Differential Effects of Transcranial Direct Current Stimulation (tDCS) Depending on Previous Musical Training

Ana Sánchez-Kuhn, Cristian Pérez-Fernández, Margarita Moreno, Pilar Flores, Fernando Sánchez-Santed, Ana Sánchez-Kuhn, Cristian Pérez-Fernández, Margarita Moreno, Pilar Flores, Fernando Sánchez-Santed

Abstract

Previous studies have shown that transcranial direct current stimulation (tDCS) facilitates motor performance, but individual differences such as baseline performance seem to influence this effect. Accordingly, musicians offer an inter-individual differences model due to anatomical and functional variances displayed among the motor cortex regions. The aim of the present work was to study if the baseline motor skill predicts whether tDCS can enhance motor learning. For that objective, we administered anodal (n = 20) or sham (n = 20) tDCS on the right primary motor cortex region of 40 right-handed healthy participants, who were divided into four groups: musicians (tDCS/sham) and non-musicians (tDCS/sham). We measured the skill index (SI) presented in the sequential finger-tapping task (SEQTAP) at baseline, during three 20 min/2 mA stimulation sessions, and in follow-up tests after 20 min and 8 days. Depending on the normality of the data distribution, statistical differences were estimated by ANOVA and Bonferroni post hoc test or Kruskal-Wallis and U Mann-Whitney. Results showed that musicians scored higher in baseline performance than non-musicians. The non-musicians who received tDCS scored higher than the sham group in the first and second stimulation session. This effect was extended to the 20 min and 8 days follow-up test. In musicians, there was no effect of tDCS. The present method seems to be suitable for the achievement of positive and consolidated tDCS effects on motor learning in inexperienced participants, but not in musicians. These data may have an implication for the rehabilitation of motor impairments, contributing to more individualized stimulation protocols.

Keywords: individual differences; motor cortex; musicians; sequential finger tapping task; transcranial direct current stimulation.

Figures

FIGURE 1
FIGURE 1
Experimental procedure.
FIGURE 2
FIGURE 2
(A) Shows the mean ± SEM SI scores obtained by each of the four groups across the baseline test and the three sessions of tDCS/sham (S1, Session 1; S2, Session 2; S3, Session 3 (∗p ≤ 0.05). (B) Shows the mean ± SEM SI scores obtained by each of the four groups across in the 20-min follow-up test (p ≤ 0.05). (C) Shows the mean ± SEM SI scores obtained by each of the four groups in the 8th day follow-up test (p ≤ 0.05).

References

    1. Almeida D., Duarte C., Andre L., Grecco C., Galli M., Fregni F. (2014). Effect of transcranial direct-current stimulation combined with treadmill training on balance and functional performance in children with cerebral palsy: a double-blind randomized controlled Trial. PLoS One 9:e105777. 10.1371/journal.pone.0105777
    1. Antal A., Nitsche M. A., Kincses T. Z., Kruse W., Hoffmann K. P., Paulus W. (2004). Facilitation of visuo-motor learning by transcranial direct current stimulation of the motor and extrastriate visual areas in humans. Eur. J. Neurosci. 19 2888–2892. 10.1111/j.1460-9568.2004.03367.x
    1. Aree-Uea B., Auvichayapat N., Janyacharoen T., Siritaratiwat W., Amatachaya A., Prasertnoo J., et al. (2014). Reduction of spasticity in cerebral palsy by anodal transcranial direct current stimulation. J. Med. Assoc. Thail. 97 954–962.
    1. Baddeley A. D., Longman D. J. A. (1978). The influence of length and frequency of training session on the rate of learning to type. Ergonomics 21 627–635. 10.1080/00140137808931764
    1. Bangert M., Peschel T., Schlaug G., Rotte M., Drescher D., Hinrichs H., et al. (2006). Shared networks for auditory and motor processing in professional pianists: evidence from fMRI conjunction. Neuroimage 30 917–926. 10.1016/j.neuroimage.2005.10.044
    1. Baumann S., Koeneke S., Schmidt C. F., Meyer M., Lutz K., Jancke L. (2007). A network for audio-motor coordination in skilled pianists and non-musicians. Brain Res. 1161 65–78. 10.1016/j.brainres.2007.05.045
    1. Bengtsson S. L., Nagy Z., Skare S., Forsman L., Forssberg H., Ullén F. (2005). Extensive piano practicing has regionally specific effects on white matter development. Nat. Neurosci. 8 1148–1150. 10.1038/nn1516
    1. Bikson M., Grossman P., Thomas C., Louis A., Jiang J., Adnan T., et al. (2016). Safety of transcranial direct current stimulation: evidence based update 2016. Brain Stimul. 9 641–661. 10.1016/j.brs.2016.06.004
    1. Bikson M., Rahman A., Datta A., Fregni F., Merabet L. (2012). High-resolution modeling assisted design of customized and individualized transcranial direct current stimulation protocols. Neuromodulation 15 306–314. 10.1111/j.1525-1403.2012.00481.x
    1. Boggio P. S., Nunes A., Rigonatti S. P., Nitsche M. A., Pascual-Leone A., Fregni F. (2007). Repeated sessions of noninvasive brain DC stimulation is associated with motor function improvement in stroke patients. Restor. Neurol. Neurosci. 25 123–129.
    1. Bullard L. M., Browning E. S., Clark V. P., Coffman B. A., Garcia C. M., Jung R. E., et al. (2011). Transcranial direct current stimulation’s effect on novice versus experienced learning. Exp. Brain Res. 213 9–14. 10.1007/s00221-011-2764-2
    1. Chew T., Ho K.-A., Loo C. K. (2015). Inter- and intra-individual variability in response to transcranial direct current stimulation (tDCS) at varying current intensities. Brain Stimul. 8 1130–1137. 10.1016/j.brs.2015.07.031
    1. Ciechanski P., Cheng A., Lopushinsky S., Hecker K., Gan L. S., Lang S., et al. (2017). Effects of transcranial direct-current stimulation on neurosurgical skill acquisition: a randomized controlled trial. World Neurosurg. 108 876.e4–884.e4. 10.1016/j.wneu.2017.08.123
    1. Clark V. P., Coffman B. A., Mayer A. R., Weisend M. P., Lane T. D. R., Calhoun V. D., et al. (2012). TDCS guided using fMRI significantly accelerates learning to identify concealed objects. Neuroimage 59 117–128. 10.1016/j.neuroimage.2010.11.036
    1. Clarkson A. N., Huang B. S., Macisaac S. E., Mody I., Carmichael S. T. (2010). Reducing excessive GABA-mediated tonic inhibition promotes functional recovery after stroke. Nature 468 305–9. 10.1038/nature09511
    1. Cohen J. (1973). Eta-squared and partial eta-squared in fixed factor anova designs. Educ. Psychol. Meas. 33 107–112. 10.1177/001316447303300111
    1. Cuypers K., Leenus D. J. F., van den Berg F. E., Nitsche M. A., Thijs H., Wenderoth N., et al. (2013). Is Motor Learning Mediated by tDCS Intensity? PLoS One 8:e67344. 10.1371/journal.pone.0067344
    1. De Ridder D., Perera S., Vanneste S. (2017). State of the art: novel applications for cortical stimulation. Neuromodulation 20 206–214. 10.1111/ner.12593
    1. Dissanayaka T., Zoghi M., Farrell M., Egan G. F., Jaberzadeh S. (2017). Does transcranial electrical stimulation enhance corticospinal excitability of the motor cortex in healthy individuals? A systematic review and meta-analysis. Eur. J. Neurosci. 46 1968–1990. 10.1111/ejn.13640
    1. Dubljeviæ V., Saigle V., Racine E. (2014). The rising tide of tdcs in the media and academic literature. Neuron 82 731–736. 10.1016/j.neuron.2014.05.003
    1. Ehsani F., Bakhtiary A. H., Jaberzadeh S., Talimkhani A., Hajihasani A. (2016). Differential effects of primary motor cortex and cerebellar transcranial direct current stimulation on motor learning in healthy individuals: a randomized double-blind sham-controlled study. Neurosci. Res. 112 10–19. 10.1016/j.neures.2016.06.003
    1. Filho P. R. M., Vercelino R., Cioato S. G., Medeiros L. F., de Oliveira C., Scarabelot V. L., et al. (2016). Transcranial direct current stimulation (tDCS) reverts behavioral alterations and brainstem BDNF level increase induced by neuropathic pain model: long-lasting effect. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 64 44–51. 10.1016/j.pnpbp.2015.06.016
    1. Fregni F., Boggio P. S., Santos M. C., Lima M., Vieira A. L., Rigonatti S. P., et al. (2006). Noninvasive cortical stimulation with transcranial direct current stimulation in Parkinson’s disease. Mov. Disord. 21 1693–1702. 10.1002/mds.21012
    1. Fritsch B., Reis J., Martinowich K., Schambra H. M., Ji Y., Cohen L. G., et al. (2010). Direct current stimulation promotes BDNF-dependent synaptic plasticity: potential implications for motor learning. Neuron 66 198–204. 10.1016/j.neuron.2010.03.035
    1. Furuya S., Klaus M., Nitsche M. A., Paulus W., Altenmu E. (2014). Ceiling effects prevent further improvement of transcranial stimulation in skilled musicians. J. Neurosci. 34 13834–13839. 10.1523/JNEUROSCI.1170-14.2014
    1. Furuya S., Nitsche M. A., Paulus W., Altenmüller E. (2013). Early optimization in finger dexterity of skilled pianists: implication of transcranial stimulation. BMC Neurosci. 14:35. 10.1186/1471-2202-14-35
    1. Galea J. M., Celnik P. (2009). Brain polarization enhances the formation and retention of motor memories. J. Neurophysiol. 102 294–301. 10.1152/jn.00184.2009
    1. Gaser C., Schlaug G. (2003a). Brain structures differ between musicians and non-musicians. J. Neurosci. 23 9240–9245. 10.1523/JNEUROSCI.23-27-09240.2003
    1. Gaser C., Schlaug G. (2003b). Gray Matter Differences between Musicians and Nonmusicians. Annals N. Y. Acad. Sci. 999 514–517. 10.1196/annals.1284.062
    1. Gorniak S. L., Collins E. D., Staines K. G., Brooks F. A., Young R. V. (2018). The impact of musical training on hand biomechanics in string musicians. Hand [Epub ahead of print]. 10.1177/1558944718772388
    1. Granek J. A., Gorbet D. J., Sergio L. E. (2010). Extensive video-game experience alters cortical networks for complex visuomotor transformations. Cortex 46 1165–1177. 10.1016/j.cortex.2009.10.009
    1. Hadipour-Niktarash A., Lee C. K., Desmond J. E., Shadmehr R. (2007). Impairment of retention but not acquisition of a visuomotor skill through time-dependent disruption of primary motor cortex. J. Neurosci. 27 13413–13419. 10.1523/JNEUROSCI.2570-07.2007
    1. Hashemirad F., Zoghi M., Fitzgerald P. B., Jaberzadeh S. (2016). The effect of anodal transcranial direct current stimulation on motor sequence learning in healthy individuals: a systematic review and meta-analysis. Brain Cogn. 102 1–12. 10.1016/j.bandc.2015.11.005
    1. Herholz S. C., Zatorre R. J. (2012). Musical training as a framework for brain plasticity: behavior, function, and structure. Neuron 76 486–502. 10.1016/j.neuron.2012.10.011
    1. Hunter T., Sacco P., Nitsche M. A., Turner D. L. (2009). Modulation of internal model formation during force field-induced motor learning by anodal transcranial direct current stimulation of primary motor cortex. J. Physiol. 587 2949–2961. 10.1113/jphysiol.2009.169284
    1. Hyde K. L., Lerch J. P., Norton A., Forgeard M., Winner E., Evans A. C., et al. (2009). Musical training shapes structural brain development. J. Neurosci. 29 3019–3025. 10.1523/JNEUROSCI.5118-08.2009
    1. Iyer M. B., Mattu U., Grafman J., Lomarev M., Sato S., Wassermann E. M. (2005). Safety and cognitive effect of frontal DC brain polarization in healthy individuals. Neurology 64 872–875. 10.1212/01.WNL.0000152986.07469.E9
    1. Janzen T. B., Thompson W. F., Ammirante P., Ranvaud R. (2014). Timing skills and expertise: discrete and continuous timed movements among musicians and athletes. Front. Psychol. 5:1482. 10.3389/fpsyg.2014.01482
    1. Kantak S. S., Mummidisetty C. K., Stinear J. W. (2012). Primary motor and premotor cortex in implicit sequence learning – Evidence for competition between implicit and explicit human motor memory systems. Eur. J. Neurosci. 36 2710–2715. 10.1111/j.1460-9568.2012.08175.x
    1. Karok S., Fletcher D., Witney A. G. (2017). Task-specificity of unilateral anodal and dual-M1 tDCS effects on motor learning. Neuropsychologia 94 84–95. 10.1016/j.neuropsychologia.2016.12.002
    1. Koeneke S., Lutz K., Wüstenberg T., Jäncke L. (2004). Long-term training affects cerebellar processing in skilled keyboard players. Neuroreport 15 1279–1282. 10.1097/01.wnr.0000127463.10147
    1. Krings T., Töpper R., Foltys H., Erberich S., Sparing R., Willmes K., et al. (2000). Cortical activation patterns during complex motor tasks in piano players and control subjects. A functional magnetic resonance imaging study. Neurosci. Lett. 278 189–193. 10.1016/S0304-3940(99)00930-1
    1. Kumar S., Wagner C. W., Frayne C., Zhu L., Selim M., Feng W., et al. (2011). Noninvasive brain stimulation may improve stroke-related dysphagia. Stroke 42 1035–1040. 10.1161/STROKEAHA.110.602128
    1. Kwon Y. H., Ko M.-H., Ahn S. H., Kim Y.-H., Song J. C., Lee C.-H., et al. (2008). Primary motor cortex activation by transcranial direct current stimulation in the human brain. Neurosci. Lett. 435 56–9. S0304-3940(08)00180-8
    1. Lang N., Siebner H. R., Ward N. S., Lee L., Nitsche M. A., Paulus W., et al. (2005). How does transcranial DC stimulation of the primary motor cortex alter regional neuronal activity in the human brain? 22 495–504. 10.1111/j.1460-9568.2005.04233.x
    1. Learmonth G., Thut G., Benwell C. S. Y., Harvey M. (2015). The implications of state-dependent tDCS effects in aging: behavioural response is determined by baseline performance. Neuropsychologia 74 108–119. 10.1016/j.neuropsychologia.2015.01.037
    1. Li L. M., Uehara K., Hanakawa T. (2015). The contribution of interindividual factors to variability of response in transcranial direct current stimulation studies. Front. Cell. Neurosci. 9:181. 10.3389/fncel.2015.00181
    1. Liebetanz D., Nitsche M. A., Tergau F., Paulus W. (2002). Pharmacological approach to the mechanisms of transcranial DC stimulation induced after effects of human motor cortex excitability. Brain 125 2238–2247. 10.1093/brain/awf238
    1. Lotze M., Scheler G., Tan H. R. M., Braun C., Birbaumer N. (2003). The musician’s brain: functional imaging of amateurs and professionals during performance and imagery. Neuroimage 20 1817–1829. 10.1016/j.neuroimage.2003.07.018
    1. Merzagora A. C., Foffani G., Panyavin I., Mordillo-Mateos L., Aguilar J., Onaral B., et al. (2010). Prefrontal hemodynamic changes produced by anodal direct current stimulation. Neuroimage 49 2304–2310. 10.1016/j.neuroimage.2009.10.044
    1. Muellbacher W., Ziemann U., Wissel J., Dang N., Kofler M., Facchini S., et al. (2002). Early consolidation in human primary motor cortex. Nature 415 640–644. 10.1038/nature712
    1. Nitsche M. A., Paulus W. (2000). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J. Physiol. 527 633–639. 10.1111/j.1469-7793.2000.t01-1-00633.x
    1. Nitsche M. A., Paulus W. (2001). Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology 57 1899–1901. 10.1212/WNL.57.10.1899
    1. Nitsche M. A., Cohen L. G., Wassermann E. M., Priori A., Lang N., Antal A., et al. (2008). Transcranial direct current stimulation: state of the art 2008. Brain Stimul. 1 206–223. 10.1016/j.brs.2008.06.004
    1. Nitsche M. A., Liebetanz D., Schlitterlau A., Henschke U., Fricke K., Frommann K., et al. (2004). GABAergic modulation of DC stimulation-induced motor cortex excitability shifts in humans. Eur. J. Neurosci. 19 2720–2726. 10.1111/j.0953-816X.2004.03398.x
    1. Orban de Xivry J. J., Shadmehr R. (2014). Electrifying the motor engram: effects of tDCS on motor learning and control. Exp. Brain Res. 232 3379–3395. 10.1007/s00221-014-4087-6
    1. Page S. J., Cunningham D. A., Plow E., Blazak B. (2015). It takes two: noninvasive brain stimulation combined with neurorehabilitation. Arch. Phys. Med. Rehabil. 96 S89–S93. 10.1016/j.apmr.2014.09.019
    1. Pérez-Fernández C., Sánchez-Kuhn A., Cánovas R., Flores P., Sánchez-Santed F. (2016). The effect of transcranial direct current stimulation (tDCS) over human motor function. Clin Neurophysiol. 126 60–67. 10.1007/978-3-319-31744-1_43
    1. Puri R., Hinder M. R., Canty A. J., Summers J. J. (2016). Facilitatory non – Invasive brain stimulation in older adults: the effect of stimulation type and duration on the induction of motor cortex plasticity. Exp. Brain Res. 234 3411–3423. 10.1007/s00221-016-4740-3
    1. Raw R., Allen R., Mon-Williams M., Wilkie R. (2016). Motor sequence learning in healthy older adults is not necessarily facilitated by transcranial direct current stimulation (tDCS). Geriatrics 1:32. 10.3390/geriatrics1040032
    1. Reis J., Fritsch B. (2011). Modulation of motor performance and motor learning by transcranial direct current stimulation. Curr. Opin. Neurol. 24 590–596. 10.1097/WCO.0b013e32834c3db0
    1. Reis J., Schambra H. M., Cohen L. G., Buch E. R., Fritsch B., Zarahn E., et al. (2009). Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation. Proc. Natl. Acad. Sci. U.S.A. 106 1590–1595. 10.1073/pnas.0805413106
    1. Rosen D. S., Erickson B., Kim Y. E., Mirman D., Hamilton R. H., Kounios J. (2016). Anodal tDCS to right dorsolateral prefrontal cortex facilitates performance for novice jazz improvisers but hinders experts. Front. Hum. Neurosci. 10:579. 10.3389/fnhum.2016.00579
    1. Rroji O., Van Kuyck K., Nuttin B., Wenderoth N. (2015). Anodal tDCS over the primary motor cortex facilitates long-term memory formation reflecting use-dependent plasticity. PLoS One 10: e0127270. 10.1371/journal.pone.0127270
    1. Russo C., Souza Carneiro M. I., Bolognini N., Fregni F. (2017). Safety review of transcranial direct current stimulation in stroke. Neuromodulation Technol. Neural Interface 20 215–222. 10.1111/ner.12574
    1. Sánchez-Kuhn A., Pérez-Fernández C., Cánovas R., Flores P., Sánchez-Santed F. (2017). Transcranial direct current stimulation as a motor neurorehabilitation tool: an empirical review. Biomed. Eng. Online 16 1–22. 10.1186/s12938-017-0361-8
    1. Saucedo-Marquez C. M., Zhang X., Swinnen S. P., Meesen R., Wenderoth N. (2013). Task-specific effect of transcranial direct current stimulation on motor learning. Front. Hum. Neurosci. 7:333. 10.3389/fnhum.2013.00333
    1. Schambra H. M., Abe M., Luckenbaugh D. A., Reis J., Krakauer J. W., Cohen L. G. (2011). Probing for hemispheric specialization for motor skill learning: a transcranial direct current stimulation study. J. Neurophysiol. 106 652–661. 10.1152/jn.00210.2011
    1. Scheurich R., Zamm A., Palmer C. (2018). Tapping into rate flexibility: musical training facilitates synchronization around spontaneous production rates. Front. Psychol. 9:458. 10.3389/fpsyg.2018.00458
    1. Schlaug G. (2015). Musicians and music making as a model for the study of brain plasticity. Prog. Brain Res. 217 37–55. 10.1016/bs.pbr.2014.11.020
    1. Shen B., Yin Y., Wang J., Zhou X., McClure S. M., Li J. (2016). High-definition tDCS Alters impulsivity in a baseline-dependent manner. Neuroimage 143 343–352. 10.1016/j.neuroimage.2016.09.006
    1. Smolen P., Zhang Y., Byrne J. H. (2016). The right time to learn: mechanisms and optimization of spaced learning. Nat. Rev. Neurosci. 17 77–88. 10.1038/nrn.2015.18
    1. Spilka M. J., Steele C. J., Penhune V. B. (2010). Gesture imitation in musicians and non-musicians. Exp. Brain Res. 204 549–558. 10.1007/s00221-010-2322-3
    1. Sriraman A., Oishi T., Madhavan S. (2014). Timing-dependent priming effects of tDCS on ankle motor skill learning. Brain Res. 1581 23–29. 10.1016/j.brainres.2014.07.021
    1. Stagg C. J., Nitsche M. A. (2011). Physiological basis of transcranial direct current stimulation. Neuroscientist 17 37–53. 10.1177/1073858410386614
    1. Steele C. J., Bailey J. A., Zatorre R. J., Penhune V. B. (2013). Early musical training and white-matter plasticity in the corpus callosum: evidence for a sensitive period. J. Neurosci. 33 1282–1290. 10.1523/jneurosci.3578-12.2013
    1. Stewart L., Henson R., Kampe K., Walsh V., Turner R., Frith U. (2003). Brain changes after learning to read and play music. Neuroimage 20 71–83. 10.1016/S1053-8119(03)00248-9
    1. Takai H., Tsubaki A., Sugawara K., Miyaguchi S., Oyanagi K., Matsumoto T., et al. (2016). Effect of transcranial direct current stimulation over the primary motor cortex on cerebral blood flow: a time course study using near-infrared spectroscopy. Adv. Exp. Med. Biol. 876 335–341. 10.1007/978-1-4939-3023-4_42
    1. Tazoe T., Endoh T., Kitamura T., Ogata T. (2014). Polarity specific effects of transcranial direct current stimulation on interhemispheric inhibition. PLoS One 9:e114244. 10.1371/journal.pone.0114244
    1. Tucker M. A., Nguyen N., Stickgold R. (2016). Experience playing a musical instrument and overnight sleep enhance performance on a sequential typing task. PLoS One 11:e0159608. 10.1371/journal.pone.0159608
    1. Uehara K., Coxon J. P., Byblow W. D. (2015). Transcranial direct current stimulation improves ipsilateral selective muscle activation in a frequency dependent manner. PLoS One 10:e0122434. 10.1371/journal.pone.0122434
    1. van Asseldonk E. H. F., Boonstra T. A. (2016). Transcranial direct current stimulation of the leg motor cortex enhances coordinated motor output during walking with a large inter-individual variability. Brain Stimul. 9 182–90. 10.1016/j.brs.2015.10.001
    1. Vandermeeren Y., Jamart J., Ossemann M. (2010). Effect of tDCS with an extracephalic reference electrode on cardio-respiratory and autonomic functions. BMC Neurosci. 11:38. 10.1186/1471-2202-11-38
    1. Walker M. P., Brakefield T., Morgan A., Hobson J. A., Stickgold R. (2002). Practice with sleep makes perfect: sleep-dependent motor skill learning. Neuron 35 205–211. 10.1016/S0896-6273(02)00746-8
    1. Wiethoff S., Hamada M., Rothwell J. C. (2014). Variability in response to transcranial direct current stimulation of the motor cortex. Brain Stimul. 7 468–475. 10.1016/j.brs.2014.02.003
    1. Woods A. J., Antal A., Bikson M., Boggio P. S., Brunoni A. R., Celnik P., et al. (2016). A technical guide to tDCS, and related non-invasive brain stimulation tools. Clin. Neurophysiol. 127 1031–1048. 10.1016/j.clinph.2015.11.012
    1. Wright D. J., Holmes P. S., Di Russo F., Loporto M., Smith D. (2012). Differences in cortical activity related to motor planning between experienced guitarists and non-musicians during guitar playing. Hum. Mov. Sci. 31 567–577. 10.1016/j.humov.2011.07.001
    1. Xie H.-B., Guo T., Bai S., Dokos S., Wu J., Srinivasan R., et al. (2013). Effects of long-term practice and task complexity in musicians and nonmusicians performing simple and complex motor tasks: implications for cortical motor organization. Neuroimage 32 1–17. 10.1002/hbm.20112
    1. Zamorano A. M., Cifre I., Montoya P., Riquelme I., Kleber B. (2017). Insula-based networks in professional musicians: evidence for increased functional connectivity during resting state fMRI. Hum. Brain Mapp. 38 4834–4849. 10.1002/hbm.23682

Source: PubMed

3
订阅