Stem Cell Surgery and Growth Factors in Retinitis Pigmentosa Patients: Pilot Study after Literature Review

Paolo Giuseppe Limoli, Enzo Maria Vingolo, Celeste Limoli, Marcella Nebbioso, Paolo Giuseppe Limoli, Enzo Maria Vingolo, Celeste Limoli, Marcella Nebbioso

Abstract

To evaluate whether grafting of autologous mesenchymal cells, adipose-derived stem cells, and platelet-rich plasma into the supracoroideal space by surgical treatment with the Limoli retinal restoration technique (LRRT) can exert a beneficial effect in retinitis pigmentosa (RP) patients. Twenty-one eyes underwent surgery and were divided based on retinal foveal thickness (FT) ≤ 190 or > 190 µm into group A-FT and group B-FT, respectively. The specific LRRT triad was grafted in a deep scleral pocket above the choroid of each eye. At 6-month follow-up, group B showed a non-significant improvement in residual close-up visus and sensitivity at microperimetry compared to group A. After an in-depth review of molecular biology studies concerning degenerative phenomena underlying the etiopathogenesis of retinitis pigmentosa (RP), it was concluded that further research is needed on tapeto-retinal degenerations, both from a clinical and molecular point of view, to obtain better functional results. In particular, it is necessary to increase the number of patients, extend observation timeframes, and treat subjects in the presence of still trophic retinal tissue to allow adequate biochemical and functional catering.

Keywords: autograft; embryonic stem cells (ESCs); growth factor (GF); hereditary retinal disease; induced pluripotent stem cells (iPSCs); limoli retinal restoration technique (LRRT); mesenchymal stem cell (MSC); retinitis pigmentosa; spectral domain-optical coherence tomography (SD-OCT).

Conflict of interest statement

The authors declare no conflicts of interest.

Figures

Figure 1
Figure 1
The suprachoroidal autograft obtained by the Limoli retinal restoration technique (LRRT) allows placing adipose stromal cells, adipose tissue-derived stem cells (ADSCs), and platelets (PLTs), obtained from PLT-rich plasma (PRP), close to the choroid. The production of growth factors (GFs), typical of these cells is poured directly into the choroidal flow, helping to maintain retinal cell trophism.
Figure 2
Figure 2
The best corrected visual acuity (BCVA), in logarithm of the minimum angle of resolution (logMAR) units, was stable after suprachoroidal autograft or increased (+4.51%) in patients with foveal thickness (FT) >190 µm (13 eyes) (B-FT group, green bars). LRRT: Limoli retinal restoration technique; T0: Baseline; T180: At 6 months from surgery. A-FT group with FT ≤190 µm (8 eyes, blue bars).
Figure 3
Figure 3
Close-up visus, in points (pts), change post-Limoli retinal restoration technique (LRRT) depending on foveal thickness (FT). Six months after surgery (T180) from the baseline (T0), close-up visus was stable in group A-FT (FT ≤ 190 µm, blue bars) and increased in group B-FT (FT > 190 µm, green bars). The increase was + 20.79%, corresponding to useful reading area (6–10 pts: Book, journal, etc.). Average at T0 was 25.88 (±20.28 SD) and at T180 was 26.13 (±21.03 SD) in group A-FT. Average at T0 was 15.15 (±5.85 SD) and at T180 was 12.00 (±4.00 SD) in group B-FT.
Figure 4
Figure 4
At 6 months (T180) from Limoli retinal restoration technique (LRRT), there was a more relevant to, +32.70%, for sensitivity in the group with foveal thickness (FT) > 190 µm (B-FT, green bars). Sensitivity in group A-FT (blue bars) was +15.41%. Average at T0 was 5.45 (±6.79 SD) and at T180 was 6.29 (±8.10 SD) in group A-FT. Average at T0 was 3.15 (±6.44 SD) and at T180 was 4.18 (±7.78 SD) in group B-FT.
Figure 5
Figure 5
Retinitis pigmentosa (RP) patient with thinner foveal thickness (FT) A) The retinal cell population is small, foveal structures are often dystrophic, and the photoreceptor/retinal pigment epithelium/Bruch’s membrane/choriocapillaris complex is no longer recognizable. (B,C) The microperimetric sensitivity after surgery changed from 2 to 1.4 dB, and best corrected visual acuity (BCVA) changed from 0.097 to 0.155 logarithm of the minimum angle of resolution (logMAR).
Figure 6
Figure 6
Retinitis pigmentosa (RP) patient with foveal thickness (FT) > 190 µm (group B-FT). (A) The retinal cell population is large, foveal structures are still intact, and the photoreceptor/retinal pigment epithelium/Bruch’s membrane/choriocapillaris complex is recognizable. (B,C) The microperimetric sensitivity after surgery changed from 14.41 to 16.61 dB and bivariate contour ellipse area (BCEA) (see central oval circles), used for fixation stability evaluation, changed from 2.0 to 0.9 using microperimetry (MY) device. Best corrected visual acuity (BCVA) changed from 0.045 to 0.000 logmar of the minimum angle of resolution (logMAR).
Figure 7
Figure 7
Retinitis pigmentosa (RP) patient compliance analysis at 6 months post-surgery depending on foveal thickness (FT). Compliance was good in 71.43% of all cases (groups A-FT and B-FT). Patients reported seeing better, but the percentage reached 84.62% in those with FT > 190 µm. In the improved group, 11 eyes (73.33%) belonged to group B-FT (green bars), and 4 (26.67%) to group A-FT (blue bars).

References

    1. Hartong D.T., Berson E.L., Dryja T.P. Retinitis pigmentosa. Lancet. 2006;368:1795–1809. doi: 10.1016/S0140-6736(06)69740-7.
    1. Hamel C. Retinitis pigmentosa. Orphanet J. Rare Dis. 2006;1:40. doi: 10.1186/1750-1172-1-40.
    1. Birch D.G., Anderson J.L., Fish G.E. Yearly rates of rod and cone functional loss in retinitis pigmentosa and cone-rod dystrophy. Ophthalmology. 1999;106:258–268. doi: 10.1016/S0161-6420(99)90064-7.
    1. Pagon R.A. Retinitis pigmentosa. Surv. Ophthalmol. 1988;33:137–177. doi: 10.1016/0039-6257(88)90085-9.
    1. Campochiaro P.A., Mir T.A. The mechanism of cone cell death in retinitis pigmentosa. Prog. Retin. Eye Res. 2018;62:24–37. doi: 10.1016/j.preteyeres.2017.08.004.
    1. Grover S., Fishman G.A., Alexander K.R., Anderson R.J., Derlacki D.J. Visual acuity impairment in patients with retinitis pigmentosa. Ophthalmology. 1996;103:1593–1600. doi: 10.1016/S0161-6420(96)30458-2.
    1. McCulloch D.L., Marmor M.F., Brigell M.G., Hamilton R., Holder G.E., Tzekov R., Bach M. ISCEV Standard for full-field clinical electroretinography. Doc. Ophthalmol. 2015;130:1–12. doi: 10.1007/s10633-014-9473-7.
    1. Liu G., Liu X., Li H., Du Q., Wang F. Optical coherence tomographic analysis of retina in retinitis pigmentosa patients. Ophthalmic Res. 2016;56:111–122. doi: 10.1159/000445063.
    1. Leveillard T., Mohand-Said S., Lorentz O., Hicks D., Fintz A.C., Clerin E., Simonutti M., Forster V., Cavusoglu N., Chalmel F., et al. Identification and characterization of rod-derived cone viability factor. Nat. Genet. 2004;36:755–759. doi: 10.1038/ng1386.
    1. Smith L.E.H. Bone marrow–derived stem cells preserve cone vision in retinitis pigmentosa. J. Clin. Investig. 2004;114:755–757. doi: 10.1172/JCI22930.
    1. Uteza Y., Rouillot J.S., Kobetz A., Marchant D., Pecqueur S., Arnaud E., Prats H., Honiger J., Dufier J.L., Abitbol M., et al. Intravitreous transplantation of encapsulated fibroblasts secreting the human fibroblast growthfactor 2 delays photoreceptor cell degeneration in Royal College of surgeons rats. Proc. Natl. Acad. Sci. USA. 1999;96:3126–3131. doi: 10.1073/pnas.96.6.3126.
    1. McGee Sanftner L.H., Abel H., Hauswirth W.W., Flannery J.G. Glial cell line derived neurotrophic factor delays photoreceptor degeneration in a transgenic rat model of retinitis pigmentosa. Mol. Ther. 2001;4:622–629. doi: 10.1006/mthe.2001.0498.
    1. Bonfiglio V., Reibaldi M., Fallico M., Russo A., Pizzo A., Fichera S., Rapisarda C., Macchi I., Avitabile T., Longo A. Widening use of dexamethasone implant for the treatment of macular edema. Drug Des. Dev. Ther. 2017;11:2359–2372. doi: 10.2147/DDDT.S138922.
    1. Jones M.K., Lu B., Girman S., Wang S. Cell-based therapeutic strategies for replacement and preservation in retinal degenerative diseases. Prog. Retin. Eye Res. 2017;58:1–27. doi: 10.1016/j.preteyeres.2017.01.004.
    1. Otani A., Dorrell M.I., Kinder K., Moreno S.K., Nusinowitz S., Banin E., Heckenlively J., Friedlander M. Rescue of retinal degeneration by intravitreally injected adult bone marrow–derived lineage-negative hematopoietic stem cells. J. Clin. Investig. 2004;114:765–774. doi: 10.1172/JCI200421686.
    1. Liang F.Q., Aleman T.S., Dejneka N.S., Dudus L., Fisher K.J., Maguire A.M., Jacobson S.G., Bennett J. Long-term protection of retinal structure but not function using RAAV. CNTF in animal models of retinitis pigmentosa. Mol. Ther. 2001;4:461–472. doi: 10.1006/mthe.2001.0473.
    1. Guadagni V., Novelli E., Strettoi E. Environmental enrichment reduces photoreceptor degeneration and retinal inflammation in a mouse model of retinitis pigmentosa. Investig. Ophthalmol. Vis. Sci. 2015;56:4261.
    1. Idelson M., Alper R., Obolensky A., Ben-Shushan E., Hemo I., Yachimovich-Cohen N., Khaner H., Smith Y., Wiser O., Gropp M., et al. Directed differentiation of human embryonic stem cells into functional retinal pigment epithelium cells. Cell Stem. Cell. 2009;5:396–408. doi: 10.1016/j.stem.2009.07.002.
    1. Klassen H. Stem cells in clinical trials for treatment of retinal degeneration. Expert Opin. Biol. Ther. 2015;16:7–14. doi: 10.1517/14712598.2016.1093110.
    1. Takahashi K., Yamanaka S. Induced pluripotent stem cells in medicine and biology. Development. 2013;140:2457–2461. doi: 10.1242/dev.092551.
    1. Ding S.L.S., Kumar S., Mok P.L. Cellular reparative mechanisms of mesenchymal stem cells for retinal diseases. Int. J. Mol. Sci. 2017;18:1406. doi: 10.3390/ijms18081406.
    1. Romanov Y.A., Darevskaya A.N., Merzlikina N.V., Buravkova L.B. Mesenchymal stem cells from human bone marrow and adipose tissue: Isolation, characterization, and differentiation potentialities. Bull. Exp. Biol. Med. 2005;140:138–143. doi: 10.1007/s10517-005-0430-z.
    1. Lindroos B., Suuronen R., Miettinen S. The potential of adipose stem cells in regenerative medicine. Stem Cell Rev. Rep. 2011;7:269–291. doi: 10.1007/s12015-010-9193-7.
    1. Baddour J.A., Sousounis K., Tsonis P.A. Organ repair and regeneration: An overview. Birth Defects Res. C. 2012;96:1–29. doi: 10.1002/bdrc.21006.
    1. Kawamura A., Miyagawa S., Fukushima S., Kawamura T., Kashiyama N., Ito E., Masuda S., Toda K., Hatazawa J., Morii E., et al. Teratocarcinomas arising from allogeneic induced pluripotent stem cell-derived cardiac tissue constructs provoked host immune rejection in mice. Sci. Rep. 2016;6:19464. doi: 10.1038/srep19464.
    1. Itakura G., Kobayashi Y., Nishimura S., Iwai H., Takano M., Iwanami A., Toyama Y., Okano H., Nakamura M. Controlling immune rejection is a fail-safe system against potential tumorigenicity after human iPSC-derived neural stem cell transplantation. PLoS ONE. 2015;10:e0116413. doi: 10.1371/journal.pone.0116413.
    1. Rezanejad H., Soheili Z.S., Haddad F., Matin M.M., Samiei S., Manafi A., Ahmadieh H. In vitro differentiation of adipose-tissue-derived mesenchymal stem cells into neural retinal cells through expression of human PAX6 (5a) gene. Cell Tissue Res. 2014;356:65–75. doi: 10.1007/s00441-014-1795-y.
    1. Cui Y., Xu N., Xu W., Xu G. Mesenchymal stem cells attenuate hydrogen peroxide-induced oxidative stress and enhance neuroprotective effects in retinal ganglion cells. Vitr. Cell Dev. Biol. Anim. 2016;53:328–335. doi: 10.1007/s11626-016-0115-0.
    1. Kim K.S., Park J.M., Kong T.H., Kim C., Bae S.H., Kim H.W., Moon J. Retinal angiogenesis effects of TGF-ß1 and paracrine factors secreted from human placental stem cells in response to a pathological environment. Cell Transplant. 2016;25:1145–1157. doi: 10.3727/096368915X688263.
    1. Zhao P.T., Zhang L.J., Shao H., Bai L.L., Yu B., Su C., Dong L.J., Liu X., Li X.R., Zhang X.M. Therapeutic effects of mesenchymal stem cells administered at later phase of recurrent experimental autoimmune uveitis. Int. J. Ophthalmol. 2016;9:1381–1389.
    1. Limoli P.G., Vingolo E.M., Limoli C., Scalinci S.Z., Nebbioso M. Regenerative therapy by suprachoroidal cell autograft in dry age-related macular degeneration: Preliminary in vivo report. J. Vis. Exp. 2018;132:56469. doi: 10.3791/56469.
    1. Limoli P.G., Vingolo E.M., Morales M.U., Nebbioso M., Limoli C. Preliminary study on electrophysiological changes after cellular autograft in age-related macular degeneration. Medicine. 2014;93:355. doi: 10.1097/MD.0000000000000355.
    1. Limoli P.G., Limoli C., Vingolo E.M., Scalinci S.Z., Nebbioso M. Cell surgery and growth factors in dry age-related macular degeneration: Visual prognosis and morphological study. Oncotarget. 2016;7:46913–46923. doi: 10.18632/oncotarget.10442.
    1. Limoli P.G., Carpi R., Tassi F., Vingolo E.M., D’Amato L.M., Giacomotti E., Solari R., Di Corato R. Prognostic standard in growth factors teraphy. Investig. Ophthalmol. Vis. Sci. 2012;53:277.
    1. Bakondi B., Girman S., Lu B., Wang S. Multimodal delivery of isogenic mesenchymal stem cells yields synergistic protection from retinal degeneration and vision loss. Stem Cells Transl. Med. 2017;6:444–457. doi: 10.5966/sctm.2016-0181.
    1. Wang P., Mariman E., Renes J., Keijer J. The secretory function of adipocytes in the physiology of white adipose tissue. J. Cell Physiol. 2008;216:3–13. doi: 10.1002/jcp.21386.
    1. Trayhurn P., Beattie J.H. Physiological role of adipose tissue: White adipose tissue as an endocrine and secretory organ. Proc. Nutr. Soc. 2001;60:329–339. doi: 10.1079/PNS200194.
    1. Tilg H., Moschen A. Adipocytokines: Mediators linking adipose tissue, inflammation and immunity. Nat. Rev. Immunol. 2006;6:772–783. doi: 10.1038/nri1937.
    1. Schaffler A., Buchler C. Concise review: Adipose tissue-derived stromal cells-basic and clinical implications for novel cell-based therapies. Stem Cells. 2007;25:818–882. doi: 10.1634/stemcells.2006-0589.
    1. Mizuno H. Adipose-derived stem cells for tissue repair and regeneration: Ten years of research and a literature review. J. Nippon Med. Sch. 2009;76:56–66. doi: 10.1272/jnms.76.56.
    1. Anitua E., Andia I., Ardanza B., Nurden P., Nurden A.T. Autologous platelets as a source of proteins for healing and tissue regeneration. Thromb. Haemost. 2004;91:4–15. doi: 10.1160/TH03-07-0440.
    1. Qureshi A.H., Chaoji V., Maiguel D., Faridi M.H., Barth C.J., Salem S.M., Singhal M., Stoub D., Krastins B., Ogihara M., et al. Proteomic and phospho-proteomic profile of human platelets in basal, resting state: Insights into integrin signaling. PLoS ONE. 2009;4:e7627. doi: 10.1371/journal.pone.0007627.
    1. Limoli P., editor. Limoli Retina Regeneration Tecnique. FGE Reg. San Giovanni 40; Canelli, Italy: 2014. The retinal cell-neuroregeneration. Principles, applications and perspectives; pp. 159–206.
    1. Garcia T.B., Hollborn M., Bringmann A. Expression and signaling of NGF in the healthy and injured retina. Cytokine Growth Factor Rev. 2017;34:43–57. doi: 10.1016/j.cytogfr.2016.11.005.
    1. Kalucka J., Missiaen R., Georgiadou M., Schoors S., Lange C., De Bock K., Dewerchin M., Carmeliet P. Metabolic control of the cell cycle. Cell Cycle. 2015;14:3379–3388. doi: 10.1080/15384101.2015.1090068.
    1. Mahmoudifar N., Doran P.M. Mesenchymal stem cells derived from human adipose tissue. Methods Mol. Biol. 2015;1340:53–64. doi: 10.1007/978-1-4939-2938-2_4.
    1. Mou S., Zhou M., Li Y., Wang J., Yuan Q., Xiao P., Sun J., Wang Z. Extracellular vesicles from human adipose derived stem cells for the improvement of angiogenesis and fat grafting application. Plast. Reconstr. Surg. 2019;144:869–880. doi: 10.1097/PRS.0000000000006046.
    1. Yu D.Y., Cringle S.J. Retinal degeneration and local oxygen metabolism. Exp. Eye Res. 2005;80:745–751. doi: 10.1016/j.exer.2005.01.018.
    1. Punzo C., Xiong W., Cepko C.L. Loss of daylight vision in retinal degeneration: Are oxidative stress and metabolic dysregulation to blame? J. Biol. Chem. 2012;287:1642–1648. doi: 10.1074/jbc.R111.304428.
    1. Campochiaro P.A., Strauss R.W., Lu L., Hafiz G., Wolfson Y., Shah S.M., Sophie R., Mir T.A., Scholl H.P. Is there excess oxidative stress and damage in eyes of patients with retinitis pigmentosa? Antioxid. Redox Signal. 2015;23:643–648. doi: 10.1089/ars.2015.6327.
    1. Yamada H., Yamada E., Ando A., Esumi N., Bora N., Saikia J., Sung C.H., Zack D.J., Campochiaro P.A. Fibroblast growth factor-2 decreases hyperoxia-induced photoreceptor cell death in mice. Am. J. Pathol. 2001;159:1113–1120. doi: 10.1016/S0002-9440(10)61787-7.
    1. Okoye G., Zimmer J., Sung J., Gehlbach P., Deering T., Nambu H., Hackett S., Melia M., Esumi N., Zack D.J., et al. Increased expression of brain-derived neurotrophic factor preserves retinal function and slows cell death from rhodopsin mutation or oxidative damage. J. Neurosci. 2003;23:4164–4172. doi: 10.1523/JNEUROSCI.23-10-04164.2003.
    1. Yang Y., Mohand-Said S., Danan A., Simonutti M., Fontaine V., Clerin E., Picaud S., Léveillard T., Sahel J.A. Functional cone rescue by RdCVF protein in a dominant model of retinitis pigmentosa. Mol. Ther. 2009;17:787–795. doi: 10.1038/mt.2009.28.
    1. Aït-Ali N., Fridlich R., Millet-Puel G., Clérin E., Delalande F., Jaillard C., Blond F., Perrocheau L., Reichman S., Byrne L.C., et al. Rod-derived cone viability factor promotes cone survival by stimulating aerobic glycolysis. Cell. 2015;161:817–832. doi: 10.1016/j.cell.2015.03.023.
    1. Byrne L.C., Dalkara D., Luna G., Fisher S.K., Clerin E., Sahel J.A., Leveillard T., Flannery J.G. Viral-mediated RdCVF and RdCVFL expression protects cone and rod photoreceptors in retinal degeneration. J. Clin. Investig. 2015;125:105–116. doi: 10.1172/JCI65654.
    1. Gupta N., Brown K.E., Milam A.H. Activated microglia in human retinitis pigmentosa, late-onset retinal degeneration, and age related macular degeneration. Exp. Eye Res. 2003;76:463–471. doi: 10.1016/S0014-4835(02)00332-9.
    1. Zeng H.Y., Zhu X.A., Zhang C., Yang L.P., Wu L.M., Tso M.O.M. Identification of sequential events and factors associated with microglial activation, migration, and cytotoxicity in retinal degeneration in rd mice. Investig. Ophthalmol. Vis. Sci. 2005;46:2992–2999. doi: 10.1167/iovs.05-0118.
    1. Morohoshi K., Goodwin A.M., Ohbayashi M., Ono S.J. Autoimmunity in retinal degeneration: Autoimmune retinopathy and age related macular degeneration. J. Autoimmun. 2009;33:247–254. doi: 10.1016/j.jaut.2009.09.003.
    1. Nagineni C.N., Samuel W., Nagineni S., Pardhasaradhi K., Wiggert B., Detrick B., Hooks J.J. Transforming growth factor-beta induces expression of vascular endothelial growth factor in human retinal pigment epithelial cells: Involvement of mitogen-activated protein kinases. J. Cell Physiol. 2003;197:453–462. doi: 10.1002/jcp.10378.
    1. Nagineni C.N., Kutty V., Detrick B., Hooks J.J. Expression of PDGF and their receptors in human retinal pigment epithelial cells and fibroblasts: Regulation by TGF-beta. J. Cell Physiol. 2005;203:35–43. doi: 10.1002/jcp.20213.
    1. Hooks J.J., Nagineni C.N., Hooper L.C., Hayashi K., Detrick B. IFN-beta provides immuno-protection in the retina by inhibiting ICAM-1 and CXCL9 in retinal pigment epithelial cells. J. Immunol. 2008;180:3789–3796. doi: 10.4049/jimmunol.180.6.3789.
    1. Di Pierdomenico J., García-Ayuso D., Agudo-Barriuso M., Vidal-Sanz M., Villegas-Pérez M.P. Role of microglial cells in photoreceptor degeneration. Neural Regen. Res. 2019;14:1186–1190. doi: 10.4103/1673-5374.251204.
    1. Langmann T. Microglia activation in retinal degeneration. J. Leukoc. Biol. 2007;81:1345–1351. doi: 10.1189/jlb.0207114.
    1. Boje K.M., Arora P.K. Microglial-produced nitric oxide and reactive nitrogen oxides mediate neuronal cell death. Brain Res. 1992;587:250–256. doi: 10.1016/0006-8993(92)91004-X.
    1. Yoshida N., Ikeda Y., Notomi S., Ishikawa K., Murakami Y., Hisatomi T., Enaida H., Ishibashi T. Laboratory evidence of sustained chronic inflammatory reaction in retinitis pigmentosa. Ophthalmology. 2013;120:5–12. doi: 10.1016/j.ophtha.2012.07.008.
    1. Lieberthal W., Triaca V., Koh J.S., Pagano P.J., Levine J.S. Role of superoxide in apoptosis induced by growth factor withdrawal. Am. J. Physiol. 1998;275:691–702. doi: 10.1152/ajprenal.1998.275.5.F691.
    1. Bost L.M., Aotaki-Keen A.E., Hjelmeland L.M. Cellular adhesion regulates bFGF gene expression in human retinal pigment epithelial cells. Exp. Eye Res. 1994;58:545–552. doi: 10.1006/exer.1994.1048.
    1. Sternfeld M.D., Robertson J.E., Shipley G.D., Tsai J., Rosenbaum J.T. Cultured human retinal pigment epithelial cells express basic fibroblast growth factor and its receptor. Curr. Eye Res. 1989;8:1029–1037. doi: 10.3109/02713688908997395.
    1. Tanihara H., Yoshida M., Matsumoto M., Yoshimura N. Identification of transforming growth factor beta expressed in cultured human retinal pigment epithelial cells. Investig. Ophthalmol. Vis. Sci. 1993;34:413–419.
    1. Slomiany M.G., Rosenzweig S.A. Autocrine effects of IGF-I-induced VEGF and IGFBP-3 secretion inretinal pigment epithelial cell line ARPE-19. Am. J. Physiol. Cell Physiol. 2004;287:746–753. doi: 10.1152/ajpcell.00568.2003.
    1. Walsh N., Valter K., Stone J. Cellular and subcellular patterns of expression of bFGF and CNTF in the normal and light stressed adult rat retina. Exp. Eye Res. 2001;72:495–501. doi: 10.1006/exer.2000.0984.
    1. Campochiaro P.A., Sugg R., Grotendorst G., Hjelmeland L.M. Retinal pigment epithelial cells produce PDGF-like proteins and secrete them into their media. Exp. Eye Res. 1989;49:217–227. doi: 10.1016/0014-4835(89)90092-4.
    1. Adamis A.P., Shima D.T., Yeo K.T., Yeo T.K., Brown L.F., Berse B., D’Amore P.A., Folkman J. Synthesis and secretion of vascular permeability factor/vascular endothelial growth factor by human retinal pigment epithelial cells. Biochem. Biophys. Res. Commun. 1993;193:631–638. doi: 10.1006/bbrc.1993.1671.
    1. Wenkel H., Streilein J.W. Evidence that retinal pigment epithelium functions as an immune-privileged tissue. Investig. Ophthalmol. Vis. Sci. 2000;41:3467–3473.
    1. Szegezdi E., Logue S.E., Gorman A.M., Samali A. Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep. 2006;7:880–885. doi: 10.1038/sj.embor.7400779.
    1. Zhang H., Wu F., Kong X., Yang J., Chen H., Deng L., Cheng Y., Ye L., Zhu S., Zhang X., et al. Nerve growth factor improves functional recovery by inhibiting endoplasmic reticulum stress-induced neuronal apoptosis in rats with spinal cord injury. J. Transl. Med. 2014;12:130. doi: 10.1186/1479-5876-12-130.
    1. Ezquer M., Urzua C.A., Montecino S., Leal K., Conget P., Ezquer F. Intravitreal administration of multipotent mesenchymal stromal cells triggers a cytoprotective microenvironment in the retina of diabetic mice. Stem Cell Res. Ther. 2016;7:42. doi: 10.1186/s13287-016-0299-y.
    1. Kim S.Y., Mocanu C., McLeod D.S., Bhutto I.A., Merges C., Eid M., Tong P., Lutty G.A. Expression of pigment epithelium-derived factor (PEDF) and vascular endothelial growth factor (VEGF) in sickle cell retina and choroid. Exp. Eye Res. 2003;77:433–445. doi: 10.1016/S0014-4835(03)00174-X.
    1. Atashi F., Jaconi M.E., Pittet-Cuénod B., Modarressi A. Autologous platelet-rich plasma: A biological supplement to enhance adipose-derived mesenchymal stem cell expansion. Tissue Eng. Part C Methods. 2015;21:253–262. doi: 10.1089/ten.tec.2014.0206.
    1. Marc R.E., Jones B.W. Retinal remodeling in inherited photoreceptor degenerations. Mol. Neurobiol. 2003;28:139–147. doi: 10.1385/MN:28:2:139.
    1. Eysteinsson T., Hardarson S.H., Bragason D., Stefánsson E. Retinal vessel oxygen saturation and vessel diameter in retinitis pigmentosa. Acta Ophthalmol. 2014;92:449–453. doi: 10.1111/aos.12359.
    1. Langham M.E., Kramer T. Decreased choroidal blood flow associated with retinitis pigmentosa. Eye. 1990;4:374–381. doi: 10.1038/eye.1990.50.
    1. Beutelspacher S.C., Serbecic N., Barash H., Burgansky-Eliash Z., Grinvald A., Krastel H., Jonas J.B. Retinal blood flow velocity measured by retinal function imaging in retinitis pigmentosa. Graefe’s Arch. Clin. Exp. Ophthalmol. 2011;249:1855–1858. doi: 10.1007/s00417-011-1757-y.
    1. Turksever C., Valmaggia C., Orgul S., Schorderet D.F., Flamme J., Todorova M.G. Retinal vessel oxygen saturation and Its correlation with structural changes in retinitis pigmentosa. Acta Ophthalmol. 2014;92:454–460. doi: 10.1111/aos.12379.
    1. Ayton L.N., Guymer H., Luu C.D. Choroidal thickness profiles in retinitis pigmentosa. Clin. Exp. Ophthalmol. 2013;41:396–403. doi: 10.1111/j.1442-9071.2012.02867.x.
    1. Murakami Y., Ikeda Y., Akiyama M., Fujiwara K., Yoshida N., Nakatake S., Notomi S., Nabeshima T., Hisatomi T., Enaida H., et al. Correlation between macular blood flow and central visual sensitivity in retinitis pigmentosa. Acta Ophthalmol. 2016;93:644–648. doi: 10.1111/aos.12693.
    1. Anitua E., Pelacho B., Prado R., Aguirre J.J., Sánchez M., Padilla S., Aranguren X.L., Abizanda G., Collantes M., Hernandez M., et al. Infiltration of plasma rich in growth factors enhances in vivo angiogenesis and improves reperfusion and tissue remodeling after severe hind limb ischemia. J. Control. Release. 2015;202:31–39. doi: 10.1016/j.jconrel.2015.01.029.
    1. Mammoto T., Jiang A., Jiang E., Mammoto A. Platelet rich plasma extract promotes angiogenesis through the angiopoietin1-Tie2 pathway. Microvasc. Res. 2013;89:15–24. doi: 10.1016/j.mvr.2013.04.008.
    1. Cavallotti C., Artico M., Pescosolido N., Leali F.M.T., Feher J. Age-related changes in the human retina. Can. J. Ophthalmol. 2004;39:61–68. doi: 10.1016/S0008-4182(04)80054-1.
    1. Cervelli V., Bocchini I., Di Pasquali C., De Angelis B., Cervelli G., Curcio C.B., Orlandi A., Scioli M.G., Tati E., Delogu P., et al. PRL platelet rich lipotransfert: Our experience and current state of art in the combined use of fat and PRP. Biomed. Res. Int. 2013;2013:434191. doi: 10.1155/2013/434191.

Source: PubMed

3
订阅