdt J., van der Meer, Noom M., Aufdemkampe G. (2001). Effect of a physical therapeutic intervention for balance problems in the elderly: A single-blind, randomized, controlled multicentre trial. Clin. Rehabil. 15 624–636. 10.1191/0269215501cr456oa
    1. Wolf S. L., Sattin R. W., Kutner M., O’Grady M., Greenspan A. I., Gregor R. J. (2003). Intense tai chi exercise training and fall occurrences in older, transitionally frail adults: A randomized, controlled trial. J. Am. Geriatr. Soc. 51 1693–1701. 10.1046/j.1532-5415.2003.51552.x
    1. Wrisley D. M., Kumar N. A. (2010). Functional gait assessment: Concurrent, discriminative, and predictive validity in community-dwelling older adults. Phys. Ther. 90 761–773. 10.2522/ptj.20090069
    1. Wrisley D. M., Marchetti G. F., Kuharsky D. K., Whitney S. L. (2004). Reliability, internal consistency, and validity of data obtained with the functional gait assessment. Phys. Ther. 84 906–918. 10.1093/ptj/84.10.906
    1. Wrisley D. M., McLean G., Hill J. B., Oddsson L. I. E. (2021). Long-term use of a sensory prosthesis improves function in a patient with peripheral neuropathy: A case report. Front. Neurol. 12:655963. 10.3389/fneur.2021.655963
    1. Zaiontz C. (2020). Real statistics resource pack (Release 6.8). Available online at: (accessed August 2021).

Source: PubMed

3
订阅