Determination of Selected Chemical Levels in Room Air and on Surfaces after the Use of Cartridge- and Tank-Based E-Vapor Products or Conventional Cigarettes

Jianmin Liu, Qiwei Liang, Michael J Oldham, Ali A Rostami, Karl A Wagner, I Gene Gillman, Piyush Patel, Rebecca Savioz, Mohamadi Sarkar, Jianmin Liu, Qiwei Liang, Michael J Oldham, Ali A Rostami, Karl A Wagner, I Gene Gillman, Piyush Patel, Rebecca Savioz, Mohamadi Sarkar

Abstract

There is an ongoing debate regarding the potential of secondhand exposure of non-users to various chemicals from use of e-vapor products (EVPs). Room air levels of 34 chemicals (nicotine, propylene glycol (PG), glycerol, 15 carbonyl chemicals, 12 volatile organic chemicals (VOCs), and four selected trace elements) were measured where EVPs and cigarettes were used by n = 37 healthy adult tobacco users in an exposure chamber. The products used were MarkTen® 2.5% Classic (Group I), a Prototype GreenSmoke® 2.4% (Group II), Ego-T® Tank with subjects' own e-liquids (Group III) and subjects' own conventional cigarettes (Group IV). Products were used under controlled conditions and 4-h ad libitum use. Background (without subjects) and baseline levels (with subjects) were measured. Cumulative 4-h. levels of nicotine, PG and glycerol measured were several-fold below the time-weighted average limits used in workplace exposure evaluation. Most the other chemicals (>75%) were at or below the limit of quantification during EVP use. Significant levels of chemicals (17 out of 34) were observed in Group IV. Overall, our results indicate that under the study conditions with the products tested, cumulative room air levels of the selected chemicals measured over 4-h were relatively small and were several-fold below the current occupational regulatory and consensus limits.

Keywords: conventional cigarettes; electronic cigarettes; electronic vapor products; glycerol; nicotine; passive vaping; propylene glycol; room air chemicals; secondhand smoke; thirdhand exposure.

Conflict of interest statement

The study was funded by Altria Client Services LLC. The authors, Mohamadi Sarkar, Jianmin Liu, Qiwei Liang, Michael J. Oldham, Ali A. Rostami and Karl A. Wagner are employees of ALCS. I. Gene Gillman, Piyush Patel and Rebecca Savioz are paid contractors. The study was conducted on behalf of NuMark LLC., (Richmond, VA, USA) a subsidiary of Altria Group, that produces and markets e-vapor products.

Figures

Figure 1
Figure 1
Overall Study Conduct and Sampling Schedule.
Figure 2
Figure 2
Schematic of the exposure chamber with air sampling points. HVAC: Heating, Ventilating, and Air Conditioning.
Figure 3
Figure 3
Mean levels of nicotine (A); propylene glycol (B); glycerol (C) and formaldehyde (D) in RAS at baseline and from the use of the two EVPs (Groups I and II) and the tank product (Group III) over four hours of use. The dashed lines represent limits for air contaminants set by various agencies (value shown as 8-h time weighted average permissible exposure limit); nicotine: Occupational Safety and Health Administration (OSHA) limit of 500 μg/m3; PG: American Industrial Hygiene Association (AIHA) limit of 10,000 μg/m3 (wide dashed lines) and Office of Environmental Health Hazard Assessment, California Environmental Protection Agency (OEHHA) limit of 7000 μg/m3 (narrow dashed lines); glycerol: OSHA limit of 10,000 μg/m3; and formaldehyde: OSHA limit of 980 μg/m3 (wide dashed lines) and OEHHA limit of 9 μg/m3 (narrow dashed lines).
Figure 3
Figure 3
Mean levels of nicotine (A); propylene glycol (B); glycerol (C) and formaldehyde (D) in RAS at baseline and from the use of the two EVPs (Groups I and II) and the tank product (Group III) over four hours of use. The dashed lines represent limits for air contaminants set by various agencies (value shown as 8-h time weighted average permissible exposure limit); nicotine: Occupational Safety and Health Administration (OSHA) limit of 500 μg/m3; PG: American Industrial Hygiene Association (AIHA) limit of 10,000 μg/m3 (wide dashed lines) and Office of Environmental Health Hazard Assessment, California Environmental Protection Agency (OEHHA) limit of 7000 μg/m3 (narrow dashed lines); glycerol: OSHA limit of 10,000 μg/m3; and formaldehyde: OSHA limit of 980 μg/m3 (wide dashed lines) and OEHHA limit of 9 μg/m3 (narrow dashed lines).

References

    1. Etter J.F., Bullen C. Electronic cigarette: Users profile, utilization, satisfaction and perceived efficacy. Addiction. 2011;106:2017–2028. doi: 10.1111/j.1360-0443.2011.03505.x.
    1. Regan A.K., Promoff G., Dube S.R., Arrazola R. Electronic nicotine delivery systems: Adult use and awareness of the ‘e-cigarette’ in the USA. Tob. Control. 2013;22:19–23. doi: 10.1136/tobaccocontrol-2011-050044.
    1. Zhu S.H., Gamst A., Lee M., Cummins S., Yin L., Zoref L. The use and perception of electronic cigarettes and snus among the U.S. population. PLoS ONE. 2013;8:e79332. doi: 10.1371/journal.pone.0079332.
    1. Etter J.F. Characteristics of users, and usage of different types of electronic cigarettes: Findings from an online survey. Addiction. 2016;111:724–733. doi: 10.1111/add.13240.
    1. Rodgman A., Smith C.J., Perfetti T.A. The composition of cigarette smoke: A retrospective, with emphasis on polycyclic components. Hum. Exp. Toxicol. 2000;19:573–595. doi: 10.1191/096032700701546514.
    1. Sarkar M., Kapur S., Frost-Pineda K., Feng S., Wang J., Liang Q., Roethig H. Evaluation of biomarkers of exposure to selected cigarette smoke constituents in adult smokers switched to carbon-filtered cigarettes in short-term and long-term clinical studies. Nicotine Tob. Res. 2008;10:1761–1772. doi: 10.1080/14622200802443718.
    1. Flora J.W., Meruva N., Huang C.B., Wilkinson C.T., Ballentine R., Smith D.C., Werley M.S., McKinney W.J. Characterization of potential impurities and degradation products in electronic cigarette formulations and aerosols. Regul. Toxicol. Pharmacol. 2016;74:1–11. doi: 10.1016/j.yrtph.2015.11.009.
    1. Goniewicz M.L., Knysak J., Gawron M., Kosmider L., Sobczak A., Kurek J., Prokopowicz A., Jablonska-Czapla M., Rosik-Dulewska C., Havel C., et al. Levels of selected carcinogens and toxicants in vapour from electronic cigarettes. Tob. Control. 2014;23:133–139. doi: 10.1136/tobaccocontrol-2012-050859.
    1. Kosmider L., Sobczak A., Fik M., Knysak J., Zaciera M., Kurek J., Goniewicz M.L. Carbonyl compounds in electronic cigarette vapors: Effects of nicotine solvent and battery output voltage. Nicotine Tob. Res. 2014;16:1319–1326. doi: 10.1093/ntr/ntu078.
    1. Tayyarah R., Long G.A. Comparison of select analytes in aerosol from e-cigarettes with smoke from conventional cigarettes and with ambient air. Regul. Toxicol. Pharmacol. 2014;70:704–710. doi: 10.1016/j.yrtph.2014.10.010.
    1. Williams M., Villarreal A., Bozhilov K., Lin S., Talbot P. Metal and silicate particles including nanoparticles are present in electronic cigarette cartomizer fluid and aerosol. PLoS ONE. 2013;8:e57987. doi: 10.1371/journal.pone.0057987.
    1. Bam T.S., Bellew W., Berezhnova I., Jackson-Morris A., Jones A., Latif E., Molinari M.A., Quan G., Singh R.J., Wisotzky M., et al. Position statement on electronic cigarettes or electronic nicotine delivery systems. Int. J. Tuberc. Lung Dis. 2014;18:5–7. doi: 10.5588/ijtld.13.0815.
    1. Czogala J., Goniewicz M.L., Fidelus B., Zielinska-Danch W., Travers M.J., Sobczak A. Secondhand exposure to vapors from electronic cigarettes. Nicotine Tob. Res. 2014;16:655–662. doi: 10.1093/ntr/ntt203.
    1. Geiss O., Bianchi I., Barahona F., Barrero-Moreno J. Characterisation of mainstream and passive vapours emitted by selected electronic cigarettes. Int. J. Hyg. Environ. Health. 2015;218:169–180. doi: 10.1016/j.ijheh.2014.10.001.
    1. McAuley T.R., Hopke P.K., Zhao J., Babaian S. Comparison of the effects of e-cigarette vapor and cigarette smoke on indoor air quality. Inhal. Toxicol. 2012;24:850–857. doi: 10.3109/08958378.2012.724728.
    1. Schripp T., Markewitz D., Uhde E., Salthammer T. Does e-cigarette consumption cause passive vaping? Indoor Air. 2013;23:25–31. doi: 10.1111/j.1600-0668.2012.00792.x.
    1. Hess I.M.R., Lachireddy K., Capon A. A systematic review of the health risks from passive exposure to electronic cigarette vapour. Public Health Res. Pract. 2016;26:1–9. doi: 10.17061/phrp2621617.
    1. St Helen G., Havel C., Dempsey D.A., Jacob P., 3rd, Benowitz N.L. Nicotine delivery, retention and pharmacokinetics from various electronic cigarettes. Addiction. 2016;111:535–544. doi: 10.1111/add.13183.
    1. Jensen R.P., Luo W., Pankow J.F., Strongin R.M., Peyton D.H. Hidden formaldehyde in e-cigarette aerosols. N. Engl. J. Med. 2015;372:392–394. doi: 10.1056/NEJMc1413069.
    1. Nitzkin J.L., Farsalinos K., Siegel M. More on hidden formaldehyde in e-cigarette aerosols. N. Engl. J. Med. 2015;372:1575.
    1. Bates C.D., Farsalinos K.E. E-cigarettes need to be tested for safety under realistic conditions. Addiction. 2015;110:1688–1689. doi: 10.1111/add.13028.
    1. Bekki K., Uchiyama S., Ohta K., Inaba Y., Nakagome H., Kunugita N. Carbonyl compounds generated from Electronic Cigarettes. Int. J. Environ. Res. Public Health. 2014;11:11192–11200. doi: 10.3390/ijerph111111192.
    1. Geiss O., Bianchi I., Barrero-Moreno J. Correlation of volatile carbonyl yields emitted by e-cigarettes with the temperature of the heating coil and the perceived sensorial quality of the generated vapours. Int. J. Hyg. Environ. Health. 2016;219:268–277. doi: 10.1016/j.ijheh.2016.01.004.
    1. Sleiman M., Logue J.M., Montesinos V.N., Russell M.L., Litter M.I., Gundel L.A., Destaillats H. Emissions from electronic cigarettes: Key parameters affecting the release of harmful chemicals. Environ. Sci. Technol. 2016;50:9644–9651. doi: 10.1021/acs.est.6b01741.
    1. Khlystov A., Samburova V. Flavoring compounds dominate toxic aldehyde production during e-cigarette vaping. Environ. Sci. Technol. 2016;50:13080–13085. doi: 10.1021/acs.est.6b05145.
    1. Ballbe M., Martinez-Sanchez J.M., Sureda X., Fu M., Perez-Ortuno R., Pascual J.A., Salto E., Fernandez E. Cigarettes vs. e-cigarettes: Passive exposure at home measured by means of airborne marker and biomarkers. Environ. Res. 2014;135:76–80. doi: 10.1016/j.envres.2014.09.005.
    1. Chorti M.S., Poulianiti K.P., Jamurtas A.Z., Kostikas K., Tzatzarakis M.N., Vynias D., Koutedakis Y., Flouris A.D., Tsatsakis A.M. Effects of active and passive electronic and tobacco cigarette smoking on lung function. Toxicol. Lett. 2012;211:S64. doi: 10.1016/j.toxlet.2012.03.250.
    1. Flouris A.D., Chorti M.S., Poulianiti K.P., Jamurtas A.Z., Kostikas K., Tzatzarakis M.N., Wallace Hayes A., Tsatsakis A.M., Koutedakis Y. Acute impact of active and passive electronic cigarette smoking on serum cotinine and lung function. Inhal. Toxicol. 2013;25:91–101. doi: 10.3109/08958378.2012.758197.
    1. Fromme H., Schober W. Waterpipes and e-cigarettes: Impact of alternative smoking techniques on indoor air quality and health. Atmos. Environ. 2015;106:429–441. doi: 10.1016/j.atmosenv.2014.08.030.
    1. King A.C., Smith L.J., McNamara P.J., Matthews A.K., Fridberg D.J. Passive exposure to electronic cigarette (e-cigarette) use increases desire for combustible and e-cigarettes in young adult smokers. Tob. Control. 2015;24:501–504. doi: 10.1136/tobaccocontrol-2014-051563.
    1. Maloney J.C., Thompson M.K., Oldham M.J., Stiff C.L., Lilly P.D., Patskan G.J., Shafer K.H., Sarkar M.A. Insights from Two Industrial Hygiene Pilot E-Cigarette Passive Vaping Studies. J. Occup. Environ. Hyg. 2016;13:275–283. doi: 10.1080/15459624.2015.1116693.
    1. O’Connell G., Colard S., Cahours X., Pritchard J.D. An Assessment of Indoor Air Quality before, during and after Unrestricted Use of E-Cigarettes in a Small Room. Int. J. Environ. Res. Public Health. 2015;12:4889–4907. doi: 10.3390/ijerph120504889.
    1. Romagna G., Zabarini L., Barbiero L., Bocchietto E., Todeschi S., Caravati E., Voster D., Farsalinos K. Characterization of chemicals released to the environment by electronic cigarettes use (ClearStream-AIR project): Is passive vaping a reality?; Presented at the 14th Annual Meeting of the Society for Research on Nicotine and Tobacco; Helsinki, Finland. 31 August 2012.
    1. Saffari A., Daher N., Ruprecht A., De Marco C., Pozzi P., Boffi R., Hamad S.H., Shafer M.M., Schauer J.J., Westerdahl D., et al. Particulate metals and organic compounds from electronic and tobacco-containing cigarettes: Comparison of emission rates and secondhand exposure. Environ. Sci. Process. Impacts. 2014;16:2259–2267. doi: 10.1039/C4EM00415A.
    1. Schober W., Szendrei K., Matzen W., Osiander-Fuchs H., Heitmann D., Schettgen T., Jorres R.A., Fromme H. Use of electronic cigarettes (e-cigarettes) impairs indoor air quality and increases FeNO levels of e-cigarette consumers. Int. J. Hyg. Environ. Health. 2014;217:628–637. doi: 10.1016/j.ijheh.2013.11.003.
    1. Flouris A.D., Poulianiti K.P., Chorti M.S., Jamurtas A.Z., Kouretas D., Owolabi E.O., Tzatzarakis M.N., Tsatsakis A.M., Koutedakis Y. Acute effects of electronic and tobacco cigarette smoking on complete blood count. Food Chem. Toxicol. 2012;50:3600–3603. doi: 10.1016/j.fct.2012.07.025.
    1. Kuschner W.G., Reddy S., Mehrotra N., Paintal H.S. Electronic cigarettes and thirdhand tobacco smoke: Two emerging health care challenges for the primary care provider. Int. J. Gen. Med. 2011;4:115–120. doi: 10.2147/IJGM.S16908.
    1. Matt G.E., Quintana P.J., Destaillats H., Gundel L.A., Sleiman M., Singer B.C., Jacob P., Benowitz N., Winickoff J.P., Rehan V., et al. Thirdhand tobacco smoke: Emerging evidence and arguments for a multidisciplinary research agenda. Environ. Health Perspect. 2011;119:1218–1226. doi: 10.1289/ehp.1103500.
    1. Bush D., Goniewicz M.L. A pilot study on nicotine residues in houses of electronic cigarette users, tobacco smokers, and non-users of nicotine-containing products. Int. J. Drug Policy. 2015;26:609–611. doi: 10.1016/j.drugpo.2015.03.003.
    1. Goniewicz M.L., Lee L. Electronic cigarettes are a source of thirdhand exposure to nicotine. Nicotine Tob. Res. 2015;17:256–258. doi: 10.1093/ntr/ntu152.
    1. WHO: World Health Organization . The Conference of the Parties to the WHO Framework Convention on Tobacco Control, Sixth Session, Moscow, Russian, 13–18 October 2014. WHO; Geneva, Switzerland: 2014. Provisional Agenda Item 4.4.2.
    1. Chang H. Research gaps related to the environmental impacts of electronic cigarettes. Tob. Control. 2014;23(Suppl. 2):ii54–ii58. doi: 10.1136/tobaccocontrol-2013-051480.
    1. Liu J., Liang Q., Oldham M.J., Rostami A., Wagner K.A., Gillman G., Patel P., Savioz R., Sarkar M. Levels of selected constituents in exhaled breath from the use of cartridge, tank-based e-vapor products or conventional cigarettes by adult tobacco product users. 2016. in preparation.
    1. ICH: International Conference on Harmonisation Guidance for Industry E6 Good Clinical Practice: Consolidated Guidance. [(accessed on 16 August 2017)]; Available online: .
    1. Murdoch R.D., Bareille P., Ignar D., Mark S., Miller S.R., Gupta A., Salapatek A.M., Patel P. Once-daily dosing of levocabastine has comparable efficacy to twice-daily dosing in the treatment of allergic rhinitis assessed in an allergen challenge chamber. Int. J. Clin. Pharmacol. Ther. 2015;53:811–818. doi: 10.5414/CP202389.
    1. ASHRAE: American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc . Addendum n to ANSI/ASHRAE Standard 62–2001. Ventilation for Acceptable Indoor Air Quality. ASHRAE; Atlanta, GA, USA: 2003.
    1. Oldham M.J., Wagner K.A., Gillman G., Beach J., Liu J., Rostami A., Sarkar M. Development/Verification of Methods for Measurement of Exhaled Breath and Environmental E-Cigarette Vapor. Regul. Toxicol. Pharmacol. 2017;85:55–63. doi: 10.1016/j.yrtph.2017.01.006.
    1. ISO: International Organization for Standardization . 16200-1. Workplace Air Quality—Sampling and Analysis of Volatile Organic Compounds by Solvent Desorption/Gas Chromatography—Part 1: Pumped Sampling Method. ISO; Geneva, Switzerland: 2001.
    1. ISO: International Organization for Standardization . 16000-6. Indoor Air—Part 6: Determination of volatile Organic Compounds in Indoor and Test Chamber Air by Active Sampling on Tenax TA Sorbent, Thermal Desorption and Gas Chromatography Using MS or MS-FID. ISO; Geneva, Switzerland: 2011.
    1. ISO: International Organization for Standardization . 16000-3. Indoor Air—Part 3: Determination of Formaldehyde and Other Carbonyl Compounds in Indoor Air and Test Chamber Air—Active Sampling Method. ISO; Geneva, Switzerland: 2011.
    1. EPA: US Environmental Protection Agency . Compendium Method IO-2.1. Sampling of Ambient Air for Total Suspended Particulate Matter (Spm) and PM10 Using High Volume (Hv) Sampler. EPA; Washington, DC, USA: 1999.
    1. EPA: US Environmental Protection Agency . Compendium Method IO-3.5. Determination of Metals in Ambient Particulate Matter Using Inductively Coupled Plasma/ Mass Spectrometry (ICP/MS) EPA; Washington, DC, USA: 1999.
    1. AIHA: American Industrial Hygiene Association . ERPG/WEEL Handbook. AIHA; Falls Church, VA, USA: 2014.
    1. OSHA: United States Department of Labor . Occupational Safety and Health Administration. Toxic and Hazardous Substances. Standards—29 CFR 1910.1000 Table Z-1 Limits for Air Contaminants. OSHA; Washington, DC, USA: [(accessed on 28 August 2017)]. Available online: .
    1. OSHA: United States Department of Labor . Occupational Safety and Health Administration. Toxic and Hazardous Substances. Standards—29 CFR 1910.1048 Formaldehyde. OSHA; Washington, DC, USA: [(accessed on 28 August 2017)]. Available online: .
    1. Hubbs A.F., Cummings K.J., McKernan L.T., Dankovic D.A., Park R.M., Kreiss K. Comment on Farsalinos et al. Evaluation of Electronic Cigarette Liquids and Aerosol for the Presence of Selected Inhalation Toxins. Nicotine Tob. Res. 2015;17:1288–1289. doi: 10.1093/ntr/ntu338.
    1. DFG: Deutsche Forschungsgemeinschaft . List of MAK and BAT Values 2015: Maximum Concentrations and Biological Tolerance Values at the Workplace. Chapter II List of Substances. Wiley-VCH; Weinheim, Geramny: 2015. pp. 19–162.
    1. OEHHA: Office of Environmental Health Hazard Assessment . California Environmental Protection Agency, State of California, Acute, 8-Hour and Chronic Reference Exposure Levels (chRELs) as of June 2016. OEHHA; Sacramento, CA, USA: 2016.
    1. The WHO European Centre for Environment and Health . WHO: World Health Organization Guidelines for Indoor Air Quality: Selected Pollutants. The WHO European Centre for Environment and Health, Bonn Office: WHO Regional Office for Europe; Bonn, Germany: 2009.
    1. Salthammer T., Mentese S., Marutzky R. Formaldehyde in the indoor environment. Chem. Rev. 2010;110:2536–2572. doi: 10.1021/cr800399g.
    1. Salthammer T. The formaldehyde dilemma. Int. J. Hyg. Environ. Health. 2015;218:433–436. doi: 10.1016/j.ijheh.2015.02.005.
    1. Fromme H., Nitschke L., Boehmer S., Kiranoglu M., Goen T. Hbmnet: Exposure of German residents to ethylene and propylene glycol ethers in general and after cleaning scenarios. Chemosphere. 2013;90:2714–2721. doi: 10.1016/j.chemosphere.2012.11.051.
    1. Johanson G. Aspects of biological monitoring of exposure to glycol ethers. Toxicol. Lett. 1988;43:5–21. doi: 10.1016/0378-4274(88)90017-3.
    1. Carmines E.L., Gaworski C.L. Toxicological evaluation of glycerin as a cigarette ingredient. Food Chem. Toxicol. 2005;43:1521–1539. doi: 10.1016/j.fct.2005.04.010.
    1. National Research Council (NRC) National Research Council Review of the Formaldehyde Assessment in the National Toxicology Program 12th Report on Carcinogens. National Academides Press (US); Washington, DC, USA: 2014.
    1. Spanel P., Smith D. Quantification of trace levels of the potential cancer biomarkers formaldehyde, acetaldehyde and propanol in breath by SIFT-MS. J. Breath Res. 2008;2:046003. doi: 10.1088/1752-7155/2/4/046003.
    1. Amann A., Costello Bde L., Miekisch W., Schubert J., Buszewski B., Pleil J., Ratcliffe N., Risby T. The human volatilome: Volatile organic compounds (VOCs) in exhaled breath, skin emanations, urine, feces and saliva. J. Breath Res. 2014;8:034001. doi: 10.1088/1752-7155/8/3/034001.
    1. Wang T., Pysanenko A., Dryahina K., Spanel P., Smith D. Analysis of breath, exhaled via the mouth and nose, and the air in the oral cavity. J. Breath Res. 2008;2:037013. doi: 10.1088/1752-7155/2/3/037013.
    1. Farsalinos K.E., Voudris V., Poulas K. Are metals emitted from electronic cigarettes a reason for health concern? A risk-assessment analysis of currently available literature. Int. J. Environ. Res. Public Health. 2015;12:5215–5232. doi: 10.3390/ijerph120505215.
    1. Bruinen de Bruin Y., Koistinen K., Kephalopoulos S., Geiss O., Tirendi S., Kotzias D. Characterisation of urban inhalation exposures to benzene, formaldehyde and acetaldehyde in the European Union: Comparison of measured and modelled exposure data. Environ. Sci. Pollut. Res. Int. 2008;15:417–430. doi: 10.1007/s11356-008-0013-4.
    1. Fromme H., Heitmann D., Dietrich S., Schierl R., Korner W., Kiranoglu M., Zapf A., Twardella D. [Air quality in schools—Classroom levels of carbon dioxide (CO2), volatile organic compounds (VOC), aldehydes, endotoxins and cat allergen] Gesundheitswesen. 2008;70:88–97. doi: 10.1055/s-2008-1046775.
    1. Wolkoff P., Schneider T., Kildeso J., Degerth R., Jaroszewski M., Schunk H. Risk in cleaning: Chemical and physical exposure. Sci. Total Environ. 1998;215:135–156. doi: 10.1016/S0048-9697(98)00110-7.
    1. Talih S., Balhas Z., Salman R., Karaoghlanian N., Shihadeh A. “Direct Dripping”: A High-Temperature, High-Formaldehyde Emission Electronic Cigarette Use Method. Nicotine Tob. Res. 2015;18:453–459. doi: 10.1093/ntr/ntv080.
    1. Rostami A.A., Pithawalla Y.B., Liu J., Oldham M.J., Wagner K.A., Frost-Pineda K., Sarkar M.A. A Well-Mixed Computational Model for Estimating Room Air Levels of Selected Constituents from E-Vapor Product Use. Int. J. Environ. Res. Public Health. 2016;13:828. doi: 10.3390/ijerph13080828.

Source: PubMed

3
订阅