The Effects of a Wearable Sensory Prosthesis on Gait and Balance Function After 10 Weeks of Use in Persons With Peripheral Neuropathy and High Fall Risk - The walk2Wellness Trial

Lars I E Oddsson, Teresa Bisson, Helen S Cohen, Laura Jacobs, Mohammad Khoshnoodi, Doris Kung, Lewis A Lipsitz, Brad Manor, Patricia McCracken, Yvonne Rumsey, Diane M Wrisley, Sara R Koehler-McNicholas, Lars I E Oddsson, Teresa Bisson, Helen S Cohen, Laura Jacobs, Mohammad Khoshnoodi, Doris Kung, Lewis A Lipsitz, Brad Manor, Patricia McCracken, Yvonne Rumsey, Diane M Wrisley, Sara R Koehler-McNicholas

Abstract

Background: Sensory peripheral neuropathy (PN) is associated with gait, balance problems and high fall risk. The walk2Wellness trial investigates effects of long-term, home-based daily use of a wearable sensory prosthesis on gait function, balance, quality of life and fall rates in PN patients. The device (Walkasins®, RxFunction Inc., MN, United States) partially substitutes lost nerve function related to plantar sensation providing directional tactile cues reflecting plantar pressure measurements during standing and walking. We tested the null hypothesis that the Functional Gait Assessment (FGA) score would remain unchanged after 10 weeks of use.

Methods: Participants had PN with lost plantar sensation, gait and balance problems, an FGA score < 23 (high fall risk), and ability to sense tactile stimuli above the ankle. Clinical outcomes included FGA, Gait Speed, Timed Up&Go (TUG) and 4-Stage Balance Test. Patient-reported outcomes included Activities-Specific Balance Confidence (ABC) scale, Vestibular Disorders Activities of Daily Living Scale, PROMIS participation and satisfaction scores, pain rating, and falls. Evaluations were performed at baseline and after 2, 6, and 10 weeks. Subjects were not made aware of changes in outcomes. No additional balance interventions were allowed.

Results: Forty-five participants of 52 enrolled across four sites completed in-clinic assessments. FGA scores improved from 15.0 to 19.1 (p < 0.0001), normal and fast gait speed from 0.86 m/s to 0.95 m/s (p < 0.0001) and 1.24 m/s to 1.33 m/s (p = 0.002), respectively, and TUG from 13.8 s to 12.5 s (p = 0.012). Four-Stage Balance Test did not improve. Several patient-reported outcomes were normal at baseline and remained largely unchanged. Interestingly, subjects with baseline ABC scores lower than 67% (high fall risk cut-off) increased their ABC scores (49.9% to 59.3%, p = 0.01), whereas subjects with ABC scores above 67% showed a decrease (76.6% to 71.8%, p = 0.019). Subjects who reported falls in the prior 6 months (n = 25) showed a decrease in the number of fall-risk factors (5.1 to 4.3, p = 0.023) and a decrease in fall rate (13.8 to 7.4 falls/1000 days, p = 0.014). Four pre-study non-fallers (n = 20) fell during the 10 weeks.

Conclusion: A wearable sensory prosthesis presents a new way to treat gait and balance problems and manage falls in high fall-risk patients with PN.

Trial registration: ClinicalTrials.gov (#NCT03538756).

Keywords: balance; falls; gait speed; neuromodulation; neuroprosthesis; peripheral neuropathy; sensory prosthesis; sensory substitution.

Copyright © 2020 Oddsson, Bisson, Cohen, Jacobs, Khoshnoodi, Kung, Lipsitz, Manor, McCracken, Rumsey, Wrisley and Koehler-McNicholas.

Figures

FIGURE 1
FIGURE 1
Picture of the Walkasins sensory prosthesis device showing the pressure sensor embedded Foot Pad that is placed in the subject’s shoe and connected to the Leg Unit that houses an embedded microprocessor with software, supporting electronics, a rechargeable battery, and four tactile stimulators placed around the lower leg. The system is worn bilaterally. Leg Unit and left Foot Pad shown
FIGURE 2
FIGURE 2
Flowchart of the study. Discontinuation due to “Study Dissatisfaction” was related to refusal to do the functional assessments, and dislike of answering questions in patient reported outcomes.
FIGURE 3
FIGURE 3
Graphs showing baseline vs. 10-week FGA (A) and ABC scores (B). Open markers represent Pre-Fallers and closed markers Pre-NonFallers. Markers above line of identity indicate higher scores at 10-week assessment. Notice line of regression for FGA scores is near parallel to line of identity indicating a similar increase across all baseline FGA scores. For ABC scores the line of regression intersects the line of identify near 67% indicating an increase for lower baseline ABC scores and a decrease for higher baseline ABC scores. Two markers in panel (A) are not visible since two pairs of subjects had the same pre- and post-study FGA values, (16, 21) and (21, 26).

References

    1. Akbari M., Jafari H., Moshashaee A., Forugh B. (2012). Do diabetic neuropathy patients benefit from balance training? J. Rehabil. Res. Dev. 49 333–338. 10.1682/jrrd.2010.10.0197
    1. Alfonso-Rosa R. M., Del Pozo-Cruz B., Del Pozo-Cruz J., Sañudo B., Rogers M. E. (2014). Test-retest reliability and minimal detectable change scores for fitness assessment in older adults with type 2 diabetes. Rehabil. Nurs. 39 260–268. 10.1002/rnj.111
    1. Algina J., Keselman H. J., Penfield R. D. (2005). Effect sizes and their intervals: the two-level repeated measures case. Educ. Psych. Meas. 65 241–258. 10.1177/0013164404268675
    1. Allet L., Armand S., de Bie R. A., Golay A., Monnin D., Aminian K., et al. (2010). The gait and balance of patients with diabetes can be improved: a randomised controlled trial. Diabetologia 53 458–466. 10.1007/s00125-009-1592-4
    1. Askew R. L., Cook K. F., Revicki D. A., Cella D., Amtmann D. (2016). Evidence from diverse clinical populations supported clinical validity of PROMIS pain interference and pain behavior. J. Clin. Epidemiol. 73 103–111. 10.1016/j.jclinepi.2015.08.035
    1. Bach-y-Rita P. (2004). Tactile sensory substitution studies. Ann. N. Y. Acad. Sci. 1013 83–91. 10.1196/annals.1305.006
    1. Bach-y-Rita P., Collins C. C., Saunders F. A., White B., Scadden L. (1969). Vision substitution by tactile image projection. Trans. Pac. Coast Otoophthalmol. Soc. Annu. Meet. 50 83–91.
    1. Badke M. B., Sherman J., Boyne P., Page S., Dunning K. (2011). Tongue-based biofeedback for balance in stroke: results of an 8-week pilot study. Arch. Phys. Med. Rehabil. 92 1364–1370. 10.1016/j.apmr.2011.03.030
    1. Bao T., Carender W. J., Kinnaird C., Barone V. J., Peethambaran G., Whitney S. L., et al. (2018). Effects of long-term balance training with vibrotactile sensory augmentation among community-dwelling healthy older adults: a randomized preliminary study. J. Neuroeng. Rehabil. 15:5. 10.1186/s12984-017-0339-6
    1. Basta D., Rossi-Izquierdo M., Soto-Varela A., Greters M. E., Bittar R. S., Steinhagen-Thiessen E., et al. (2011). Efficacy of a vibrotactile neurofeedback training in stance and gait conditions for the treatment of balance deficits: a double-blind, placebo-controlled multicenter study. Otol. Neurotol. 32 1492–1499. 10.1097/MAO.0b013e31823827ec
    1. Beninato M., Fernandes A., Plummer L. S. (2014). Minimal clinically important difference of the functional gait assessment in older adults. Phys. Ther. 94 1594–1603. 10.2522/ptj.20130596
    1. Bent L. R., Inglis J. T., McFadyen B. J. (2004). When is vestibular information important during walking? J. Neurophysiol. 92 1269–1275. 10.1152/jn.01260.2003
    1. Bergen G., Stevens M. R., Burns E. R. (2016). Falls and fall injuries among adults aged ≥ 65 years - United States, 2014. Morb. Mortal. Wkly. Rep. 65 993–998. 10.15585/mmwr.mm6537a2
    1. Bischoff H. A., Stähelin H. B., Monsch A. U., Iversen M. D., Weyh A., von Dechend M., et al. (2003). Identifying a cut-off point for normal mobility: a comparison of the timed ‘up and go’ test in community-dwelling and institutionalised elderly women. Age. Ageing 32 315–320. 10.1093/ageing/32.3.315
    1. Bronstein A. M. (1999). The interaction of otolith and proprioceptive information in the perception of verticality. The effects of labyrinthine and CNS disease. Ann. N.Y. Acad. Sci. 871 324–333. 10.1111/j.1749-6632.1999.tb09195.x
    1. Bulat T., Hart-Hughes S., Ahmed S., Quigley P., Palacios P., Werner D. C., et al. (2007). Effect of a group-based exercise program on balance in elderly. Clin. Interv. Aging 2 655–660. 10.2147/cia.s204
    1. Buracchio T., Dodge H. H., Howieson D., Wasserman D., Kaye J. (2010). The trajectory of gait speed preceding mild cognitive impairment. Arch. Neurol. 67 980–986. 10.1001/archneurol.2010.159
    1. Cakrt O., Vyhnálek M., Slabı K., Funda T., Vuillerme N., Koláø P., et al. (2012). Balance rehabilitation therapy by tongue electrotactile biofeedback in patients with degenerative cerebellar disease. NeuroRehabilitation 31 429–434. 10.3233/NRE-2012-00813
    1. Cavanagh P. R., Derr J. A., Ulbrecht J. S., Maser R. E., Orchard T. J. (1992). “Problems with gait and posture in neuropathic patients with insulin-dependent diabetes mellitus. Diabet. Med. 9 469–474.
    1. CDC (2017). STEADI - Older Adult Fall Prevention. Centers for Disease Control and Prevention. Available online at: (accessed May 5, 2018)
    1. Chodzko-Zajko W. J., Proctor D. N., Fiatarone Singh M. A., Minson C. T., Nigg C. R., Salem G. J., et al. (2009). American college of sports medicine position stand, Exercise and physical activity for older adults. Med. Sci. Sports Exerc. 41 1510–1530. 10.1249/MSS.0b013e3181a0c95c
    1. Cohen H. S., Kimball K. T., Adams A. S. (2000). Application of the vestibular disorders activities of daily living scale. Laryngoscope 110 1204–1209. 10.1097/00005537-200007000-00026
    1. Cohen J. (1988). Statistical Power Analysis for the Behavioral Sciences. New York, NY: Routledge.
    1. Coste J., Montel S. (2017). Placebo-related effects: a meta-narrative review of conceptualization, mechanisms and their relevance in rheumatology. Rheumatology 56 334–343. 10.1093/rheumatology/kew274
    1. Cyarto E. V., Brown W. J., Marshall A. L., Trost S. G. (2008). Comparative effects of home- and group-based exercise on balance confidence and balance ability in older adults: cluster randomized trial. Gerontology 54 272–280. 10.1159/000155653
    1. DeMott T. K., Richardson J. K., Thies S. B., Ashton-Miller J. A. (2007). Falls and gait characteristics among older persons with peripheral neuropathy. Am. J. Phys. Med. Rehabil. 86 125–132. 10.1097/PHM.0b013e31802ee1d1
    1. Dingwell J. B., Cusumano J. P., Sternad D., Cavanagh P. R. (2000). Slower speeds in patients with diabetic neuropathy lead to improved local dynamic stability of continuous overground walking. J. Biomech. 33 1269–1277. 10.1016/s0021-9290(00)00092-0
    1. Dixon C. J., Knight T., Binns E., Ihaka B., O’Brien D. (2017). Clinical measures of balance in people with type two diabetes: a systematic literature review. Gait Posture 58 325–332. 10.1016/j.gaitpost.2017.08.022
    1. Dupont W. D., Plummer W. D. (1990). Power and sample size calculations, a review and computer program. Cont. Clin. Trials 11 116–128. 10.1016/0197-2456(90)90005-m
    1. Dupont W. D., Plummer W. D. (1998). PS power and sample size program available for free on the internet. Control Clin. Trials 18:274 10.1016/S0197-2456(97)00074-3
    1. Enck P., Bingel U., Schedlowski M., Rief W. (2013). The placebo response in medicine: minimize, maximize or personalize? Nat. Rev. Drug Discov. 12 191–204. 10.1038/nrd3923
    1. Finniss D. G., Kaptchuk T. J., Miller F., Benedetti F. (2010). Biological, clinical, and ethical advances of placebo effects. Lancet 375 686–695. 10.1016/S0140-6736(09)61706-2
    1. Florence C. S., Bergen G., Atherly A., Burns E., Stevens J., Drake C. (2018). “Medical Costs of Fatal and nonfatal falls in older adults. J. Am. Geriatr. Soc. 66 693–698. 10.1111/jgs.15304
    1. Ganz D. A., Bao Y., Shekelle P. G., Rubenstein L. Z. (2007). Will my patient fall? JAMA 297 77–86. 10.1001/jama.297.1.77
    1. Ganz D. A., Latham N. K. (2020). Prevention of Falls in Community-Dwelling Older Adults. N. Engl. J. Med. 382 734–743. 10.1056/NEJMcp1903252
    1. Gregg E. W., Sorlie P., Paulose-Ram R., Gu Q., Eberhardt M. S., Wolz M., et al. (2004). “Prevalence of lower-extremity disease in the US adult population > = 40 years of age with and without diabetes: 1999-2000 national health and nutrition examination survey. Diabetes Care 27 1591–1597. 10.2337/diacare.27.7.1591
    1. Guertin P. A. (2012). Central pattern generator for locomotion: anatomical, physiological, and pathophysiological considerations. Front. Neurol. 3:183. 10.3389/fneur.2012.00183
    1. Hadjistavropoulos T., Delbaere K., Fitzgerald T. D. (2011). Reconceptualizing the role of fear of falling and balance confidence in fall risk. J Aging Health 23 3–23. 10.1177/0898264310378039
    1. Hahn E. A., Beaumont J. L., Pilkonis P. A., Garcia S. F., Magasi S., DeWalt D. A., et al. (2016a). The PROMIS satisfaction with social participation measures demonstrated responsiveness in diverse clinical populations. J. Clin. Epidemiol. 73 135–141. 10.1016/j.jclinepi.2015.08.034
    1. Hahn E. A., DeWalt D. A., Bode R. K., Garcia S. F., DeVellis R. F., Correia H., et al. (2014). New English and Spanish social health measures will facilitate evaluating health determinants. Health Psychol. 33 490–499. 10.1037/hea0000055
    1. Hahn E. A., Kallen M. A., Jensen R. E., Potosky A. L., Moinpour C. M., Ramirez M., et al. (2016b). Measuring social function in diverse cancer populations: evaluation of measurement equivalence of the Patient Reported Outcomes Measurement Information System. Psychol. Test Assess. Model 58 403–421.
    1. Halvarsson A., Franzén E., Farén E., Olsson E., Oddsson L., Ståhle A. (2013). Long-term effects of new progressive group balance training for elderly people with increased risk of falling - a randomized controlled trial. Clin. Rehabil. 27 450–458. 10.1177/0269215512462908
    1. Halvarsson A., Oddsson L., Olsson E., Farén E., Pettersson A., Ståhle A. (2011). Effects of new, individually adjusted, progressive balance group training for elderly people with fear of falling and tend to fall: a randomized controlled trial. Clin. Rehabil. 25 1021–1031. 10.1177/0269215511411937
    1. Hanewinckel R., Drenthen J., Verlinden V. J. A., Darweesh S. K. L., van der Geest J. N., Hofman A., et al. (2017). Polyneuropathy relates to impairment in daily activities, worse gait, and fall-related injuries. Neurology 89 76–83. 10.1212/WNL.0000000000004067
    1. Hannan M. T., Gagnon M. M., Aneja J., Jones R. N., Cupples L. A., Lipsitz L. A., et al. (2010). Optimizing the tracking of falls in studies of older participants: comparison of quarterly telephone recall with monthly falls calendars in the MOBILIZE Boston Study. Am. J. Epidemiol. 171 1031–1036. 10.1093/aje/kwq024
    1. Hardy S. E., Perera S., Roumani Y. F., Chandler J. M., Studenski S. A. (2007). Improvement in usual gait speed predicts better survival in older adults. J. Am. Geriatr. Soc. 55 1727–1734. 10.1111/j.1532-5415.2007.01413.x
    1. Hegeman J., Honegger F., Kupper M., Allum J. H. (2005). The balance control of bilateral peripheral vestibular loss subjects and its improvement with auditory prosthetic feedback. J. Vestib. Res. 15 109–117.
    1. Hiengkaew V., Jitaree K., Chaiyawat P. (2012). Minimal detectable changes of the Berg Balance Scale, Fugl-Meyer Assessment Scale, Timed “Up & Go. Test, gait speeds, and 2-minute walk test in individuals with chronic stroke with different degrees of ankle plantarflexor tone. Arch. Phys. Med. Rehabil. 93 1201–1208. 10.1016/j.apmr.2012.01.014
    1. Hlavacka F., Krizková M., Horak F. B. (1995). Modification of human postural response to leg muscle vibration by electrical vestibular stimulation. Neurosci. Lett. 189 9–12. 10.1016/0304-3940(95)11436-z
    1. Hoffman E. M., Staff N. P., Robb J. M., St Sauver J. L., Dyck P. J., Klein C. J. (2015). Impairments and comorbidities of polyneuropathy revealed by population-based analyses. Neurology 84 1644–1651. 10.1212/WNL.0000000000001492
    1. Ites K. I., Anderson E. J., Cahill M. L., Kearney J. A., Post E. C., Gilchrist L. S. (2011). Balance interventions for diabetic peripheral neuropathy: a systematic review. J. Geriatr. Phys. Ther. 34 109–116. 10.1519/JPT.0b013e318212659a
    1. Jónsdóttir H. L., Ruthig J. C. (2020). A longitudinal study of the negative impact of falls on health, well-being, and survival in later life: the protective role of perceived control. Aging Ment. Health 1–7. 10.1080/13607863.2020.1725736
    1. Kästenbauer T., Sauseng S., Brath H., Abrahamian H., Irsigler K. (2004). The value of the Rydel-Seiffer tuning fork as a predictor of diabetic polyneuropathy compared with a neurothesiometer. Diabet. Med. 21 563–567. 10.1111/j.1464-5491.2004.01205.x
    1. Kim D. H., Glynn R. J., Avorn J., Lipsitz L. A., Rockwood K., Pawar A., et al. (2019). Validation of a claims-based frailty index against physical performance and adverse health outcomes in the health and retirement study. J. Gerontol. A Biol. Sci. Med. Sci. 74 1271–1276. 10.1093/gerona/gly197
    1. Koehler-McNicholas S. R., Danzl L., Cataldo A. Y., Oddsson L. I. E. (2019). Neuromodulation to improve gait and balance function using a sensory neuroprosthesis in people who report insensate feet - A randomized control cross-over study. PLoS One 14:e0216212. 10.1371/journal.pone.0216212
    1. Kroenke K., Spitzer R. L., Williams J. B. (2001). The PHQ-9: validity of a brief depression severity measure. J. Gen. Intern. Med. 16 606–613. 10.1046/j.1525-1497.2001.016009606.x
    1. Kruse R. L., Lemaster J. W., Madsen R. W. (2010). Fall and balance outcomes after an intervention to promote leg strength, balance, and walking in people with diabetic peripheral neuropathy: “feet first” randomized controlled trial. Phys. Ther. 90 1568–1579. 10.2522/ptj.20090362
    1. Lajoie Y., Gallagher S. P. (2004). “Predicting falls within the elderly community: comparison of postural sway, reaction time, the Berg balance scale and the Activities-specific Balance Confidence (ABC) scale for comparing fallers and non-fallers.”Arch. Gerontol. Geriatr. 38 11–26. 10.1016/s0167-4943(03)00082-7
    1. Lakens D. (2013). Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-tests and ANOVAs. Front. Psychol. 4:863. 10.3389/fpsyg.2013.00863
    1. Lawrence R. H., Tennstedt S. L., Kasten L. E., Shih J., Howland J., Jette A. M. (1998). Intensity and correlates of fear of falling and hurting oneself in the next year: baseline findings from a Roybal Center fear of falling intervention. J. Aging Health 10 267–286. 10.1177/089826439801000301
    1. Leddy A. L., Crowner B. E., Earhart G. M. (2011). Functional gait assessment and balance evaluation system test: reliability, validity, sensitivity, and specificity for identifying individuals with Parkinson disease who fall. Phys. Ther. 91 102–113. 10.2522/ptj.20100113
    1. Lee B. C., Thrasher T. A., Fisher S. P., Layne C. S. (2015). The effects of different sensory augmentation on weight-shifting balance exercises in Parkinson’s disease and healthy elderly people: a proof-of-concept study. J. Neuroeng. Rehabil. 12:75. 10.1186/s12984-015-0064-y
    1. Leonard G., Lapierre Y., Chen J. K., Wardini R., Crane J., Ptito A. (2017). Noninvasive tongue stimulation combined with intensive cognitive and physical rehabilitation induces neuroplastic changes in patients with multiple sclerosis: a multimodal neuroimaging study. Mult. Scler J. Exp. Transl. Clin. 3:2055217317690561. 10.1177/2055217317690561
    1. Li F., Harmer P., Fisher K. J., McAuley E. (2004). Tai Chi: improving functional balance and predicting subsequent falls in older persons. Med. Sci. Sports Exerc. 36 2046–2052. 10.1249/01.mss.0000147590.54632.e7
    1. Li F., Harmer P., Fisher K. J., McAuley E., Chaumeton N., Eckstrom E., et al. (2005). Tai Chi and fall reductions in older adults: a randomized controlled trial. J. Gerontol. A Biol. Sci. Med. Sci. 60 187–194. 10.1093/gerona/60.2.187
    1. Li L., Manor B. (2010). Long term Tai Chi exercise improves physical performance among people with peripheral neuropathy. Am. J. Chin. Med. 38 449–459. 10.1142/S0192415X1000797X
    1. Lin J. H., Hsu M. J., Hsu H. W., Wu H. C., Hsieh C. L. (2010). Psychometric comparisons of 3 functional ambulation measures for patients with stroke. Stroke 41 2021–2025. 10.1161/STROKEAHA.110.589739
    1. Lipsitz L. A., Lough M., Niemi J., Travison T., Howlett H., Manor B. (2015). A shoe insole delivering subsensory vibratory noise improves balance and gait in healthy elderly people. Arch. Phys. Med. Rehabil. 96 432–439. 10.1016/j.apmr.2014.10.004
    1. Lipsitz L. A., Macklin E. A., Travison T. G., Manor B., Gagnon P., Tsai T., et al. (2019). A cluster randomized trial of tai Chi vs health education in subsidized housing: the MI-WiSH Study. J. Am. Geriatr. Soc. 67 1812–1819. 10.1111/jgs.15986
    1. Lipsitz L. A., Manor B., Habtemariam D., Iloputaife I., Zhou J., Travison T. G. (2018). The pace and prognosis of peripheral sensory loss in advanced age: association with gait speed and falls. BMC Geriatr. 18:274. 10.1186/s12877-018-0970-5
    1. Manor B., Lough M., Gagnon M. M., Cupples A., Wayne P. M., Lipsitz L. A. (2014). Functional benefits of tai chi training in senior housing facilities. J. Am. Geriatr. Soc. 62 1484–1489. 10.1111/jgs.12946
    1. Marsden J. F., Blakey G., Day B. L. (2003). “Modulation of human vestibular-evoked postural responses by alterations in load. J. Physiol. 548(Pt. 3), 949–953. 10.1113/jphysiol.2002.029991
    1. Mathias S., Nayak U. S., Isaacs B. (1986). Balance in elderly patients: the “get-up and go” test. Arch. Phys. Med. Rehabil. 67 387–389.
    1. Melzer I., Oddsson L. I. (2013). Improving balance control and self-reported lower extremity function in community-dwelling older adults: a randomized control trial. Clin. Rehabil. 27 195–206. 10.1177/0269215512450295
    1. Menz H. B., Lord S. R., St George R., Fitzpatrick R. C. (2004). Walking stability and sensorimotor function in older people with diabetic peripheral neuropathy. Arch. Phys. Med. Rehabil. 85 245–252. 10.1016/j.apmr.2003.06.015
    1. Meyer P. F., Oddsson L. I., De Luca C. J. (2004a). Reduced plantar sensitivity alters postural responses to lateral perturbations of balance. Exp. Brain Res. 157 526–536. 10.1007/s00221-004-1868-3
    1. Meyer P. F., Oddsson L. I., De Luca C. J. (2004b). The role of plantar cutaneous sensation in unperturbed stance. Exp. Brain Res. 156 505–512. 10.1007/s00221-003-1804-y
    1. Middleton A., Fritz S. L., Lusardi M. (2015). Walking speed: the functional vital sign. J Aging Phys Act 23 314–322. 10.1123/japa.2013-0236
    1. Montero-Odasso M., Schapira M., Soriano E. R., Varela M., Kaplan R., Camera L. A., et al. (2005). Gait velocity as a single predictor of adverse events in healthy seniors aged 75 years and older. J. Gerontol. A Biol. Sci. Med. Sci. 60 1304–1309. 10.1093/gerona/60.10.1304
    1. Moore J. L., Potter K., Blankshain K., Kaplan S. L., O’Dwyer L. C., Sullivan J. E. (2018). A core set of outcome measures for adults with neurologic conditions undergoing rehabilitation: a clinical practice guideline. J. Neurol. Phys. Ther. 42 174–220. 10.1097/NPT.0000000000000229
    1. Morrison S., Colberg S. R., Mariano M., Parson H. K., Vinik A. I. (2010). Balance training reduces falls risk in older individuals with type 2 diabetes. Diabetes Care 33 748–750. 10.2337/dc09-1699
    1. Morrison S., Simmons R., Colberg S. R., Parson H. K., Vinik A. I. (2018). Supervised balance training and wii fit-based exercises lower falls risk in older adults with type 2 diabetes. J. Am. Med. Dir. Assoc. 19 185.e7–185.e13. 10.1016/j.jamda.2017.11.004
    1. Mustapa A., Justine M., Mohd Mustafah N., Jamil N., Manaf H. (2016). Postural control and gait performance in the diabetic peripheral neuropathy: a systematic review. Biomed. Res. Int. 2016:9305025. 10.1155/2016/9305025
    1. National Heart Lung and Blood Institute. (2020). Study Quality Assessment Tools. Available online at: (accessed July 7, 2020).
    1. Noohi F., Kinnaird C., DeDios Y., Kofman I. S., Wood S., Bloomberg J., et al. (2017). Functional brain activation in response to a clinical vestibular test correlates with balance. Front. Syst. Neurosci. 11:11. 10.3389/fnsys.2017.00011
    1. Oddsson L., Bisson T., Cohen H. S., Koehler-McNicholas S., Kung D., Wrisley D. (2019). Slips and Falls and Record Snow in Minnesota: walk2wellness Clinical Trial Update. AAPM&R Annual Assembly, San Antonio, Texas. Available online at: . (accessed October 25, 2020).
    1. Oddsson L. I. E., Bisson T., Cohen H., Iloputaife I., Koehler-McNicholas S., Kung D., et al. (2020a). A wearable sensory neuroprosthesis to improve gait and balance function in persons with sensory peripheral neuropathy – the walk2Wellness Trial (1170). Neurology 94(15 Suppl.):1170.
    1. Oddsson L. I. E., Bisson T., Cohen H. S., Jacobs L., Khoshnoodi M., Kung D., et al. (2020b). Gait and balance function improves after 10 weeks of using a wearable sensory neuroprosthesis in persons with peripheral neuropathy and high fall risk - the walk2wellness trial. medRxiv[Preprint]. 10.1101/2020.08.02.20166231
    1. Oddsson L. I. E., Boissy P., Melzer I. (2007). How to improve gait and balance function in elderly individuals—compliance with principles of training. Eur. Rev. Aging Phys. Act 4 15–23. 10.1007/s11556-007-0019-9
    1. Perera S., Mody S. H., Woodman R. C., Studenski S. A. (2006). Meaningful change and responsiveness in common physical performance measures in older adults. J. Am. Geriatr. Soc. 54 743–749. 10.1111/j.1532-5415.2006.00701.x
    1. Podsiadlo D., Richardson S. (1991). The timed “Up & Go”: a test of basic functional mobility for frail elderly persons. J. Am. Geriatr. Soc. 39 142–148. 10.1111/j.1532-5415.1991.tb01616.x
    1. Powell L. E., Myers A. M. (1995). The activities-specific balance confidence (ABC) scale. J. Gerontol. A Biol. Sci. Med. Sci. 50A M28–M34.
    1. Ptito A., Papa L., Gregory K., Folmer R. L., Walker W. C., Prabhakaran V., et al. (2020). A prospective, multicenter study to assess the safety and efficacy of translingual neurostimulation plus physical therapy for the treatment of a chronic balance deficit due to mild-to-moderate traumatic brain injury. Neuromodulation 10.1111/ner.13159 [Epub ahead of print].
    1. Purser J. L., Weinberger M., Cohen H. J., Pieper C. F., Morey M. C., Li T., et al. (2005). Walking speed predicts health status and hospital costs for frail elderly male veterans. J. Rehabil. Res. Dev. 42 535–546. 10.1682/jrrd.2004.07.0087
    1. Quigley P. A., Bulat T., Schulz B., Friedman Y., Hart-Hughes S., Richardson J. K., et al. (2014). Exercise interventions, gait, and balance in older subjects with distal symmetric polyneuropathy: a three-group randomized clinical trial. Am. J. Phys. Med. Rehabil 93 1–12. 10.1097/PHM.0000000000000052
    1. Richardson J. K., Hurvitz E. A. (1995). “Peripheral neuropathy: a true risk factor for falls. J. Gerontol. A Biol. Sci. Med. Sci. 50 M211–M215.
    1. Richardson J. K., Sandman D., Vela S. (2001). A focused exercise regimen improves clinical measures of balance in patients with peripheral neuropathy. Arch. Phys. Med. Rehabil. 82 205–209. 10.1053/apmr.2001.19742
    1. Rief W., Nestoriuc Y., Weiss S., Welzel E., Barsky A. J., Hofmann S. G. (2009). Meta-analysis of the placebo response in antidepressant trials. J. Affect. Disord. 118 1–8. 10.1016/j.jad.2009.01.029
    1. Riskowski J. L., Quach L., Manor B., Menz H. B., Lipsitz L. A., Hannan M. T. (2012). Idiopathic peripheral neuropathy increases fall risk in a population-based cohort study of older adults. J. Foot Ank. Res. 5:19 10.1186/1757-1146-5-S1-P19
    1. Rossi-Izquierdo M., Ernst A., Soto-Varela A., Santos-Pérez S., Faraldo-García A., Sesar-Ignacio A., et al. (2013). Vibrotactile neurofeedback balance training in patients with Parkinson’s disease: reducing the number of falls. Gait Posture 37 195–200. 10.1016/j.gaitpost.2012.07.002
    1. Salsabili H., Bahrpeyma F., Esteki A. (2015). The effects of task-oriented motor training on gait characteristics of patients with type 2 diabetes neuropathy. J. Diabetes Metab. Disord. 15:14. 10.1186/s40200-016-0236-8
    1. Scheffer A. C., Schuurmans M. J., van Dijk N., van der Hooft T., de Rooij S. E. (2008). Fear of falling: measurement strategy, prevalence, risk factors and consequences among older persons. Age. Ageing 37 19–24. 10.1093/ageing/afm169
    1. Shumway-Cook A., Brauer S., Woollacott M. (2000). Predicting the probability for falls in community-dwelling older adults using the Timed Up & Go Test. Phys. Ther. 80 896–903. 10.1093/ptj/80.9.896
    1. Shumway-Cook A., Gruber W., Baldwin M., Liao S. (1997). The effect of multidimensional exercises on balance, mobility, and fall risk in community-dwelling older adults. Phys. Ther. 77 46–57. 10.1093/ptj/77.1.46
    1. Sienko K. H., Seidler R. D., Carender W. J., Goodworth A. D., Whitney S. L., Peterka R. J. (2018). Potential mechanisms of sensory augmentation systems on human balance control. Front. Neurol. 9:944. 10.3389/fneur.2018.00944
    1. Sterling D. A., O’Connor J. A., Bonadies J. (2001). Geriatric falls: injury severity is high and disproportionate to mechanism. J. Trauma 50 116–119. 10.1097/00005373-200101000-00021
    1. Streckmann F., Zopf E. M., Lehmann H. C., May K., Rizza J., Zimmer P., et al. (2014). Exercise intervention studies in patients with peripheral neuropathy: a systematic review. Sports Med. 44 1289–1304. 10.1007/s40279-014-0207-5
    1. Strzalkowski N. D. J., Peters R. M., Inglis J. T., Bent L. R. (2018). Cutaneous afferent innervation of the human foot sole: what can we learn from single-unit recordings? J. Neurophysiol. 120 1233–1246. 10.1152/jn.00848.2017
    1. Studenski S., Perera S., Patel K., Rosano C., Faulkner K., Inzitari M., et al. (2011). Gait speed and survival in older adults. JAMA 305 50–58. 10.1001/jama.2010.1923
    1. Studenski S., Perera S., Wallace D., Chandler J. M., Duncan P. W., Rooney E., et al. (2003). Physical performance measures in the clinical setting. J. Am. Geriatr. Soc. 51 314–322. 10.1046/j.1532-5415.2003.51104.x
    1. Tinetti M. E., Kumar C. (2010). The patient who falls: “It’s always a trade-off”. JAMA 303 258–266. 10.1001/jama.2009.2024
    1. Tofthagen C., Visovsky C., Berry D. L. (2012). Strength and balance training for adults with peripheral neuropathy and high risk of fall: current evidence and implications for future research. Oncol. Nurs. Forum 39 E416–E424. 10.1188/12.ONF.E416-E424
    1. Tyler M., Danilov Y., Bach-Y-Rita P. (2003). Closing an open-loop control system: vestibular substitution through the tongue. J. Integr. Neurosci. 2 159–164. 10.1142/s0219635203000263
    1. Uitenbroek D. G. (1997). SISA-Binomial. Available online at: (accessed June 10, 2020).
    1. Vinik A. I., Camacho P., Reddy S., Valencia W. M., Trence D., Matsumoto A. M., et al. (2017). Aging, diabetes, and falls. Endocr. Pract. 23 1117–1139. 10.4158/EP171794.RA
    1. Wall C., Wrisley D., Oddsson L. (2012). Vibrotactile feedback of mediolateral trunk tilt or foot pressure increases locomotor performance in healthy older adults–a pilot study. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2012 6145–6148. 10.1109/EMBC.2012.6347396
    1. Wall C., Wrisley D. M., Statler K. D. (2009). Vibrotactile tilt feedback improves dynamic gait index: a fall risk indicator in older adults. Gait Posture 30 16–21. 10.1016/j.gaitpost.2009.02.019
    1. Wang C., Goel R., Rahemi H., Zhang Q., Lepow B., Najafi B. (2019a). Effectiveness of daily use of bilateral custom-made ankle-foot orthoses on balance, fear of falling, and physical activity in older adults: a randomized controlled trial. Gerontology 65 299–307. 10.1159/000494114
    1. Wang C., Goel R., Zhang Q., Lepow B., Najafi B. (2019b). Daily use of bilateral custom-made ankle-foot orthoses for fall prevention in older adults: a randomized controlled trial. J. Am. Geriatr. Soc. 67 1656–1661. 10.1111/jgs.15929
    1. Wartolowska K. A., Feakins B. G., Collins G. S., Cook J., Judge A., Rombach I., et al. (2016). The magnitude and temporal changes of response in the placebo arm of surgical randomized controlled trials: a systematic review and meta-analysis. Trials 17:589. 10.1186/s13063-016-1720-7
    1. Winters-Stone K. M., Horak F., Jacobs P. G., Trubowitz P., Dieckmann N. F., Stoyles S., et al. (2017). Falls, functioning, and disability among women with persistent symptoms of chemotherapy-induced peripheral neuropathy. J. Clin. Oncol. 35 2604–2612. 10.1200/JCO.2016.71.3552
    1. Wolf B., Feys H., De Weerdt, van der Meer J., Noom M., Aufdemkampe G. (2001). Effect of a physical therapeutic intervention for balance problems in the elderly: a single-blind, randomized, controlled multicentre trial. Clin. Rehabil. 15 624–636. 10.1191/0269215501cr456oa
    1. Wolf S. L., Barnhart H. X., Kutner N. G., McNeely E., Coogler C., Xu T. (1996). Reducing frailty and falls in older persons: an investigation of Tai Chi and computerized balance training. Atlanta FICSIT Group. Frailty and Injuries: cooperative studies of intervention techniques. J. Am. Geriatr. Soc. 44 489–497. 10.1111/j.1532-5415.1996.tb01432.x
    1. Wolf S. L., Sattin R. W., Kutner M., O’Grady M., Greenspan A. I., Gregor R. J. (2003). Intense tai chi exercise training and fall occurrences in older, transitionally frail adults: a randomized, controlled trial. J. Am. Geriatr. Soc. 51 1693–1701. 10.1046/j.1532-5415.2003.51552.x
    1. Woolcott J. C., Richardson K. J., Wiens M. O., Patel B., Marin J., Khan K. M., et al. (2009). Meta-analysis of the impact of 9 medication classes on falls in elderly persons. Arch. Intern. Med. 169 1952–1960. 10.1001/archinternmed.2009.357
    1. Wrisley D., McLean G., Hill J., Oddsson L. (2020). Long-term use of a sensory neuroprosthesis improves function in a patient with peripheral neuropathy: a case report. Preprints 2020080435. 10.20944/preprints202008.0435.v1
    1. Wrisley D., McLean G., Oddsson L. (2018). “The Use of a Wearable Sensory Prosthesis to Improve Gait and Balance in a Patient with Peripheral Neuropathy,” in Proceedings of the APTA Combined Sections Meeting, New Orleans.
    1. Wrisley D. M., Kumar N. A. (2010). Functional gait assessment: concurrent, discriminative, and predictive validity in community-dwelling older adults. Phys. Ther. 90 761–773. 10.2522/ptj.20090069
    1. Wrisley D. M., Marchetti G. F., Kuharsky D. K., Whitney S. L. (2004). Reliability, internal consistency, and validity of data obtained with the functional gait assessment. Phys. Ther. 84 906–918. 10.1093/ptj/84.10.906
    1. Yamanaka T., Sawai Y., Murai T., Nishimura T., Kitahara T. (2016). Long-term effects of electrotactile sensory substitution therapy on balance disorders. Neuroreport 27 744–748. 10.1097/WNR.0000000000000606
    1. Zaiontz C. (2020). Real Statistics R:esource Pack (Release 6.8). Available online at: (accessed May 12, 2020).
    1. Zehr E. P., Nakajima T., Barss T., Klarner T., Miklosovic S., Mezzarane R. A., et al. (2014). Cutaneous stimulation of discrete regions of the sole during locomotion produces “sensory steering” of the foot. BMC Sports Sci. Med. Rehabil. 6:33. 10.1186/2052-1847-6-33
    1. Zehr E. P., Stein R. B. (1999). What functions do reflexes serve during human locomotion? Prog. Neurobiol. 58 185–205. 10.1016/s0301-0082(98)00081-1

Source: PubMed

3
订阅