Cognitive and behavioural flexibility: neural mechanisms and clinical considerations

Lucina Q Uddin, Lucina Q Uddin

Abstract

Cognitive and behavioural flexibility permit the appropriate adjustment of thoughts and behaviours in response to changing environmental demands. Brain mechanisms enabling flexibility have been examined using non-invasive neuroimaging and behavioural approaches in humans alongside pharmacological and lesion studies in animals. This work has identified large-scale functional brain networks encompassing lateral and orbital frontoparietal, midcingulo-insular and frontostriatal regions that support flexibility across the lifespan. Flexibility can be compromised in early-life neurodevelopmental disorders, clinical conditions that emerge during adolescence and late-life dementias. We critically evaluate evidence for the enhancement of flexibility through cognitive training, physical activity and bilingual experience.

Conflict of interest statement

The author declares no competing interests.

Figures

Fig. 1. Core cognitive processes and brain…
Fig. 1. Core cognitive processes and brain network interactions underlying flexibility in the human brain.
a | Three latent variables that constitute executive function are referred to as ‘shifting (flexibility)’, ‘updating (working memory)’ and ‘inhibition’. Automated meta-analyses of published functional neuroimaging studies can be conducted with Neurosynth, a Web-based platform that uses text mining to extract activation coordinates from studies reporting on a specific psychological term of interest and machine learning to estimate the likelihood that activation maps are associated with specific psychological terms, thus creating mapping between neural and cognitive states (see ref. for detailed methods). Neurosynth reveals that brain imaging studies including the terms ‘shifting’, ‘updating’ and ‘inhibition’ report highly overlapping patterns of activation in lateral frontoparietal and midcingulo-insular brain regions, underscoring the difficulty of isolating the construct of flexibility from associated executive functions. a | Maps created by first, entering the terms ‘shifting’, ‘updating’ and ‘inhibition’ individually into Neurosynth; second, displaying the ‘uniformity test’ results to view z scores corresponding to the degree to which each voxel in the brain is consistently activated in studies that use each of the selected terms; third, downloading the resulting brain images (with thresholding at a false discovery rate of 0.01) in the form of NIfTi files; and fourth, displaying the brain images using the image viewer MRIcron with the following settings: 2.3 < z < 8 (scale); x = 45 (Montreal Neurological Institute (MNI) coordinate for sagittal slice), y = 19 (MNI coordinate for coronal slice) and z = 45 (MNI coordinate for axial slice). The uniformity test map depicts z scores from a one-way ANOVA testing whether the proportion of studies that report activation at a given voxel differs from the rate that would be expected if activations were uniformly distributed throughout grey matter. b | Brain regions supporting executive function and flexibility operate within the context of the broader networks shown in part a. During performance of a flexible item selection task, participants directly engage the inferior frontal junction (IFJ), which influences activity in other lateral frontoparietal and midcingulo-insular regions. ACC, anterior cingulate cortex; AG, angular gurus; AI, anterior insula; dlPFC, dorsolateral prefrontal cortex; IPL, inferior parietal lobule. Part b adapted with permission from ref., Massachusetts Institute of Technology.
Fig. 2. Brain dynamics underlying individual differences…
Fig. 2. Brain dynamics underlying individual differences in flexibility.
a | In sliding window dynamic functional connectivity analyses, time-varying patterns of connectivity between brain regions are quantified as follows. Whole-brain functional connectivity matrices computed for each window (for example, 45 seconds of functional MRI time-series data) are subjected to clustering, and each window is assigned to a ‘brain state’, here labelled 1, 2 and 3. b | Dynamic metrics, including frequency, dwell time and transitions between states, can then be computed on the basis of trajectories of brain state evolution over time. c | Brain states are ordered from most frequently occurring on the left (state 1, characterized by weak correlations among brain regions) to least frequently occurring on the right (state 5, characterized by strong correlations among brain regions). Higher executive function performance measured outside the scanner is associated with greater episodes of more frequently occurring states and fewer episodes of less frequently occurring states. In the colour bar, hot colours (red) represent high correlation values and cool colours (blue) represent low correlation values. WCST, Wisconsin Card Sorting Test. Parts a, b and c adapted with permission from, Elsevier.
Fig. 3. Quantifying brain signal variability.
Fig. 3. Quantifying brain signal variability.
a | Mean squared successive difference is one approach for computing brain signal variability. Applied to neural time-series data, mean squared successive difference is calculated according to the equation shown. b | Regionally specific increases and decreases in brain signal variability across the lifespan may be associated with changes in behavioural performance. Brain signal variability decreases linearly across the lifespan in most brain regions, with the exception of the anterior insula, which exhibits linear age-related increases in variability. In early and late life, the speculation is that larger differences in variability between brain regions may lead to suboptimal behavioural performance. Optimal behavioural performance may be associated with a balance between high and low variability in different brain regions (black arrows) during midlife. Part b is adapted from ref., CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/).

References

    1. Moradian N, et al. The urgent need for integrated science to fight COVID-19 pandemic and beyond. J. Transl Med. 2020;18:205. doi: 10.1186/s12967-020-02364-2.
    1. Diamond A, Lee K. Interventions shown to aid executive function development in children 4 to 12 years old. Science. 2011;333:959–964. doi: 10.1126/science.1204529.
    1. Burt KB, Paysnick AA. Resilience in the transition to adulthood. Dev. Psychopathol. 2012;24:493–505. doi: 10.1017/S0954579412000119.
    1. Burke SN, et al. What are the later life contributions to reserve, resilience, and compensation? Neurobiol. Aging. 2019;83:140–144. doi: 10.1016/j.neurobiolaging.2019.03.023.
    1. Scott WA. Cognitive complexity and cognitive flexibility. Sociometry. 1962;25:405–414. doi: 10.2307/2785779.
    1. Brown VJ, Tait DS. Behavioral flexibility: attentional shifting, rule switching, and response reversal. Encycl. Psychopharmacol. 2014 doi: 10.1007/978-3-642-27772-6_340-2.
    1. Miyake A, et al. The unity and diversity of executive functions and their contributions to complex ‘frontal lobe’ tasks: a latent variable analysis. Cogn. Psychol. 2000;41:49–100. doi: 10.1006/cogp.1999.0734.
    1. Poldrack RA, et al. The cognitive atlas: toward a knowledge foundation for cognitive neuroscience. Front. Neuroinform. 2011;5:17. doi: 10.3389/fninf.2011.00017.
    1. Teuber H-L. Unity and diversity of frontal lobe functions. Acta Neurobiol. Exp. 1972;32:615–656.
    1. Badre D. Opening the gate to working memory. Proc. Natl Acad. Sci. USA. 2012;109:19878–19879. doi: 10.1073/pnas.1216902109.
    1. Chatham CH, Badre D. Multiple gates on working memory. Curr. Opin. Behav. Sci. 2015;1:23–31. doi: 10.1016/j.cobeha.2014.08.001.
    1. Ott T, Nieder A. Dopamine and cognitive control in prefrontal cortex. Trends Cogn. Sci. 2019;23:213–234. doi: 10.1016/j.tics.2018.12.006.
    1. Banich MT. Executive function: the search for an integrated account. Curr. Dir. Psychol. Sci. 2009;18:89–94. doi: 10.1111/j.1467-8721.2009.01615.x.
    1. Butter CM. Perseveration in extinction and in discrimination reversal tasks following selective frontal ablations in Macaca mulatta. Physiol. Behav. 1969;4:163–171. doi: 10.1016/0031-9384(69)90075-4.
    1. Izquierdo A, Brigman JL, Radke AK, Rudebeck PH, Holmes A. The neural basis of reversal learning: an updated perspective. Neuroscience. 2017;345:12–26. doi: 10.1016/j.neuroscience.2016.03.021.
    1. Insel TR. The NIMH research domain criteria (RDoC) project: precision medicine for psychiatry. Am. J. Psychiatry. 2014;171:395–397. doi: 10.1176/appi.ajp.2014.14020138.
    1. Saggar M, Uddin LQ. Pushing the boundaries of psychiatric neuroimaging to ground diagnosis in biology. eNeuro. 2019 doi: 10.1523/ENEURO.0384-19.2019.
    1. National Institute of Mental Health. National Advisory Mental Health Council Workgroup on Tasks and Measures for Research Domain Criteria. Behavioral assessment methods for RDoC constructs (NIH, 2016).
    1. Cepeda NJ, Kramer AF, Gonzalez de Sather JCM. Changes in executive control across the life span: examination of task-switching performance. Dev. Psychol. 2001;37:715–730. doi: 10.1037/0012-1649.37.5.715.
    1. Dajani DR, Uddin LQ. Demystifying cognitive flexibility: Implications for clinical and developmental neuroscience. Trends Neurosci. 2015;38:571–578. doi: 10.1016/j.tins.2015.07.003.
    1. Dang J, King KM, Inzlicht M. Why are self-report and behavioral measures weakly correlated? Trends Cogn. Sci. 2020;24:267–269. doi: 10.1016/j.tics.2020.01.007.
    1. Isquith, P. K., Roth, R. M., Gioia, G. A. & Par, S. Behavior Rating Inventory of Executive Function–Adult Version (BRIEF-A) Interpretive Report (Psychological Assessment Resources, 2006).
    1. Gioia GA, Isquith PK, Guy SC, Kenworthy L. Behavior rating inventory of executive function. Child. Neuropsychol. 2000;6:235–238. doi: 10.1076/chin.6.3.235.3152.
    1. Zelazo PD. The Dimensional Change Card Sort (DCCS): a method of assessing executive function in children. Nat. Protoc. 2006;1:297–301. doi: 10.1038/nprot.2006.46.
    1. Delis, D. C., Kaplan, E. & Kramer, J. H. Delis-Kaplan Executive Function System (American Psychological Association, 2001).
    1. Brooks BL, Sherman EMS, Strauss E. NEPSY-II: a developmental neuropsychological assessment, second edition. Child. Neuropsychol. 2009;16:80–101. doi: 10.1080/09297040903146966.
    1. Cambridge Cognition. Intra-Extra Dimensional Set Shift (IED). (2021).
    1. Uddin LQ. Salience processing and insular cortical function and dysfunction. Nat. Rev. Neurosci. 2015;16:55–61. doi: 10.1038/nrn3857.
    1. Yarkoni T, Poldrack RA, Nichols TE, Van Essen DC, Wager TD. Large-scale automated synthesis of human functional neuroimaging data. Nat. Methods. 2011;8:665–670. doi: 10.1038/nmeth.1635.
    1. Seeley WW, et al. Dissociable intrinsic connectivity networks for salience processing and executive control. J. Neurosci. 2007;27:2349–2356. doi: 10.1523/JNEUROSCI.5587-06.2007.
    1. Uddin LQ, Thomas Yeo BT, Nathan Spreng R. Towards a universal taxonomy of macro-scale functional human brain networks. Brain Topogr. 2019;32:926–942. doi: 10.1007/s10548-019-00744-6.
    1. Derrfuss J, Brass M, Neumann J, von Cramon DY. Involvement of the inferior frontal junction in cognitive control: meta-analyses of switching and Stroop studies. Hum. Brain Mapp. 2005;25:22–34. doi: 10.1002/hbm.20127.
    1. Dajani DR, et al. Measuring cognitive flexibility with the flexible item selection task: from MRI adaptation to individual connectome mapping. J. Cogn. Neurosci. 2020;32:1026–1045. doi: 10.1162/jocn_a_01536.
    1. Kim C, Johnson NF, Cilles SE, Gold BT. Common and distinct mechanisms of cognitive flexibility in prefrontal cortex. J. Neurosci. 2011;31:4771–4779. doi: 10.1523/JNEUROSCI.5923-10.2011.
    1. Sundermann B, Pfleiderer B. Functional connectivity profile of the human inferior frontal junction: involvement in a cognitive control network. BMC Neurosci. 2012;13:119. doi: 10.1186/1471-2202-13-119.
    1. Robbins TW. Shifting and stopping: fronto-striatal substrates, neurochemical modulation and clinical implications. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2007;362:917–932. doi: 10.1098/rstb.2007.2097.
    1. Banerjee A, et al. Value-guided remapping of sensory cortex by lateral orbitofrontal cortex. Nature. 2020;585:245–250. doi: 10.1038/s41586-020-2704-z.
    1. Ragozzino ME. The contribution of the medial prefrontal cortex, orbitofrontal cortex, and dorsomedial striatum to behavioral flexibility. Ann. NY Acad. Sci. 2007;1121:355–375. doi: 10.1196/annals.1401.013.
    1. Hampshire A, Owen AM. Fractionating attentional control using event-related fMRI. Cereb. Cortex. 2006;16:1679–1689. doi: 10.1093/cercor/bhj116.
    1. Ghahremani, D. G., Monterosso, J., Jentsch, J. D., Bilder, R. M. & Poldrack, R. A. Neural components underlying behavioral flexibility in human reversal learning. Cereb. Cortex20, 1843–1852. This functional neuroimaging study reveals how human reversal learning and guidance of actions consistent with current reward contingencies engages the lateral OFC, dorsal anterior cingulate cortex and right inferior frontal cortex.
    1. Chang C, Glover GH. Time–frequency dynamics of resting-state brain connectivity measured with fMRI. Neuroimage. 2010;50:81–98. doi: 10.1016/j.neuroimage.2009.12.011.
    1. Hutchison RM, et al. Dynamic functional connectivity: promise, issues, and interpretations. Neuroimage. 2013;80:360–378. doi: 10.1016/j.neuroimage.2013.05.079.
    1. Calhoun VD, Miller R, Pearlson G, Adalı T. The chronnectome: time-varying connectivity networks as the next frontier in fMRI data discovery. Neuron. 2014;84:262–274. doi: 10.1016/j.neuron.2014.10.015.
    1. Nomi JS, et al. Chronnectomic patterns and neural flexibility underlie executive function. Neuroimage. 2017;147:861–871. doi: 10.1016/j.neuroimage.2016.10.026.
    1. Chen T, Cai W, Ryali S, Supekar K, Menon V. Distinct global brain dynamics and spatiotemporal organization of the salience network. PLoS Biol. 2016;14:e1002469. doi: 10.1371/journal.pbio.1002469.
    1. Douw L, Wakeman DG, Tanaka N, Liu H, Stufflebeam SM. State-dependent variability of dynamic functional connectivity between frontoparietal and default networks relates to cognitive flexibility. Neuroscience. 2016;339:12–21. doi: 10.1016/j.neuroscience.2016.09.034.
    1. Vidaurre D, Smith SM, Woolrich MW. Brain network dynamics are hierarchically organized in time. Proc. Natl Acad. Sci. USA. 2017;114:12827–12832. doi: 10.1073/pnas.1705120114.
    1. Medaglia JD, et al. Functional alignment with anatomical networks is associated with cognitive flexibility. Nat. Hum. Behav. 2018;2:156–164. doi: 10.1038/s41562-017-0260-9.
    1. Cohen JR. The behavioral and cognitive relevance of time-varying, dynamic changes in functional connectivity. Neuroimage. 2018;180:515–525. doi: 10.1016/j.neuroimage.2017.09.036.
    1. Yin W, et al. The emergence of a functionally flexible brain during early infancy. Proc. Natl Acad. Sci. USA. 2020;117:23904–23913. doi: 10.1073/pnas.2002645117.
    1. Cabral J, et al. Cognitive performance in healthy older adults relates to spontaneous switching between states of functional connectivity during rest. Sci. Rep. 2017;7:5135. doi: 10.1038/s41598-017-05425-7.
    1. Ezaki T, Sakaki M, Watanabe T, Masuda N. Age-related changes in the ease of dynamical transitions in human brain activity. Hum. Brain Mapp. 2018;39:2673–2688. doi: 10.1002/hbm.24033.
    1. Yin D, et al. Dissociable changes of frontal and parietal cortices in inherent functional flexibility across the human life span. J. Neurosci. 2016;36:10060–10074. doi: 10.1523/JNEUROSCI.1476-16.2016.
    1. Allegra M, et al. Brain network dynamics during spontaneous strategy shifts and incremental task optimization. NeuroImage. 2020;217:116854. doi: 10.1016/j.neuroimage.2020.116854.
    1. Saggar M, et al. Towards a new approach to reveal dynamical organization of the brain using topological data analysis. Nat. Commun. 2018;9:1399. doi: 10.1038/s41467-018-03664-4.
    1. Uddin LQ. Bring the noise: reconceptualizing spontaneous neural activity. Trends Cogn. Sci. 2020 doi: 10.1016/j.tics.2020.06.003.
    1. McIntosh AR, Kovacevic N, Itier RJ. Increased brain signal variability accompanies lower behavioral variability in development. PLoS Comput. Biol. 2008;4:e1000106. doi: 10.1371/journal.pcbi.1000106.
    1. Garrett DD, Kovacevic N, McIntosh AR, Grady CL. The modulation of BOLD variability between cognitive states varies by age and processing speed. Cereb. Cortex. 2013;23:684–693. doi: 10.1093/cercor/bhs055.
    1. Garrett DD, Kovacevic N, McIntosh AR, Grady CL. Blood oxygen level-dependent signal variability is more than just noise. J. Neurosci. 2010;30:4914–4921. doi: 10.1523/JNEUROSCI.5166-09.2010.
    1. Nomi JS, Bolt TS, Ezie C, Uddin LQ, Heller AS. Moment-to-moment BOLD Signal variability reflects regional changes in neural flexibility across the lifespan. J. Neurosci. 2017 doi: 10.1523/JNEUROSCI.3408-16.2017.
    1. Armbruster-Genç DJN, Ueltzhöffer K, Fiebach CJ. Brain signal variability differentially affects cognitive flexibility and cognitive stability. J. Neurosci. 2016;36:3978–3987. doi: 10.1523/JNEUROSCI.2517-14.2016.
    1. Garrett DD, Epp SM, Kleemeyer M, Lindenberger U, Polk TA. Higher performers upregulate brain signal variability in response to more feature-rich visual input. Neuroimage. 2020;217:116836. doi: 10.1016/j.neuroimage.2020.116836.
    1. Snyder HR, Miyake A, Hankin BL. Advancing understanding of executive function impairments and psychopathology: bridging the gap between clinical and cognitive approaches. Front. Psychol. 2015;6:328. doi: 10.3389/fpsyg.2015.00328.
    1. Lai CLE, et al. Meta-analysis of neuropsychological measures of executive functioning in children and adolescents with high-functioning autism spectrum disorder. Autism Res. 2017;10:911–939. doi: 10.1002/aur.1723.
    1. Dajani DR, Llabre MM, Nebel MB, Mostofsky SH, Uddin LQ. Heterogeneity of executive functions among comorbid neurodevelopmental disorders. Sci. Rep. 2016;6:36566. doi: 10.1038/srep36566.
    1. Pennington BF, Ozonoff S. Executive functions and developmental psychopathology. J. Child. Psychol. Psychiatry. 1996;37:51–87. doi: 10.1111/j.1469-7610.1996.tb01380.x.
    1. Demetriou EA, et al. Autism spectrum disorders: a meta-analysis of executive function. Mol. Psychiatry. 2018;23:1198–1204. doi: 10.1038/mp.2017.75.
    1. Landry O, Al-Taie S. A meta-analysis of the Wisconsin Card Sort Task in autism. J. Autism Dev. Disord. 2016;46:1220–1235. doi: 10.1007/s10803-015-2659-3.
    1. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (DSM-5®). (American Psychiatric Association Publishing, 2013).
    1. Lopez BR, Lincoln AJ, Ozonoff S, Lai Z. Examining the relationship between executive functions and restricted, repetitive symptoms of autistic disorder. J. Autism Dev. Disord. 2005;35:445–460. doi: 10.1007/s10803-005-5035-x.
    1. Wilkes BJ, Lewis MH. The neural circuitry of restricted repetitive behavior: Magnetic resonance imaging in neurodevelopmental disorders and animal models. Neurosci. Biobehav. Rev. 2018;92:152–171. doi: 10.1016/j.neubiorev.2018.05.022.
    1. Uddin LQ. Brain mechanisms supporting flexible cognition and behavior in adolescents with autism spectrum disorder. Biol. Psychiatry. 2021;89:172–183. doi: 10.1016/j.biopsych.2020.05.010.
    1. Kuntsi J, Klein C. Intraindividual variability in ADHD and its implications for research of causal links. Curr. Top. Behav. Neurosci. 2012;9:67–91. doi: 10.1007/7854_2011_145.
    1. Leitner Y. The co-occurrence of autism and attention deficit hyperactivity disorder in children - what do we know? Front. Hum. Neurosci. 2014;8:268. doi: 10.3389/fnhum.2014.00268.
    1. Bloemen AJP, et al. The association between executive functioning and psychopathology: general or specific? Psychol. Med. 2018;48:1787–1794. doi: 10.1017/S0033291717003269.
    1. Sergeant JA, Geurts H, Oosterlaan J. How specific is a deficit of executive functioning for attention-deficit/hyperactivity disorder? Behav. Brain Res. 2002;130:3–28. doi: 10.1016/S0166-4328(01)00430-2.
    1. Happe F, Booth R, Charlton R, Hughes C. Executive function deficits in autism spectrum disorders and attention-deficit/hyperactivity disorder: examining profiles across domains and ages. Brain Cogn. 2006;61:25–39. doi: 10.1016/j.bandc.2006.03.004.
    1. Baez AC, et al. Parsing heterogeneity of executive function in typically and atypically developing children: a conceptual replication and exploration of social function. J. Autism Dev. Disord. 2019 doi: 10.1007/s10803-019-04290-9.
    1. Di Martino A, et al. Shared and distinct intrinsic functional network centrality in autism and attention-deficit/hyperactivity disorder. Biol. Psychiatry. 2013;74:623–632. doi: 10.1016/j.biopsych.2013.02.011.
    1. Dajani DR, et al. Investigating functional brain network integrity using a traditional and novel categorical scheme for neurodevelopmental disorders. Neuroimage Clin. 2019;21:101678. doi: 10.1016/j.nicl.2019.101678.
    1. Cordova M, et al. Heterogeneity of executive function revealed by a functional random forest approach across ADHD and ASD. Neuroimage Clin. 2020;26:102245. doi: 10.1016/j.nicl.2020.102245.
    1. Vaidya CJ, et al. Data-driven identification of subtypes of executive function across typical development, attention deficit hyperactivity disorder, and autism spectrum disorders. J. Child. Psychol. Psychiatry. 2020;61:51–61. doi: 10.1111/jcpp.13114.
    1. Mogadam A, et al. Magnetoencephalographic (MEG) brain activity during a mental flexibility task suggests some shared neurobiology in children with neurodevelopmental disorders. J. Neurodev. Disord. 2019;11:19. doi: 10.1186/s11689-019-9280-2.
    1. Steimke R, et al. Salience network dynamics underlying successful resistance of temptation. Soc. Cogn. Affect. Neurosci. 2017;12:1928–1939. doi: 10.1093/scan/nsx123.
    1. Geurts HM, Corbett B, Solomon M. The paradox of cognitive flexibility in autism. Trends Cognit. Sci. 2009;13:74–82. doi: 10.1016/j.tics.2008.11.006.
    1. Strang JF, et al. The Flexibility Scale: development and preliminary validation of a cognitive flexibility measure in children with autism spectrum disorders. J. Autism Dev. Disord. 2017;47:2502–2518. doi: 10.1007/s10803-017-3152-y.
    1. Luna B, Paulsen DJ, Padmanabhan A, Geier C. The teenage brain: cognitive control and motivation. Curr. Dir. Psychol. Sci. 2013;22:94–100. doi: 10.1177/0963721413478416.
    1. Casey BJ, Jones R, Hare T. The adolescent brain. The year in cognitive neuroscience. Ann. NY Acad. Sci. 2008;11:84–94.
    1. Hauser TU, Iannaccone R, Walitza S, Brandeis D, Brem S. Cognitive flexibility in adolescence: neural and behavioral mechanisms of reward prediction error processing in adaptive decision making during development. Neuroimage. 2015;104:347–354. doi: 10.1016/j.neuroimage.2014.09.018.
    1. Burrows CA, Timpano KR, Uddin LQ. Putative brain networks underlying repetitive negative thinking and comorbid internalizing problems in autism. Clin. Psychol. Sci. 2017;5:522–536. doi: 10.1177/2167702616683506.
    1. Akkermans SEA, et al. Frontostriatal functional connectivity correlates with repetitive behaviour across autism spectrum disorder and obsessive–compulsive disorder. Psychol. Med. 2019;49:2247–2255. doi: 10.1017/S0033291718003136.
    1. Gu B-M, et al. Neural correlates of cognitive inflexibility during task-switching in obsessive-compulsive disorder. Brain. 2008;131:155–164. doi: 10.1093/brain/awm277.
    1. Gruner P, Pittenger C. Cognitive inflexibility in obsessive-compulsive disorder. Neuroscience. 2017;345:243–255. doi: 10.1016/j.neuroscience.2016.07.030.
    1. Weinberger DR. Schizophrenia and the frontal lobe. Trends Neurosci. 1988;11:367–370. doi: 10.1016/0166-2236(88)90060-4.
    1. Cavallaro R, et al. Basal-corticofrontal circuits in schizophrenia and obsessive-compulsive disorder: a controlled, double dissociation study. Biol. Psychiatry. 2003;54:437–443. doi: 10.1016/S0006-3223(02)01814-0.
    1. Waltz JA. The neural underpinnings of cognitive flexibility and their disruption in psychotic illness. Neuroscience. 2017;345:203–217. doi: 10.1016/j.neuroscience.2016.06.005.
    1. Hakun JG, Zhu Z, Johnson NF, Gold BT. Evidence for reduced efficiency and successful compensation in older adults during task switching. Cortex. 2015;64:352–362. doi: 10.1016/j.cortex.2014.12.006.
    1. Spreng RN, Turner GR. The shifting architecture of cognition and brain function in older adulthood. Perspect. Psychol. Sci. 2019;14:523–542. doi: 10.1177/1745691619827511.
    1. Heckner, M. K. et al. The aging brain and executive functions revisited: implications from meta-analytic and functional connectivity evidence. J. Cogn. Neurosci. 1–36 (2020).
    1. Naik S, Banerjee A, Bapi RS, Deco G, Roy D. Metastability in senescence. Trends Cogn. Sci. 2017;21:509–521. doi: 10.1016/j.tics.2017.04.007.
    1. McDonald AP, D’Arcy RCN, Song X. Functional MRI on executive functioning in aging and dementia: a scoping review of cognitive tasks. Aging Med. 2018;1:209–219. doi: 10.1002/agm2.12037.
    1. Robbins TW, Cools R. Cognitive deficits in Parkinson’s disease: a cognitive neuroscience perspective. Mov. Disord. 2014;29:597–607. doi: 10.1002/mds.25853.
    1. Lange F, Seer C, Kopp B. Cognitive flexibility in neurological disorders: cognitive components and event-related potentials. Neurosci. Biobehav. Rev. 2017;83:496–507. doi: 10.1016/j.neubiorev.2017.09.011.
    1. Townley RA, et al. Progressive dysexecutive syndrome due to Alzheimer’s disease: a description of 55 cases and comparison to other phenotypes. Brain Commun. 2020 doi: 10.1093/braincomms/fcaa068.
    1. Ueltzhöffer K, Armbruster-Genç DJN, Fiebach CJ. Stochastic dynamics underlying cognitive stability and flexibility. PLoS Comput. Biol. 2015;11:e1004331. doi: 10.1371/journal.pcbi.1004331.
    1. Clark L, Cools R, Robbins TW. The neuropsychology of ventral prefrontal cortex: decision-making and reversal learning. Brain Cognition. 2004;55:41–53. doi: 10.1016/S0278-2626(03)00284-7.
    1. Evers EAT, et al. Serotonergic modulation of prefrontal cortex during negative feedback in probabilistic reversal learning. Neuropsychopharmacology. 2005;30:1138–1147. doi: 10.1038/sj.npp.1300663.
    1. Cools R, Barker RA, Sahakian BJ, Robbins TW. L-Dopa medication remediates cognitive inflexibility, but increases impulsivity in patients with Parkinson’s disease. Neuropsychologia. 2003;41:1431–1441. doi: 10.1016/S0028-3932(03)00117-9.
    1. Martino AD, Di Martino A, Melis G, Cianchetti C, Zuddas A. Methylphenidate for pervasive developmental disorders: safety and efficacy of acute single dose test and ongoing therapy: an open-pilot study. J. Child. Adolesc. Psychopharmacol. 2004;14:207–218. doi: 10.1089/1044546041649011.
    1. Rajala AZ, Populin LC, Jenison RL. Methylphenidate affects task-switching and neural signaling in non-human primates. Psychopharmacology. 2020;237:1533–1543. doi: 10.1007/s00213-020-05478-z.
    1. Bell T, Lindner M, Langdon A, Mullins PG, Christakou A. Regional striatal cholinergic involvement in human behavioral flexibility. J. Neurosci. 2019;39:5740–5749. doi: 10.1523/JNEUROSCI.2110-18.2019.
    1. Prado VF, Janickova H, Al-Onaizi MA, Prado MAM. Cholinergic circuits in cognitive flexibility. Neuroscience. 2017;345:130–141. doi: 10.1016/j.neuroscience.2016.09.013.
    1. Melby-Lervåg M, Hulme C. Is working memory training effective? A meta-analytic review. Dev. Psychol. 2013;49:270–291. doi: 10.1037/a0028228.
    1. Johann VE, Karbach J. Effects of game-based and standard executive control training on cognitive and academic abilities in elementary school children. Dev. Sci. 2020;23:197. doi: 10.1111/desc.12866.
    1. Vries M, de, de Vries M, Prins PJM, Schmand BA, Geurts HM. Working memory and cognitive flexibility-training for children with an autism spectrum disorder: a randomized controlled trial. J. Child. Psychol. Psychiatry. 2015;56:566–576. doi: 10.1111/jcpp.12324.
    1. Kenworthy L, et al. Randomized controlled effectiveness trial of executive function intervention for children on the autism spectrum. J. Child. Psychol. Psychiatry. 2014;55:374–383. doi: 10.1111/jcpp.12161.
    1. Nguyen L, Murphy K, Andrews G. Cognitive and neural plasticity in old age: a systematic review of evidence from executive functions cognitive training. Ageing Res. Rev. 2019;53:100912. doi: 10.1016/j.arr.2019.100912.
    1. Gaál ZA, Czigler I. Task-switching training and transfer. J. Psychophysiol. 2018;32:106–130. doi: 10.1027/0269-8803/a000189.
    1. Diamond A, Ling DS. Conclusions about interventions, programs, and approaches for improving executive functions that appear justified and those that, despite much hype, do not. Dev. Cogn. Neurosci. 2016;18:34–48. doi: 10.1016/j.dcn.2015.11.005.
    1. Firth J, et al. Effect of aerobic exercise on hippocampal volume in humans: a systematic review and meta-analysis. Neuroimage. 2018;166:230–238. doi: 10.1016/j.neuroimage.2017.11.007.
    1. Meijer A, et al. Cardiovascular fitness and executive functioning in primary school-aged children. Dev. Sci. 2020 doi: 10.1111/desc.13019.
    1. Stillman CM, Esteban-Cornejo I, Brown B, Bender CM, Erickson KI. Effects of exercise on brain and cognition across age groups and health states. Trends Neurosci. 2020;43:533–543. doi: 10.1016/j.tins.2020.04.010.
    1. Bialystok E, Craik FIM, Luk G. Bilingualism: consequences for mind and brain. Trends Cogn. Sci. 2012;16:240–250. doi: 10.1016/j.tics.2012.03.001.
    1. Carlson SM, Meltzoff AN. Bilingual experience and executive functioning in young children. Dev. Sci. 2008;11:282–298. doi: 10.1111/j.1467-7687.2008.00675.x.
    1. Rodríguez-Pujadas A, et al. Bilinguals use language-control brain areas more than monolinguals to perform non-linguistic switching tasks. PLoS ONE. 2013;8:e73028. doi: 10.1371/journal.pone.0073028.
    1. Buchweitz A, Prat C. The bilingual brain: flexibility and control in the human cortex. Phys. Life Rev. 2013;10:428–443. doi: 10.1016/j.plrev.2013.07.020.
    1. Hartanto A, Toh WX, Yang H. Bilingualism narrows socioeconomic disparities in executive functions and self-regulatory behaviors during early childhood: evidence from the early childhood longitudinal study. Child. Dev. 2019;90:1215–1235. doi: 10.1111/cdev.13032.
    1. Dick AS, et al. No evidence for a bilingual executive function advantage in the ABCD study. Nat. Hum. Behav. 2019;3:692–701. doi: 10.1038/s41562-019-0609-3.
    1. Nichols ES, Wild CJ, Stojanoski B, Battista ME, Owen AM. Bilingualism affords no general cognitive advantages: a population study of executive function in 11,000 people. Psychol. Sci. 2020;31:548–567. doi: 10.1177/0956797620903113.
    1. Dash T, Berroir P, Joanette Y, Ansaldo AI. Alerting, orienting, and executive control: the effect of bilingualism and age on the subcomponents of attention. Front. Neurol. 2019;10:1122. doi: 10.3389/fneur.2019.01122.
    1. Costumero V, et al. A cross-sectional and longitudinal study on the protective effect of bilingualism against dementia using brain atrophy and cognitive measures. Alzheimers. Res. Ther. 2020;12:11. doi: 10.1186/s13195-020-0581-1.
    1. Gabrys RL, Tabri N, Anisman H, Matheson K. Cognitive control and flexibility in the context of stress and depressive symptoms: the cognitive control and flexibility questionnaire. Front. Psychol. 2018;9:2219. doi: 10.3389/fpsyg.2018.02219.
    1. Martin MM, Rubin RB. A new measure of cognitive flexibility. Psychol. Rep. 1995;76:623–626. doi: 10.2466/pr0.1995.76.2.623.
    1. Ben-Itzhak S, Bluvstein I, Maor M. The Psychological Flexibility Questionnaire (PFQ): development, reliability and validity. WebmedCentral Psychol. 2014 doi: 10.9754/journal.wmc.2014.004606.
    1. Kenworthy L, et al. Preliminary psychometrics for the executive function challenge task: a novel, ‘hot’ flexibility, and planning task for youth. J. Int. Neuropsychol. Soc. 2020;26:725–732. doi: 10.1017/S135561772000017X.
    1. Zelazo P. D., C. W. A. Executive function: mechanisms underlying emotion regulation. in Handbook of Emotion Regulation (ed. Gross, J. J.) 135–158 (Guilford, 2007).
    1. Goodkind M, et al. Identification of a common neurobiological substrate for mental illness. JAMA Psychiatry. 2015;72:305–315. doi: 10.1001/jamapsychiatry.2014.2206.
    1. Huys QJM, Maia TV, Frank MJ. Computational psychiatry as a bridge from neuroscience to clinical applications. Nat. Neurosci. 2016;19:404–413. doi: 10.1038/nn.4238.
    1. Bolt T, Nomi JS, Yeo BTT, Uddin LQ. Data-driven extraction of a nested model of human brain function. J. Neurosci. 2017;37:7263–7277. doi: 10.1523/JNEUROSCI.0323-17.2017.
    1. Finc K, et al. Dynamic reconfiguration of functional brain networks during working memory training. Nat. Commun. 2020;11:2435. doi: 10.1038/s41467-020-15631-z.
    1. Allen EA, et al. Tracking whole-brain connectivity dynamics in the resting state. Cereb. Cortex. 2014;24:663–676. doi: 10.1093/cercor/bhs352.
    1. Berg EA. A simple objective technique for measuring flexibility in thinking. J. Gen. Psychol. 1948;39:15–22. doi: 10.1080/00221309.1948.9918159.
    1. Grant DA, Berg EA. Wisconsin Card Sorting Test. PsycTESTS Dataset. 2014 doi: 10.1037/t31298-000.
    1. Bartolo R, Averbeck BB. Prefrontal cortex predicts state switches during reversal learning. Neuron. 2020;106:1044–1054. doi: 10.1016/j.neuron.2020.03.024.
    1. Kenett YN, et al. Developing a neurally informed ontology of creativity measurement. Neuroimage. 2020;221:117166. doi: 10.1016/j.neuroimage.2020.117166.
    1. Wu X, et al. A meta-analysis of neuroimaging studies on divergent thinking using activation likelihood estimation. Hum. Brain Mapp. 2015;36:2703–2718. doi: 10.1002/hbm.22801.
    1. Sunavsky A, Poppenk J. Neuroimaging predictors of creativity in healthy adults. Neuroimage. 2020;206:116292. doi: 10.1016/j.neuroimage.2019.116292.
    1. Becker M, Sommer T, Kühn S. Inferior frontal gyrus involvement during search and solution in verbal creative problem solving: a parametric fMRI study. Neuroimage. 2020;206:116294. doi: 10.1016/j.neuroimage.2019.116294.

Source: PubMed

3
订阅